
Journal of Advanced Research in Computing and Applications

ISSN (online): 2462-1927 | Vol. 3, No. 1. Pages 18-28, 2016

18

Penerbit

Akademia Baru

Design of Optimized Pipelined RIPEMD-160 with

High Frequency and Throughput

S. Suhaili*,a, T. Watanabeb

a,*Electronic Department, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS),

94300 Kota Samarahan, Sarawak
bGraduate School of Information, Production and Systems, Waseda University,2-7 Hibikino,

Wakamatsu-Ku, Fukuoka 808-0135, Japan
a,*sushamsiah@unimas.my, bwatt@waseda.jp

Abstract –The main objective of this paper is to design optimized pipelined RIPEMD-160 with

efficient design strategies. There are two proposed designs in this paper such as iterative design and

pipelined design. The results show the pipelined design provides high frequency as well as throughput

of the design. The improvement of these designs based on HDL design style where the placement of

register need to be considered, by adding the several register to the design and by using Quartus II

Advisor tools. Furthermore, by using TimeQuest Timing Analyzer, timing requirement of the design

such as setup and hold time of the design can be achieved and the maximum frequency of the design

can be obtained. This paper focuses on maximum frequency of the designs. Therefore, the methodology

on how to improve the speed of the design needs to be taken into consideration. In addition, nowadays

high throughput of the hash function design is important since all the design need to be fast enough

through some application. By using pipelined design, the frequency and throughput of the design can

be improved which is about 250 MHz and 7.805 Gbps respectively with small area implementation.

Copyright © 2016 Penerbit Akademia Baru - All rights reserved.

Keywords: Hash Function, iterative, pipelined, RIPEMD-160

1.0 INTRODUCTION

Hash Function is widely used for some cryptographic application. It receives arbitrary input

and provides fixed length of the output based on the structure of hash function. The output of

hash function known as hash code or message digests. There is no key for hash function as

shown in Figure 1 which is the block diagram of hash function. There are several different

types of hash function such as MD5, SHA-1, RIPEMD-160 and etc. Design and

implementation of these hash functions on reconfigurable hardware have been done by many

researchers [2,3,4,5,6]. Nowadays, efficient design of hash function is important for some

application. Therefore, some techniques need to be taken into consideration in order to improve

the performance of hash function in terms of frequency and throughput of the design.

Figure 1: Hash Function

Hash Function

Journal of Advanced Research in Computing and Applications

ISSN (online): 2462-1927 | Vol. 3, No. 1. Pages 18-28, 2016

19

Penerbit

Akademia Baru

Motivation of this paper by choosing RIPEMD160 as hash function for some application is

because of the structure of hash function where it considers both side left and right line for shift

and message values. Figure 2 shows the requirement of hash function. M represent message,

H is hash function and h is hash code of hash function. From Figure 2(a), it shows that hash

code will be obtained after receiving the message input. However, the process to obtain the

message from hash code cannot be done by using hash function. This refers to one way property

of hash function. Furthermore, if there are two different messages and there will be two

different messages digest of hash function. This is because hash function is strong enough

against collisions. Collision is not desired characteristics of hash function. This process shows

in Figure 2(c) and sometimes called strong collision resistance.

Figure 2: Requirement of Hash Function [1]

2.0 METHODOLOGY

2.1 RIPEMD-160 Algorithm

The structure of RIPEMD-160 (Race Integrity Primitives Evaluation Message Digest)

algorithm produces 160-bit length of the hash code which consists of five 32-bit words. The

output of RIPEMD-160 is in little-endian format. The algorithm 1 shows the RIPEMD-160

algorithm. There are 80 steps processing for five 32-bit different initial inputs.
__

Algorithm 1 : RIPEMD160 algorithm______________________________

for t=0 { �	 � ��, � � ��, 	 � �
, � � ��	 � ��;
 �′ � ��, �′ � ��, 	 ′ � �
, �′ � ��, ′ � ��;
 for t=0 to 79 {

 � � �������	�� � ����, 	, �� � 	������� � 	 ���! � ;
 � � ; 	 � �; 	� � ������	�; 		 � �; 	� � �;

