
 

Journal of Advanced Research in Applied Sciences and Engineering Technology 6, Issue 1 (2017) 9-19 

9 

 

 

Journal of Advanced Research in Applied 

Sciences and Engineering Technology 

Journal homepage: www.akademiabaru.com/araset.html 

ISSN: 2462-1943 

 

 

Nonstandard finite difference scheme associated with 

harmonic mean averaging for the nonlinear Klein-Gordon 

equation 

 

Erni Suryani Suharto 1,*, Nurul I'zzah Othman 1, Mohd Agos Salim Nasir 1 
 

1 Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Selangor, 40450 Shah Alam, Selangor, Malaysia 

 

ARTICLE INFO ABSTRACT 

Article history: 

Received 20 October 2016 

Received in revised form 25 November 2016 

Accepted 30 November 2016 

Available online 7 January 2017 

In this paper, we demonstrate a modified scheme for solving the nonlinear Klein-

Gordon equation of PDE hyperbolic types. The Klein-Gordon equation is a relativistic 

wave equation version of the Schrodinger equation, which is widely used in quantum 

mechanics. Additionally, the nonstandard finite difference scheme has been used 

extensively to solve differential equations and we have constructed a modified scheme 

based on the nonstandard finite difference scheme associated with harmonic mean 

averaging for solving the nonlinear inhomogeneous Klein-Gordon equation where the 

denominator is replaced by an unusual function. The numerical results obtained have 

been compared and showed to have a good agreement with results attained using the 

standard finite difference (CTCS) procedure, which provided that the proposed scheme 

is reliable. Numerical experiments are tested to validate the accuracy level of the 

scheme with the analytical results. 
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1. Introduction 

 

In the field of physics, the nonlinear Klein-Gordon equation plays an important role especially in 

the applications of quantum mechanics and condensed matter physics [1,2]. There are many 

powerful numerical methods that have been applied in order to solve the nonlinear Klein-Gordon 

equation. The techniques include the finite difference method [3-8], the finite element method [9-

11], the inverse scattering radial basis functions (RBF) [12,13], the differential transform method 

(DYM) [14,15], and the homotopy analysis method (HAM) [16,17]. 
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Nonstandard finite difference (NSFD) method, which was developed by [22] for some class of 

differential equations, is the extension of the standard finite difference method and has been used 

widely in the numerical integration of differential equations. Moreover, [23-25] has identified certain 

principles for developing the best differential equations using nonlocal approximation by replacing 

the old denominator of derivatives with a non-negative function, ( )hφ  that follows criteria as h tends 

to zero, ( )hφ  approaches to zero. 

There is a minor study on the nonstandard finite difference method for Klein-Gordon equation. 

In this paper, we implement the nonstandard finite difference method that is incorporated with 

harmonic mean averaging to approximate the known function that appears in inhomogeneous Klein-

Gordon equation. In [27], by applying the harmonic mean approximation, the results have showed 

that the numerical and approximated solutions are in good agreement without much loss of accuracy. 

The harmonic mean (HM) has been stated in [28] as the smallest mean, hence it is suitable to be used 

in improving the degree of accuracy. 

The structure of this paper is organized as follows. In Section 2, we provide with some basic 

definition of the Klein-Gordon equation and finite difference technique. In Section 3 we apply the 

proposed method. In Section 4, we present the numerical illustrations for determining the efficiency 

and reliability of the approach scheme and the conclusion of the study is given in Section 5. 

 

2. Klein-Gordon equation and finite difference technique  

2.1. Nonlinear Klein-Gordon equation 

 

Nonlinear Klein-Gordon equation has been studied extensively in science and engineering fields 

from different perspectives. The general nonlinear Klein-Gordon equation by Wazwaz [29] in the 

form 

 

( ) ( ) ( ) ( )( ) ( )

TtLx

txktxuFtxuatxutxu xxtt

≤<<<

=++−

0,0

,,,,,,
        (1) 

 

subject to the initial conditions 

 

( ) ( ) ( ) ( ) 0,0,,0, >== txgxuxfxu t          (2) 

 

where u is a function of x and t, a is a constant, ( )txk ,  is a known function or functional values, 

( )( )txuF , is a nonlinear function of ( )txu , , and ( )xf  and ( )xg  are given function. 

