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Abstract – The lattice Boltzmann method (LBM) is a potent numerical technique based on kinetic 

theory, which has been effectively employed in various complicated physical, chemical and fluid 

mechanics problems. In recent years, transient and turbulent flow simulation by using this new class of 

computational fluid dynamics method has attracted more attention. In this paper, a two dimensional 

lid-driven cavity flows at different Reynolds number (1,000-50,000) are simulated by using multi-

relaxation (MRT) and LBGK (SRT) Lattice Boltzmann method. The results are compared with previous 

published papers, which solved the Navier-Stokes equation directly. Moreover, the effects of relaxation 

parameters variation in MRT model and spatial oscillation reduction in solution near geometrically 

singular points are highlighted. The comparisons between the simulated results showed that the multi-

relaxation lattice Boltzmann method has the capacity to predict the flow characteristics, such as 

circulating flow and velocity profile with reasonable accuracy and reliability. The proper adjustment 

of the relaxation factors for non-conserved modes in MRT is the key point for achieving most verifiable 

results with Navier-Stokes solution. Copyright © 2016 Penerbit Akademia Baru - All rights reserved. 
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1.0 INTRODUCTION 

Turbulent flows are the most challenging topics which occur in many situations in nature and 

real engineering application. The turbulence problem is tough to be realized regarding to 

physical understanding and mathematical solutions or in terms of the engineering accuracy 

needed for different applications. Recently, the microscopic dynamics approaches have 

attracted significant attention. The idea of digital fluid dynamics lays on the fact that fluid 

hydrodynamics is not sensitive to the underlying details in microscopic physics. 

Hydrodynamics is the result of the collective behavior of numerous molecules in the system 

[1,2].  

In recent years, considerable progress has been made to derive turbulence models from discrete 

kinetic theory [3]. The lattice Boltzmann method (LBM) adopts the kinetic theory of gases, 

which simulates the evolution of fluids based on the behavior at the molecular level [4,5]. Due 

to simplicity, efficiency and comfort of parallel programming implementation, LBM has 

achieved considerable success. One of the earliest simulations of turbulence in the frame of 

LBM was carried out by Benzi and Succi [6], which was a two-dimensional forced isotropic 
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turbulence. To validate the capability of LBM, lid-driven cavity flow is a classical benchmark 

problem because of its simplicity and powerful vortices structure. Hou et al. [7] and Guo et al. 

[8] have reported detailed studies of cavity flow problem by using Bhatnagar-Gross-Krook 

(BGK) model. Liu et al. [9] investigated a 2D cavity natural convention turbulent flow 

simulation with an LBGK method coupled with LES. For turbulent flow simulation, LBM can 

be employed as a direct numerical simulation tool or can be combined with different subgrid 

scale method such as Smagorinsky [10] in large eddy simulation (LES) modeling [11]. The 

LES is a quite well-accepted alternative due to the balance between accuracy and 

computational efficiency [3].  

The simplest and the most famous model of LBM is the single relaxation time BGK 

approximation. However, there are several concerns related to this model that should be 

considered such as the implementation of boundary condition [12,13], the capability to deal 

with complex geometry [14,15] and the simulation of high Reynolds number. Especially in 

turbulence flow, the single relaxation BGK model suffers from strong spatial oscillations near 

singularity point and instability [7]. The numerical stability improvement is achieved by 

repressing non-hydrodynamic modes that are not related to Navier-Stokes equation or by 

adjusting relaxation parameters according to linear stability analysis [16]. In multi-relaxation 

lattice Boltzmann method (MRT-LBM), hydrodynamic and non-hydrodynamic moments are 

relaxed with various relaxation times. It offers more stable and accurate results while it reduces 

unphysical oscillations [17,18]. Due to this fact, the researcher attempts to solve the flow in 

higher Reynolds number using generalized lattice Boltzmann method. Premnath et al. [19] 

carried out a study based on the generalized lattice Boltzmann equation via multiple relaxation 

times with forcing term. Moreover, Wu and Shao [17] and Patil et al. [20] recreated the results 

of numerical simulations of cavity flow by using MRT lattice Boltzmann method. Li et al. [21] 

have studied the structure of a lid-driven cavity flow of  Reynolds number up to 7,500 in 

different cavity aspect ratios.  