 � ′ � ����′��� 	"�′ � �#$%���′, 	 ′, �′� � 	���′���� � 	 ���& � ′;
 �′ � ′; 	′ � �′; 	�′ � ������	 ′�; 		 ′ � �′; 	�′ � � ′;
 }

 �� �	�� � 	 � �′; 	 	�� � �
 � � � ′; 	 	�
 � �� � � �′;
 �� � �� � � � �′; 			�� � �� � � � 	 ′; }

 __

'

M

h

H

X

h

H

M

M

1

h h

M

2

H H

(a) (b) (c)

Journal of Advanced Research in Computing and Applications

ISSN (online): 2462-1927 | Vol. 3, No. 1. Pages 18-28, 2016

20

Penerbit

Akademia Baru

From algorithm 1, five initial inputs ��, ��, �
, ��, and �� will be given to five inputs from

left namely �, �, 	, � and and five inputs from right namely �(, �(, 	(, �(and (. There are

two parallel process of RIPEMD-160 occur during execution. Figure 3 illustrates the structure

of RIPEMD-160 algorithm. From this figure, there are non-linear function f(B,C,D) for input

B, C and D. The output D and �(shift (rotation) to the left over 10 positions.

Figure 3: Compression Function of RIPEMD-160 Block Diagram

Figure 4 shows the top level for RIPEMD-160 algorithm where the initial input, input value

for message selection, shift rotation and constant are described in the next following table. For

iterative design, only one block of compression function will be used in the process while for

pipelined design, there are five block of compression function which consists of different non-

linear function f(B,C,D). From this Figure,) and)(represent 32-bit message input with

message selection for each step, ten constant inputs and (for five parallel operation and

shift value for 80 steps operation. Finally, the output of hash function will be obtained by

adding with five initial inputs, five variables �, �, 	, � and from the left and five variables

�(, �(, 	(, �(and (from right. Since the output of RIPEMD-160 hash function in little-endian

format, the final output need to be changed back into normal value in order to obtain the correct

output of RIPEMD-160 hash function.

K′

�(�((�((

�#$%�(B,C,D)

+

+

+

����+

�(�((�((

M[�(]

A B C D E

��(B,C,D)

+

+

+

����

A B C D E

M[m]

K

+

�����

+

�����

Journal of Advanced Research in Computing and Applications

ISSN (online): 2462-1927 | Vol. 3, No. 1. Pages 18-28, 2016

21

Penerbit

Akademia Baru

Figure 4: RIPEMD-160 Top-Level

��, �, M�0. .15�, S�0. .15�

�
,
, M�16. .31�, S�16. .31�

��, �,)�32. .47�, 7�32. .47�

��, �,)�48. .63�, 7�48. .63�

�9, 9,)�64. .79�, 7�64. .79�

��, �
(, M(�0. .15�, S(�0. .15�

��,

(, M(�16. .31�, S(�16. .31�

��, �
(,)(�32. .47�, 7(�32. .47�

��, �,
()(�48. .63�, 7(�48. .63�

��, 9
(,)(�64. .79�, 7(�64. .79�

�� �� �
 �� ��

�� �� �
 �� ��

Journal of Advanced Research in Computing and Applications

ISSN (online): 2462-1927 | Vol. 3, No. 1. Pages 18-28, 2016

22

Penerbit

Akademia Baru

The following tables show some parameter operation to describe RIPEMD-160. Table 1 shows

initial input for RIPEMD-160. There are five initial input ��, ��, �
, ��, and ��.

Table 1: Initial Value

Register Buffer Initialization

�� 32’h67452301

�� 32’hefcdab89

�
 32’h98badcfe

�� 32’h10325476

�� 32’hc3d2e1f0

There are five different non-linear function for f(B,C,D) of RIPEMD-160. Table 2 shows the

non-linear function for five different steps ��, �
, ��, �� and �9. The operation ⊕, ˄, ˅ and ¬

represent bitwise XOR, AND, OR and complement respectively. Table 3 illustrates the rounding

of boolean function for both left and right. The sequence of the function will be based on Table

3 where for the right lines will use reverse order of non-linear function.

