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Abstract “We present the analysis and numerical simulatidrieammpressible Newtonian fluids for
unsteady flows in a straight pipe and in deformgek pith concave and convex deformation of the
upper wall. An approach of modeling of blood flasvcionsidered with an unsteady Navier-Stokes
problem with a pulsatile flow for which we can ddish analogy with existing cardio vascular systems
We apply the Finite Element Methods to obtain smhgt and analyze the evolution of the flow over
time. For the numerical simulations of fluid floimscomplex geometries, FreeFem++ based on finite
element method is used and we analyze the behawelocity and pressure qualitatively along time.
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1.0 INTRODUCTION

Incompressible Newtonian fluids flow is importaatunderstand flow dynamics of biological

fluids. This paper is mainly concerned with thelgsia and numerical approximation of the
nonstationary problem that models the motion odmpressible Newtonian fluids in different

geometries. Given the complex behavior of thisdfluhe second order partial differential
governing equations are non-linear and they haggé#rabolic characteristic. The numerical
simulations to unsteady Navier-Stokes equationsewebtained computationally, by

implementing the Finite Element Method [18].

Although there are several types of finite elementsdeal only with the discretization of the
Navier-Stokes problem using a Lagrange Finite Eldna# type P, - Bfor velocity and
pressure respectively [5, 11, 18]. Through theiappbn of the finite element method for the
Navier-Stokes system, we present the results ofenigal simulations and all results will be
presented here for two-dimensional case.

The method Hood-Taylor is applied to the unsteadyiér-Stokes equations, and the
corresponding linear system is solved by the dimesthod of Crout [10]. For this problem, we
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approach the evolution in time of the solution,ldaling the method of Characteristics
Galerkin. The choice of solver and validation ot thumerical method was made by
considering the problem of Kim-Moin in square doma# [0.25, 1.25] x [0.5, 1.5] for which

it was considered for a refine mesh and a coarsh nvéh several times steps [10].

All meshes and simulations were done in FreeFerthe+free software [7, 20] with its own
high level programming language [17] based on tinge-Element Method to solve partial
differential equations. FreeFem++ uses an autonmaish generator based on Delaunay-
Voronoi algorithm where the number of internal @siis proportional to the number of points
on the boundaries. We develop a programming codegéeFem++ to find(u, p) using the
variational formulation from the Navier-Stokes etjpas and use Crout method as a solver to
solve the system. The direct numerical simulatisaom the variational formulation for the
time discretization can be used, straightforwamiglemented on the FreeFem++.

From a wide range of applications of Newtoniandfyiwe can mention in particular the
behavior of blood in large arteries, since blood ba considered as a homogeneous and
incompressible Newtonian fluid. For this reason,hvawe chosen some fictitious geometries
similar to existent in some areas of cardio-vagcslgstem [14] as well as geometries
corresponding to pathological situations.

For the numerical simulations of the fluid flow whoose different case studies. As a first
option we simulate the flow in a straight pipe wad®undary is made up of two rigid walls.

Second option, we choose a pipe with deformationthenupper wall as analogy of the

pathological situations in cardio vascular syst&im.simulate an abnormal narrowing of a

blood vessel, usually called stenosis, we defieeughper wall with a concave deformation. To
simulate a dilation of the vascular wall, desigdags aneurysm, we define a convex
deformation on the upper wall. We present the tatale behavior of normal and tangential

velocity and the pressure inside these geomefrles motivation to consider of these cases is
that similar types of real engineering problemsveay prevalent [21, 22].

2.0 NAVIER-STOKES EQUATIONS AND FINITE ELEMENT APPR OXIMATION

Let W is a bounded domain of with Lipschitz continuous boundafyv. We use
different function spaces with different notatiafetails of which can be found in [1, 3, 15].
Without loss of generality, we consider an incorspiigle fluid confined into a domain with
fixed boundary. Mathematically, for eath t, T ,(tb simplify, we take from noty = J) we
write the unsteady Navier-Stokes equations withRireehlet boundary conditionsi =gon

W (adherence conditions). The conditigr O is called the homogeneous Dirichlet boundary
conditions (or no-slip boundary conditions) i.e.= 0onfW, which describes a fluid confined
into a domain with fixed boundary (the boundargtisest) [12, 16]. Giveh, find (u, p) such
that
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1111—‘:+u>4<|u+|<|p- nbu=f in [0,T]" W,

Nu=0 in [0T] W, (1)
u=0 on [0,T] W,
u(t =0,x) =u,(x)," xT W

wheref is a given external force field per unit massis the velocity field,u, is the known

initial velocity field, pis the rate between the pressure and the dengityras the constant
kinematic viscosity.

The variational or weak formulation of Navier-Stekequation consists of the integral
equations over\ obtained by integration, after multiplying the marhem equation and

continuity equation by appropriate test functiobst us suppose thati C*([0,T] W) and
pl C([0,T]” W) are the classical (or strong) solution of (1). §ider two Hilbert spaces
V =H}{(W) andQ = L%(W)and takevi V and ql Qbe two arbitrary test functions. Applying

the Green'’s formula for the integration by partd taking into account that vanishes on the

boundary and after simplifying we get the variasibfiormulation of the Navier-Stokes
problem as:

"t1 [0,T], givenfl L*(O,T;H *(W))andu,T H(W)with N, =0, find
(u, p)T L*(0,T;V)" L*(0T;Q) such that

2—?’«+ (uXNu).v- pN.v+27 D(u):D(v)= fv

w w w Wi W

qRu=0 (2)

u(©0) =u,

for all (v,q)T H (W) L3(W).HereD(u) :%(Nu +(Nu)")is the deformation tensor. Taking
into the definitions of the following bilinear atdlinear forms:
a(u,v) =217(D(u),D(v)) =27 D(u):D(v),b(v, p)= - (p, )= - p Rkv, and

W W

c(w,u,v) = ((wxN)u,v) = (wxN)uxv

we can reformulate the variational formulation loé tNavier-Stokes problem as follows:

"t1 [0,T], givenfT L>(O,T;H (W))andu,T Hj(W)with Ru, =0, find
(u, p)T L*(0,T;V)" L*(0T;Q) such that
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(%,v) +a(u,v) +c(u,u,v) +b(v,p) =(f,v)

b(u,q) =0 3)
u(0) =u,

forall (v,q)T H (W)™ LE(W).