Recently, Zhen et al. [22] and Sheng Chen [23] studied the lid-driven cavity flow in high 

Reynolds number up to 1,000,000 and 50,000, respectively. The first study uses the multi-

relaxation method to solve the problem directly, while the latter applies the subgrid scale LES 

model combined with LBM. The presented results of Zhen et al. [22] for streamline plot of 

Reynolds number of 20,000 and above showed some instability even in the main vortex and 

more fluctuation near the corners of the cavity. Nevertheless, the results by Sheng Chen [23] 

reached to steady state for the main vortex, however the smaller vortices near the cavity’s 

corners are inconsistent with the study by Erturk et al. [24]. To close this gap, therefore, the 

objectives of the current study are firstly, to simulate cavity flows using the multi-relaxation 

time lattice Boltzmann model towards higher Reynolds numbers up to 50,000, and secondly to 

inspect the migration of vortex structure in response to the variations of the Reynolds numbers. 

The flow structure and velocity profiles are verified with the results of Navier-Stoke solutions. 

2.0 MRT LATTICE BOLTZMANN METHOD 

Lattice Boltzmann method is a developing alternative to Navier–Stokes (NS) based methods 

for flow computation [25-28]. The practical approach interpreted in the LBM consists of 

solving the lattice Boltzmann equation for the evolution of a single distribution function  f (x, 

t) of particles as they move and collide on a lattice. The solution of the equation includes two 

main steps; the stream step propagates information through the lattice cells, while the collision 
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step normalizes the distribution functions to the equilibrium distribution function. The number 

of discrete velocity directions standing for the lattice is chosen withrespect to certain symmetry 

requirements to recover the isotropy of the viscous stress tensor of the fluid flow [29]. 

Streaming step is similar in different models of LBM but researchers have been searching for 

the appropriate collision model for LBM since the collision step is more complicated. The 

proposed methods for collision operator are different in relaxation factor, numerical stability 

and adequate Galilean invariance.A particular D2Q9 lattice Boltzmann model wasconsidered 

in this study. In this model, space is discretized into square lattice and the nine possible 

velocities are �� , � ∈ �1,2,3,4,5,6,7,8,9�: 

 ��

=
���
�� �0,0�                                            � = 1

�cos�� − 1� �2  , sin �� − 1��2 � �              � = 2 ,3 ,4,5
�cos�2� − 9� �4  , sin �2� − 9��4 �√2 �       � = 6, 7, 8, 9

 
(1) 

 

where  � = Δ#/Δ%, Δ# and Δ% are the lattice grid space and time step, respectively. The 

macroscopic hydrodynamic variable could be obtained using known distribution function: 

 Streaming:  .��# + ��Δ%, % + Δ%�= .��#, % + Δ%� 
(2) 

Collision:     .��#, % + Δ%�
= .��#, %� − 12  �.��#, %� − .�34�#, %�� 

(3) 

Equilibrium DF: .�34 = ;�< =1 + 3 ��>�?@ + 92 ���>�@
�?A − 32 >>�?@B (4) 

    < = Σ.�   ;    <> = Σ.���  ; (5) 

 

where ; is the weighting factor in the lattice fluid density and the sound speed of the lattice 

is �?  = E√F. Equations (3) and (4) covered the collision part of SRT method.In the MRT-

LBM, the particle distribution function at each lattice point is calculated by: 

 .��# + ��G% , % + G%� = .��#, %� − HIE. K. LM − M34N, (6) 

 

where .� is the distribution function corresponding to ��, while M� and M�34
  are velocity 

moments and their equilibrium functions, respectively. M is a  9 × 9 orthogonal transformation 

matrix, which converts f as the distribution function in velocity space to m in the momentum 

space, in which the collision relaxation is operated. S is the diagonal relaxation matrix that 

indicates the relaxation rates for non-conserved moments. The ordering of the moments in this 

study could be mentioned as follow: 

 M = �ME, M@, MF ,MA ,MP ,MQ ,MR ,MS, MT 

) (7) 

     = (< , UV , UW , X , YVV , YVW , ZV , ZW , [� 
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< is the mean density in the system and is usually set to be unity in simulations, while UV and  UW are the x and y component of momentum or mass flux. e is the energy mode, where as YVV 

and YVW match to the stress tensors. ZV and ZW are the third-order moments represent the energy 

flux in x and y direction  and [ is the fourth-order moment of energy square. 