Table 2: Non-linear Function of RIPEMD-160

Step number Non-linear Function, f (B,C,D)

< ≤ > ≤ ?@ �� (B,C,D) B ⊕ C ⊕ D

?A ≤ > ≤ B? �
 (B,C,D) (B ˄ C) ˅ (¬B ˄ D)

BC ≤ > ≤ DE �� (B,C,D) (B ˅ ¬ C) ⊕ D

DF ≤ > ≤ AB �� (B,C,D) (B ˄ D) ˅ (C ˄ ¬ D)

AD ≤ > ≤ EG �9 (B,C,D) B ⊕ (C ˅ ¬ D)

Table 3: Round Function

Lines Round 1 Round 2 Round 3 Round 4 Round 5

Left �� �
 �� �� �9

Right �9 �� �� �
 ��

In order to produce the output of RIPEMD-160 hash function, ten different constants which are

five from the left and five from the right will be used in this design. Only constant, for 0 ≤

t ≤ 15 and constant, (for 64 ≤ � ≤ 79 have the same value which is 32’h00000000. Table

4 shows five Constant, and (for five round of RIPEMD-160 in hexadecimal.

Table 4: Constant

Step number Constant, K Constant, I(
< ≤ > ≤ ?@ 32’h00000000 32’h50A28BE6

?A ≤ > ≤ B? 32’h5A827999 32’h5C4DD124

BC ≤ > ≤ DE 32’h6ED9EBA1 32’h6D703EF3

DF ≤ > ≤ AB 32’h8F1BBCDC 32’h7A6D76E9

AD ≤ > ≤ EG 32’hA953FD4E 32’h00000000

Since RIPEMD-160 use two parallel lines which are from left, and right, there will be two

different values for message selection, � and �(as shown in Table 5. In this case, the data

Journal of Advanced Research in Computing and Applications

ISSN (online): 2462-1927 | Vol. 3, No. 1. Pages 18-28, 2016

23

Penerbit

Akademia Baru

needs to be kept in memory first in order to make sure that the data is already in appropriate

place. Once the data already is in place, the counter will be used to call the message based on

value from Table 5. The messages are divided into 16 parts where each part consists of 32-bit

message word. In this design, there are five rounds for both lines where each round consists of

16 steps. There are 80 steps processing to complete the output of this design.

Table 5: Message Selection

Step number Message word, m

< ≤ > ≤ ?@ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

?A ≤ > ≤ B? 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8

BC ≤ > ≤ DE 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12

DF ≤ > ≤ AB 1 9 11 10 0 8 12 4 13 3 7 15 14 5 6 2

AD ≤ > ≤ EG 4 0 5 9 7 12 2 10 14 1 3 8 11 6 15 13

Step number Message word, �(

< ≤ > ≤ ?@ 5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12

?A ≤ > ≤ B? 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2

BC ≤ > ≤ DE 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13

DF ≤ > ≤ AB 8 6 4 1 3 11 15 0 5 12 2 13 9 7 10 14

AD ≤ > ≤ EG 12 15 10 4 1 5 8 7 6 2 13 14 0 3 9 11

Similar with Shift value, there are two Shift such as Shift from left,s and Shift from right, s(.

Table 6 shows the 4-bit left rotation operation from left and right of RIPEMD-160. By using the

combination method for both message value and Shift value into one variable in Verilog code,

the output of the design can be monitored easily.