 

2.2. Finite difference technique 

 

The formulation of the standard finite difference using Taylor series expansion in central time 

central space (CTCS) and associate with four points of harmonic mean formula is as follows: 

 

( )
][{ [ ( ) ( )]}jijijijijijijijijijijiji

jijijijijiji

kkkkkkkkkkkkh

UFhUahUUUU

,1,11,,11,,1,1,11,1,,11,

2

,

2

,

2

,1,11,1,

4 +++

=++−−+

++++++++++++

−+−+
   (3) 

 

where h denotes as the grid size. By shifting ( )ji,  to ( )1,1 ++ ji  and then simplifying (3) results in 
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Therefore, the final form of the general CTCS scheme associated with the harmonic mean averaging 

can be written as (4). Studies on the use of finite difference schemes which utilize alternatives to 

other mean averaging method has been reported in [30] for linear Klein-Gordon equation. 

 

3. Nonstandard finite difference harmonic mean scheme  

 

Nonstandard finite difference methods were introduced by Mickens in 1980s [22] as 

sophisticated numerical techniques, which approximate derivatives and differential equations by 

using nonlocal discrete representations. In this paper, we analyse the application of a nonstandard 

finite difference method that is associated with harmonic mean averaging by using he −−1  as the 

denominator function for nonlinear inhomogeneous Klein-Gordon equation. This denominator 

function satisfies the property as ( ) 0,0 →→ hh φ  [22,23]. The final form for our nonstandard finite 

difference scheme is as follows: 

 

( ) ( ) ( ) ( )
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4. Numerical illustrations 

 

To determine the efficiency of the modified scheme described in previous section, we 

demonstrate some examples. 

 

4.1. Example 1 

 

We first consider the nonlinear inhomogeneous Klein-Gordon equation in [29,30] 

 

( ) 10,10,cos 222 <<<<=++− txtxuuuu xxtt        (6) 

 

with the following initial conditions: 

 

( ) ( ) 000,,0, >== txuxxu t           (7) 

 

The analytical solution of the Example 1 is ( ) ( )txtxu cos, =  that can be found in [29]. Here, by using 

scheme (5), we acquire the scheme of Problem 1 below: 

 

( ) ( ) ( ) ( )
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We created computer programs for the application of the standard CTCS scheme and scheme (8) 

for Example 1. The presented numerical results and graphs in Fig. 1 and Fig. 2 show the respective 

approximate solution and the relative errors at selected mesh points with several grid sizes. 

 

 

Fig. 1. The Exact Solution of Example 1 in graphical 

form at h = 0.05 

 

 

Fig. 2. The Solution of Example 1 in graphical form 

using scheme (8) at h = 0.05 

 

The above graphical presentations show that the graph for approximate solution in Fig. 2 looks 

merely the same as the graph for the exact solution in Fig. 1 due to the occurrence of smaller errors. 

 
Table 1 

Relative errors for CTCS scheme at selected mesh points with several grid sizes 

h 
(x, t) 

(0.25, 0.25) (0.50, 0.50) (0.75, 0.75) (1.00, 1.00) 

0.005 0.042963785 0.190844800 0.480046760 0.857451870 

0.010 0.042950484 0.190827980 0.481440240 0.864038740 

0.025 0.042857395 0.190710250 0.485407250 0.883496240 

0.050 0.042525171 0.190290160 0.491298070 0.914870700 
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Table 2 

Relatives errors for scheme (5) at selected mesh points with several grid sizes 

h 
(x, t) 

(0.25, 0.25) (0.50, 0.50) (0.75, 0.75) (1.00, 1.00) 