 

With the ordering of the moments specified as the above, the transform matrix can be 

structured as follow: 

 

H ≡

]
^̂
^̂
^̂
_

〈<|〈UV|〈UW|〈X|〈YVV|〈YVW|〈ZV|〈ZW|〈[| b
cc
cc
cc
d

≡

]
^̂
^̂
_̂

100−400004

1 10−110−2 0−2

1 01 −1−100−2−2

1−10 −11020−2

1 0−1 −1−1002−2

1 1 1  201111

1 −1  1   2  0−1−111

1  −1  −1 201−1−11

11−120−11−11 b
cc
cc
cd

 (8) 

 

The equilibrium values of the velocity moments M34 can be derived from the following 

equations: 

 <34 = < , X34 = −2< + 3e>V@ + >W@f, [34 = < − 3e>V@ + >W@f ,UV = <>V ,   ZV34 =  −>V, UW = <>W  , ZW34 =  −>W ,  YVV34 = >V@ − >W@   ,YVW34 = >V>W 

(9) 

 K = g�hi�jE, j@, jF, jA, jP, jQ, jR, jS, jT� 

 

 

(10) 

 

Due to the conservation of mass and momentum before and after particle collision, the total 

mass and momentum could be excluded from relaxation process. For non-conserved 

modes,j� ∈ �0,2� and it should be adjusted carefully. The consideration of numerical stability 

affects, the choices of the value of  jP as follow: 

jP = 26k + 1 (11) 

 

In this paper, different diagonal relaxation matrices were adjusted and the results were 

monitored. According to the proposed options for relaxation factor in [16] we set jR = jS by 

the following relation: 

jR = jS = 8�2 − jP�8 − jP  (12) 

 

By this definition, for higher Reynolds number, we always have very small relaxation factor 

for energy flux modes. Furthermore,jQ = jP is assumed and jT is chosen near to unity while it 

has no effects on transport coefficient.  
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It is well-known that the LBM approximates the near incompressible Navier-Stokes equations 

with compressibility error that grows as H@[30],where H = >/�? is the Mach number. If 

M < 0.2–0.3 and the flow is steady and isothermal, compressibility effects will be small and a 

simplified incompressible flow model can be used. However, for the sake of Galilean invariant 

of the model, the Mach number was chosen near incompressible flow of M<0.1-0.2 in all cases. 

3.0 RESULTS AND DISCUSSION 

Our numerical simulations were carried out on a progressively increasing mesh numbers from 

2562 to 5012 lattices for Reynolds number from 1,000 to 50,000. The cavity Reynolds number 

has been defined due to the depth of the cavity. By variation of driven wall velocity and mesh 

number related to each case, the relaxation time is adjusted.  

 

  
Re=1000 Re=2500 

  

Re=5000 
Re=7500 

 

  

Re=10000 
Re=20000 

 

  
Re=30000 Re=50000 

Figure1: Streamline contours of primary and secondary vortices for different Reynolds 

number 
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To reach the numerically stable results, we set the iterative time step to be long enough, which 

is fixed at 700,000 iterations. The type of the numerical boundary conditions used in the 

computation is an important factor for the accuracy of the numerical solution. Therefore, a 

second order interpolation bounce-back boundary condition was utilized in this study [31]. The 

stream function contours are illustrated in Figure 1. This figure shows the formation of the 

counter-rotating secondary vortices which appeared as the Reynolds number increased. 

According to this figure, the centre of the primary vortex moves toward the center of the cavity 

as Reynolds number was increased. We can also see that the vortices which appeared in the 

corner grew with the increased of the Reynolds number. At the bottom right corner of the cavity 

in the Reynolds number beyond 5,000, other secondary vortices were observed while at the top 

left corner, the secondary vortex could be seen at Reynolds number beyond 2,500. 

 

The streamlines illustrate that the flow region near the wall changed to turbulence when the 

Reynolds was increased. The plot of streamline for Reynolds numbed >10,000 showed a 

relatively stable primary vortex. However, the secondary vortices still have some oscillation 

and the solutions exhibited a periodic behavior beyond this Reynolds number. For solving this 

problem, the mesh density has been increased. As a result, periodic character of the flow 

showed more stability in the construction of the right corner vortices, while the instability in 

the left corner of the cavity could still be seen. It could be indicated that fine grid mesh was 

needed in order to achieve a steady solution as the Reynolds number increased. When Re was 

further increased, many small vortices appeared at the corner of the cavity. For Reynolds 

number greater than 20,000, the vortices for both corners of the cavity have shown periodic 

behavior. From the streamline plots, the results of the current research and Erturk et al. [24] 

studies are in very good agreement. 

 

Table1 shows the predicted location of the primary and secondary vortices and compares the 

results with the solution of Navier-Stokes equation by Erturk et al. [24] and the results of Sheng 

Chen [23]. Well-agreed results were achieved at different Reynolds number. LBGK model may 

experience numerical instability to simulate large Reynolds number flow when the relaxation 

time approached to 0.5. One solution is to increase the grid density to make up the excessive 

reduction of the relaxation time. For the Reynolds number of 20,000 with the current mesh 

definition, the SRT lattice Boltzmann method is unstable and for solving the problem, a finer 

mesh should be chosen. Meanwhile, MRT could reach the stable results with the selected mesh 

even for higher Reynolds number. 