Table 6: Shift value

Step number Shift, s

< ≤ > ≤ ?@ 11 4 15 12 5 8 7 9 11 13 14 15 6 7 9 8

?A ≤ > ≤ B? 7 6 8 13 11 9 7 15 7 12 15 9 11 7 13 12

BC ≤ > ≤ DE 11 13 6 7 14 9 13 15 14 8 13 6 4 12 7 5

DF ≤ > ≤ AB 11 12 14 15 14 15 9 8 9 14 5 6 8 6 5 12

AD ≤ > ≤ EG 9 15 5 11 6 8 13 12 5 12 13 14 11 8 5 6

Step number Shift, s(

< ≤ > ≤ ?@ 8 9 9 11 13 15 15 5 7 7 8 11 14 14 12 6

?A ≤ > ≤ B? 9 13 15 7 12 8 9 11 7 7 12 7 6 15 13 11

BC ≤ > ≤ DE 9 7 15 11 8 6 6 14 12 13 5 14 13 13 7 5

DF ≤ > ≤ AB 15 5 8 11 14 14 6 14 6 9 12 9 12 5 15 8

AD ≤ > ≤ EG 8 5 12 9 12 5 14 6 8 13 6 5 15 13 11 11

Journal of Advanced Research in Computing and Applications

ISSN (online): 2462-1927 | Vol. 3, No. 1. Pages 18-28, 2016

24

Penerbit

Akademia Baru

2.2 Proposed Design

In this paper, there are two designs have been proposed such as iterative design and pipelined

design. Iterative design uses only one compression function while pipelined design uses five

different compression functions. The proposed pipelined design based on modification on paper

[5]. Slight modification has been done in order to produce optimized RIPEMD-160.

2.2.1 Iterative Design

Iterative design is basic design of hash function. Figure 5 shows iterative design for step function

of RIPEMD-160. It consists of non-linear function, shift rotation over 10 positions, left circular

shift with shift value. M and K represent message and constant of RIPEMD-160 respectively.

In this design only one block of step function will be used during the execution process. All the

parameters stated in the previous section will be used in this design in order to obtain the correct

output. Maximum frequency of the design can be achieved by using advisors in terms of

resource, timing and power. In addition, by putting register at the end of the design output port

can also increase the maximum frequency as we know register-to-register delay in one of the

largest delays in modern circuit design.

There is only one non-linear function block for iterative design that consists of five different

non-linear functions. First, message will be kept in memory with input load which means if

there is input load with logic’1’, the data will transfer to specific length of register. Then,

message will be kept in memory starting from 0 until 15 locations. By using this method, it is

easier to call the message based on message selection ordering as shown in previous table.

Counter can be used to call the message,� ,�(and Shift, K , K(value. The iteration of this

architecture will be processed until 80 steps. Finally, the output �, �, 	, �, and from left and

�(, �(, 	(, �(and (from right will be added with initial value ��, ��, �
, �� and �� at the end

of this design.

Figure 5: RIPEMD-160 Iterative Architecture Design

���, 	, �� �

	

�

� +

����

 + �

	

����� �

�

)

+

+

Journal of Advanced Research in Computing and Applications

ISSN (online): 2462-1927 | Vol. 3, No. 1. Pages 18-28, 2016

25

Penerbit

Akademia Baru

2.2.2 Pipelined Design

Figure 6 shows the concept of pipelined design. There are five stages of RIPEMD-160 design

starting from round 1 until round 5. Each round consists of 16 steps and overall steps for this

design are 80 steps. By using pipelined design the performance of the design can be improved

significantly even though there will be slight increment in terms of area implementation.

However Quartus II advisor can help to reduce the logic elements that have been used for this

design. As we know timing is important in order to obtain the maximum frequency of the design.

Therefore, timing requirement for setup and hold time need to be met. In addition, TimeQuest

Timing Analyzer will be used by giving the appropriate constraint to the design.

Figure 6: Pipelined Design

By using the concept of pipelined design as shown in Figure 6, RIPEMD-160 pipelined design

can improve the performance of the design. Besides, modification on idea from paper [5] has

been taken into consideration. Figure 7 illustrates the pipelined architecture design for single

block of RIPEMD-160. The difference between paper [5] and this paper is the Message,)� and

Constant, � will be added with input A.