0.005 0.042868377 0.190461950 0.479300340 0.857410940 

0.010 0.042763824 0.190072460 0.479943580 0.863876860 

0.025 0.042420625 0.188895340 0.481644250 0.882517850 

0.050 0.041745994 0.186893550 0.483745560 0.911167730 

 
Table 3 

Comparison of average relative errors between CTCS scheme and scheme (8) 

Scheme 
h 

0.005 0.010 0.025 0.050 

CTCS scheme 0.27691523 0.27876396 0.28427012 0.29329484 

Scheme (8) 0.27657239 0.27807459 0.28251876 0.28969816 

 

Table 1, Table 2 and Table 3 indicate the relative errors and the average relative errors for the 

respective CTCS scheme and the approximate scheme (8) for Example 1 at selected grid sizes. The 

relative errors of the approximate solutions approach zero as the grid size reduces. On the other 

hand, the average relative errors in Table 3 become smaller when gird size approaches to zero. These 

evidences indicate both schemes converge. 

In addition, as the grid sizes become finer, the numerical approximate solutions converge to the 

exact solution. Hence, both schemes are consistent and stable as grid sizes tend to zero. However, 

this illustrates that scheme (5) is more accurate than the CTCS scheme. 

 

4.2. Example 2 

 

We next consider the nonlinear inhomogeneous Klein-Gordon equation in [20,31] 

 

10,10,
2

sin
4

2
22

2

<<<<







=++− txtxuuuu xxtt

ππ
      (9) 

 

with initial conditions 

 

( ) ( ) 0
2

0,,00, >== txxuxu t

π
                   (10) 

 

The analytical solution of Problem 2 is ( ) 







= txtxu

2
sin,

π
 that can be found in [20]. Here, by 

using scheme (5), we obtained the new approximate scheme according to Example 2 as follow: 
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             (11) 

 

We developed computer programs for the application of CTCS scheme and scheme (11) for 

Example 2. The presented numerical results and graphs in Fig. 3 and Fig. 4 demonstrate the respective 

approximate solution and relative errors at selected mesh points with several grid sizes. 

 

 

Fig. 3. The Exact solution of Example 2 in 

graphical form at h = 0.05 

 

 

Fig. 4. The Solution of Example 2 in graphical form 

using scheme (11) at h = 0.05 

 

The above graphical presentations, show that the graph for approximate solution in Fig. 4 looks 

the same as the graph for the exact solution in Fig. 3 due to the occurrence of smaller errors. 
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Table 4 

Relative errors for CTCS scheme at selected mesh points with several grid sizes 

h 
(x, t) 

(0.25, 0.25) (0.50, 0.50) (0.75, 0.75) (1.00, 1.00) 

0.005 0.074155149 0.243917090 0.501234700 0.587460390 

0.010 0.096203758 0.258959190 0.517359390 0.643896400 

0.025 0.161842180 0.303526130 0.566394710 0.656799840 

0.050 0.269525710 0.375874070 0.650112220 0.749727080 

 
Table 5 

Relative errors for scheme (11) at selected mesh points with several grid sizes 

h 
(x, t) 

(0.25, 0.25) (0.50, 0.50) (0.75, 0.75) (1.00, 1.00) 

0.005 0.073964097 0.243110790 0.499832550 0.587404540 

0.010 0.095810774 0.257318630 0.514479480 0.604163810 

0.025 0.160790680 0.299230670 0.558620850 0.655342320 

0.050 0.267276840 0.366743090 0.632617820 0.743583750 

 
Table 6  

Comparison of average relative errors between CTCS scheme and scheme (11) 

Scheme 
h 

0.005 0.010 0.025 0.050 

CTCS scheme 0.32842459 0.35450585 0.41870782 0.50469965 

Scheme (11) 0.32749333 0.35259906 0.41360435 0.49335045 

 

Table 4, Table 5 and Table 6 demonstrates the relative errors and the average relative errors for 

the CTCS scheme and the approximate scheme for Example 2 at selected grid sizes respectively. The 

relative errors of the approximate solution approach zero as grid size reduces. On the other hand, 

the average relative errors in Table 6 become smaller when grid size approaches zero. These 

evidences indicate both schemes are convergent. 