 

 

Table1: Comparison of the location of the vortices at different Reynolds number 

Re Primary vortex Left secondary 

vortices 

Right secondary 

vortices 

 x y x y x y 

1,000       

LBM-SRT 0.5312 0.5625 0.0820 0.0779 0.8554 0.1093 

LBM-MRT 0.5312 0.5625 0.0820 0.0779 0.8554 0.1093 

Erturk et al. [24] 0.5300 0.5650 0.0833 0.0783 0.8633 0.1117 

Sheng Chen [23] 0.5310 0.5650 0.0901 0.0800 0.8501 0.1100 

2,500       

LBM-SRT 0.5195 0.5351 0.0859 0.1132 0.8320 0.0898 

LBM-MRT 0.5195 0.5390 0.0859 0.1132 0.8320 0.0898 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

                                                                                 ISSN (online): 2289-7879 | Vol. 24, No. 1. Pages 12-21, 2016 

 

 

18 

 

Penerbit

Akademia Baru

Erturk et al.[24] 0.5200 0.5433 0.0850 0.1100 0.8350 0.0917 

Sheng Chen[23] - - - - - - 

5,000       

LBM-SRT 0.5195 0.5351 0.0820 0.1250 0.8125 0.0731 

LBM-MRT 0.5156 0.5351 0.0820 0.1250 0.8085 0.0731 

Erturk et al.[24] 0.5150 0.5350 0.0733 0.1367 0.8050 0.0733 

Sheng Chen[23] 0.5040 0.5001 0.0950 0.1100 0.8285 0.0745 

7,500       

LBM-SRT 0.5165 0.5321 0.0662 0.1520 0.7836 0.0682 

LBM-MRT 0.5126 0.5302 0.0662 0.1520 0.7875 0.0662 

Erturk et al.[24] 0.5133 0.5317 0.0650 0.1517 0.7900 0.0650 

Sheng Chen[23] - - - - - - 

10,000       

LBM-SRT 0.5069 0.5349 0.0558 0.1616 0.7744 0.0618 

LBM-MRT 0.5109 0.5329 0.0618 

0.0179 

0.1716 

0.0259 

0.7804 

0.9381 

0.0638 

0.0698 

Erturk et al.[24] 0.5117 0.5300 0.0583 

0.0167 

0.1633 

0.0200 

0.7767 

0.9350 

0.0600 

0.0667 

Sheng Chen[23] 0.5117 05313 0.0585 0.1655 0.7813 0.0625 

20,000       

LBM-SRT - - - - - - 

LBM-MRT 0.5089 0.5988 - 

0.0463 

- 

0.0642 

0.7700 

0.9340 

0.0625 

0.0790 

Erturk et al.[24] 0.5100 0.5267 0.0483 

0.0567 

0.1817 

0.0533 

0.7267 

0.9300 

0.0450 

0.1033 

Sheng Chen[23] 0.5078 0.5313 - - - - 

30,000       

LBM-MRT 0.5291 0.5333     

50,000       

LBM-MRT 0.5270 0.5446     

 

 

 
Figure2: U and V velocity profiles along a vertical line passing through the centre of the 

cavity 
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Figure 2 shows the computed >V and >W velocity profiles of a vertical line passing the 

geometrical center of the cavity at different Reynolds numbers. The results were closely agreed 

with the results of Navier-Stokes solution.  

 

4.0 CONCLUSION 

In this study, a multi-relaxation lattice Boltzmann model wasapplied to compute two-

dimensional lid-driven cavity flows in a wide range of Reynolds number between 1,000 and 

50,000. A range of parameters, such as grid density, maximum velocity and relaxation factors 

were explored to reach the stable and precise results. At lower Reynolds numbers, the 

numerical solutions convergence criteria have been adjusted to maximum absolute residuals 

of 10IS while for high Reynolds numbers, iterative time step was fixed to 700,000. Near steady 

solutions were obtained and the predicted results of velocity profile and flow structure were 

compared with the results of Navier-Stokes equation. The results demonstrate that the results 

of cavity flow structure could reached to a near steady solution up to Reynolds number of 

20,000 and forgreater Reynolds number, it will change to complete turbulence flow. The 

mentioned MRT model is acceptable for turbulent flow computation in comparisonwith 

previous research, which solves the Navier-Stokes equation directly or employs other 

arrangements of MRT lattice Boltzmann method.The current solutionis more flexible for mesh 

size than the LBM-SRT and computationally more efficient for turbulent flow simulation. 
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