Figure 7: RIPEMD-160 Pipelined Architecture Design for Single Block

Final Calculation

�

LMN

	

�

�

O

�

	

�

L

���, 	, ��

LMN

L�

M

u

x

PMN

P� M

u

x

P

PMN

)��m�

 �

�

�

�

	 �

����

)�[m]

 �

�

�

�
)
���

�

�����

Pre-Computation

�

Round

1

Round

2

Round

3

Round

4

Round

5

Journal of Advanced Research in Computing and Applications

ISSN (online): 2462-1927 | Vol. 3, No. 1. Pages 18-28, 2016

26

Penerbit

Akademia Baru

By using the same sequence as normal RIPEMD160 algorithm for input A, Message,)� and

Constant, � the design can be improved significantly if compared with previous design. From

Figure 7, there are two initialization values for variables L and P. First, Let us consider the

input)� and �. These two inputs will be added with input A and gives output L�. Then, the

output will go to PMN and will be added to non-linear f(B,C,D). Finally, the output O will shift

to the left with 4-bit amount and will be added with input in order to obtain the output �, �’.
This concept is the same as original idea which is based on algorithm 1 of RIPEMD-160

algorithm. Now, for second cycle,)
and
will be added with E value. As we know, the input

for ��S� is equal to � as shown in the following equation (1). In this case, the output will be

directly added with non-linear f(B,C,D). The sequence to obtain output �,�(is similar with

previous method but with different input. By using algorithm 1 of RIPEMD-160 algorithm, the

output �, 	, � and from left and �(, 	(, �(and (from right can be obtained.

��S�= � (1)

Table 7 shows the proposed pipelined design of RIPEMD-160. Some modification has been

done in order to increase the performance of the design. In this design, there are five pre-

computation block because of different five different types of non-linear function while for

Final-Calculation, only one block unit will be used. Calculation for)� and � start at this stage.

The output of LMN will be used for the rest of calculation of RIPEMD-160 hash function. This

output L will go to PMN. This PMN will be selected as P input for each of Pre-Computation.

The process execute in pipelined design and selection needs to be done when comes to different

rounding of RIPEMD-160.

Table 7: RIPEMD-160 input for Pipelined Design

Pre-Computation Final-Calculation

�� = �� ��S� = �

�� = �� ��S� = � � T����O��

	� = 	� 	�S� = ��

�� = �� ��S� = T�����	��

� = � �S� = ��

O� = ��(B,C,D) + P� P�S� = L�

L� = L� L�S� =)� � � � ��

Pipelined design can contribute to fast design but it suffers with large area implementation.

However, by using Quartus II advisors, it can help to reduce the area implementation, increase

the timing and reduce the power consumption. HDL coding style needs to consider as well in

designing the design because this design will be implemented into gate level implementation.

The design can be improved by using proper and efficient coding style. Moreover, by using

appropriate constraint to the design, the setup and hold time requirement will be met. In this

design, sdc input clk 4 is given to the design in order to obtain maximum frequency of the

design. Besides, by using similar method with proposed iterative design, the speed of the design

can be enhanced by putting register at the end of the output port of the design. This delay

contributes to register-to-register delay. In this design, performance of RIPEMD-160 pipelined

design increase significantly if compared with iterative design.

Journal of Advanced Research in Computing and Applications

ISSN (online): 2462-1927 | Vol. 3, No. 1. Pages 18-28, 2016

27

Penerbit

Akademia Baru

3.0 RESULT AND DISCUSSION

The proposed RIPEMD-160 for both iterative design and pipelined design were successfully

synthesized and implemented by using Altera Quartus II on Arria II GX. The designs were

written in Verilog code and simulated in functional and timing simulation using ModelSim-

Altera 10.3d. Table 8 shows the synthesis and implementation results of RIPEMD-160 hash

function. From this table, it shows that the maximum frequency for pipelined design increase

significantly from 135.61 MHz to 250.0 MHz if compared with iterative design. In addition,

Quartus II timing optimization advisor can also increase the speed of the design. Besides, the

usages of register reduce from 581 to 517. This method can be done by using Quartus II

resource optimization advisor.