In addition, as the grid sizes become smaller, the numerical approximate solutions converge to 

the exact solution. Hence, both schemes are stable and consistent as grid sizes shrink to zero. 

However, this shows that scheme (11) is more accurate than the CTCS scheme. 

 

4.3. Example 3 

 

As a final problem, we considered the nonlinear inhomogeneous Klein-Gordon equation in [5,12-

14,20,32,33] 

 

( ) 10,10,cos 222 <<<<−=+− txtxuuu xxtt                   (12) 

 

with initial conditions 

 

( ) ( ) 000,,00, >== txuxu t                     (13) 

 

The analytical solution of Example 3 is ( ) ( )ttxu cos, =  that can be found in [32]. 

Here, by using scheme (5), we obtain the new approximate scheme according to Example 3 as follow: 
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We constructed computer programs for the application of CTCS scheme and scheme (14) for 

Example 3. The presented numerical results and graphs in Fig. 5 and Fig. 6 illustrate the respective 

approximate solution and relative errors at selected mesh points with several grid sizes. 

 

 

Fig. 5. The Exact solution of Example 3 in 

graphical form at h = 0.05 

 

 

Fig. 6. The Solution of Example 3 in graphical form 

using scheme (14) at h = 0.05 

 

The above graphical illustrations show that the graph for approximate solution in Fig. 6 looks the 

same as the graph for the exact solution in Fig. 5 due to the occurrence of smaller errors. 
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Table 7 

Relative errors for CTCS scheme at selected mesh points with several grid sizes 

h 
(x, t) 

(0.25, 0.25) (0.50, 0.50) (0.75, 0.75) (1.00, 1.00) 

0.005 0.042563088 0.183836890 0.456806460 0.856050190 

0.010 0.042550590 0.183823640 0.457773060 0.861226710 

0.025 0.042463092 0.183730870 0.460489320 0.876404740 

0.050 0.042150526 0.183399570 0.464408480 0.900508280 

 
Table 8 

Relative errors for scheme (14) at selected mesh points with several grid sizes 

h 
(x, t) 

(0.25, 0.25) (0.50, 0.50) (0.75, 0.75) (1.00, 1.00) 

0.005 0.042723226 0.183950610 0.456580210 0.856027990 

0.010 0.042837179 0.184010160 0.457295500 0.861137500 

0.025 0.042998486 0.183967560 0.459142370 0.875845090 

0.050 0.042825644 0.183345530 0.461316130 0.898288220 

 
Table 9 

Comparison of average relative errors between CTCS scheme and scheme (14) 

Scheme 
h 

0.005 0.010 0.025 0.050 

CTCS scheme 0.26878149 0.27041902 0.27527585 0.28316757 

Scheme (14) 0.26872958 0.27029209 0.27481876 0.28188102 

 

Table 7, Table 8 and Table 9 demonstrates the relative errors and the average relative errors for 

the CTCS scheme and the approximate scheme for Example 3 at selected grid sizes respectively. The 

relative errors of the approximate solution approach zero as grid size reduces. Meanwhile, the 

average relative errors in Table 9 are smaller when grid size reduces to zero. These evidences indicate 

both schemes are converging. 

Furthermore, as the grid sizes become smaller, the numerical approximate solutions closer to the 

exact solution. Thus, both schemes are stable and consistent as grid size approaches zero. This shows 

that the scheme (14) is more accurate than the CTCS scheme. 

 

4. Conclusion 

 

The numerical experiments for modified scheme have demonstrated the good performance for 

selected nonlinear inhomogeneous Klein-Gordon problems. A comparative study on the average 

relative errors between CTCS scheme and the nonstandard finite difference procedure at selected 

grid sizes, h was done. As the grid sizes become finer, the level of accuracy increases. Hence, we can 

conclude that the nonstandard finite difference scheme that is associated with harmonic mean 

averaging in (5) is effective and shows significant improvement in solving the nonlinear Klein-Gordon 

equations over existing methods. The scheme is also observed to be locally stable and convergent. 
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