Table 8: Synthesis and Implementation of RIPEMD-160 Hash Function

Proposed Design Device ALUTs Reg FMax

(MHz)

Throughput

(Mbps)

RIPEMD160 Arria II GX 1192 581 134.35 838.87

RIPEMD160_pipeline Arria II GX 2200 517 250.0 7804.88

The throughput of the design can be calculated using the following equation (2). From this

design, RIPEMD-160 pipelined design achieves high throughput which is about 7.805 Gbps

with 82 number of clock cycle. Table 9 shows the comparison results of other publications of

RIPEMD-160 hash function design. From this table, it shows that both proposed designs on

Arria II GX provide high frequency and throughput if compared with other designs. Besides,

these designs give small area implementation where it suitable for any cryptographic application

that needs high speed design with small area implementation.

Throughput =
9�
 \]^_`a` bcdeadfgh

ij.jk gljgm nhlgdo
 (2)

Table 9: RIPEMD-160 design comparison with previous works

Design Device ALUTs/CLB Reg FMax

(MHz)

Throughput

(Mbps)

[3] Xilinx Virtex 300E

1004 CLB - 42.9 65

[4] EPF10K50SBC356-1

 26.6 84

*[5] Xilinx Virtex-E

- - 87.6 2803

[6] XC2VP30

4410 ALUTs - 100.05 624

Proposed

RIPEMD-160

Arria II GX 1192 ALUTs 581 134.35 838.87

*Proposed

RIPEMD-160

Pipelined

Arria II GX 2200 ALUTs 517 250.0 7804.88

*Pipelined

Journal of Advanced Research in Computing and Applications

ISSN (online): 2462-1927 | Vol. 3, No. 1. Pages 18-28, 2016

28

Penerbit

Akademia Baru

4.0 CONCLUSION

In conclusion, both proposed designs were successfully synthesized and implemented on

Quartus II Arria II GX. Pipelined design shows the improvement of the design performance in

terms of maximum frequency and area implementation. Besides, high throughput can be

achieved by using pipelined technique. The maximum frequency increase about 46% and the

percentage increment of throughput is approximately 89% if compared with iterative design.

By using pipelined design, the frequency and throughput of the RIPEMD-160 hash function

design can be improved which is about 250 MHz and 7.805 Gbps respectively with small area

implementation.

ACKNOWLEDGMENT

The author would like to thank for the support given to this research by Universiti Malaysia

Sarawak (UNIMAS) for providing opportunity and necessary facilities to support this research

work.

REFERENCES

[1] F. Rodriguez-Henriquez, N.A. Saqib, A. Diaz-Perez, C. Kaya Koc, “Cryptographic

Algorithms on Reconfigurable Hardware”, Springer Series on Signals and

Communication Technology, 2006. pp.211-242.

[2] H. Dobbertin, A. Bosselaers, B. Preneel, “RIPEMD-160, a strengthened version of

RIPEMD”, Fast Software Encryption, LNCS 1039,Springer-Verlag, 1996, pp. 71-82.

[3] S. Dominikus,“A hardware implementation of MD4-family hash algorithms”,Proc. 9th

Int. Conf. on Electronics, Circuitsand Systems, vol. 3, 2002, pp. 1143-1146.

[4] C. Ng, T. Ng and K. Yip,“A Unified Architecture of MD5 and Ripemd-160 Hash

Algorithms”, Proceedings of the 2004 International Symposium on Circuits and Systems,

2004. ISCAS '04,Vol.2, ,23-26 May 2004, pp. 889-892.

[5] H.E.Michail, V.N,Thnanasoulis, D.M. Schinianakis, G.A.Panagiotakopoulos, and

C.E.Goutis, Application of Novel Technique in Ripemd-160Aiming at High-Throughput,

IEEE International Symposium onIndustrial Electronics, 2008. ISIE 2008, June 30 2008-

July 2 2008, Cambridge, pp.1937 – 1940.

[6] M. Kneˇzevi´c, K. Sakiyama, Y. K. Lee and I. Verbauwhede,On the High-Throughput

Implementation of RIPEMD-160 Hash Algorithm,International Conference

onApplication-Specific Systems, Architectures and Processors,2008. ASAP 2008, 2-4

July 2008,Leuven, pp.85 – 90.