It can be proved [9] that the problem (3) is welspd and equivalent to (1). The existence and
uniqueness of theorem for the solutions of Naviek&s system can be found in [4-6, 9].

We consider finite element method (FEM) [18] to epgmate the numerical solutions of
Navier-Stokes problem (3). The FEM is a method Wwhapproaches the solution of partial
differential equations (PDESs) and is a generalr@ple for constructing approximate solutions
to boundary value problems in dimensthfd £3). All results will be presented here for the
two-dimensional case, where we will do the appitcabf these concepts and presentation of
numerical simulations. Although there are sevefags$ of finite elements, in the following, we
deal only with the discretization of the Navierd8te problem, using a Lagrange Finite
Element of typeP, - B,.The solution (u, p)of the problem (3) lives in a space of infinite
dimension. In this circumstance, it is generallpassible to calculate the exact solution. Then

we determine an approximation ofandp, respectively, andp,, each one defined in finite

dimensional appropriate spasés such that dirk), = I(h)(lim I (h) =+¥)and dependent on a
h® 0

parameteh > 0. These spaces are formed by polynomials and fdumattion v, in V, (in

particularu, and p, for the appropriate spaces) we have

|
v,= aj,al IRi=1 ,1,wherd/,/,, ./,}isabasisof,.

i=1

This is the principle of the Finite Element Methdthe FEM can be studied in details in [2, 6,
8, 11]. We use classical Galerkin method to fingl gblution. We consider Galerkin’s method
for constructing approximate solutions to the awi@al boundary-value problem (2) or its
abstract formulation (3). Galerkin’s method corssist seeking an approximate solution (2) in
a finite-dimensional subspa&é of the space of admissible functions where thatsni lies

in this subspace rather than in the whole spacenétural Galerkin approximation for problem
(1) is a mixed method which is based on Lagrangéiphar formulations of constrained
problems. We refer to mixed approximation methalthase associated to the approximation
of saddle point problems, in which there are twmbar forms and two approximation spaces
satisfying a compatibility condition known as thisalete LBB (or inf-sup) condition [8, 19]
which reads as follows:

|(qh ’N'th 3 b

There existsb > 0(independen of h) such that jnf Su
o], |

anl Qn {9 ARVARY(o}
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Let{T,},.,be a family of triangulations arfddenotes a discretization parameter and/|eand
Q, be two finite dimensional spaces such thgtl H'(W) and Q1 L*(W).We let

Vy =V, G H(W) andM,, :=Q, C L(W).

In these spaces, the discrete finite element appation problem of (3) can be written as
follows:

for eachtl [0,T] ,u,,T Vy, find(u,, p,) ° (U, (.3, p,&3)T Vo~ M, such that

d Vs
a(uhlvh) +a(uy,v,) +c(u,,u,, v,) +b(v,, p) = (F.v,) v, VI?!

b(u,,q,) =0 " th My, (4)
u, Q) =uy,,

which can be written as for eath [0,T] ,u,,T V., find
Uy, P © (uy &3, p, 3T V2~ M, such that

ﬂlt"x/rﬁ (u,Nu,)v, - p,Nv,+27 D@u,):D(v,)= fv, "v,TV°

w w w w w (5)
g, Nu, =0 "q,TM,

w

U, (0) =uy,

As motion is non-stationary we need to discretieeNavier-Stokes equations over time. There
are several methods of time discretization. Inplaiger we use Characteristic Galerkin Method
which associates backward Euler scheme of firstroddfined by

The Characteristic Galerkin Method evaluates tiregvdtives of vector field on Lagrangian
frame, appealing to characteristic lines or trajges described by a material particle when it
has been driven by the field at the velocity of fieéd. We describe the motion of material
particle of Newtonian fluid during the time intetva , Which was in
position at instant, by

"a% & #

and define its characteristics line or trajectomth the same flow direction, by the only
solution of Cauchy problem

Loa #" o # )
"g

Now taking an uniform mesh of [0,T] defined by *+ * | —, + being the time

step and applying the backward Euler scheme wencde the scheme for the problem (1),
denoting /* 0 1 203+45 # 7 5 678
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‘+4;< 8 3 =+4; > 2@ :5 6 78
9 156 (6)
56 5 5
The discrete variational formulation of (6) is adws:

for eacht™ =(n+2)Dt1 [0, T], (nT N,) givenu? =u, (0), find(u™, pi)T V2" M, such
that

(up,v,) - Dt(pr™, RNvy) +2Dt(D(up™), D(v,)) = (9.v,) in W,
(Rbup™, pi™)=0 in W

(7)

whereg™™* = Dtf " +u"(x" ).

Let{/ .} n, @nd{y;}., . be the Lagrange bases of the spa¢gand M, respectively.
Givenuy, we express the corresponding approximate solsiigit = (u;;*,u3}) and py™ in
the basis 0¥ andM

N, Nh
n+l n+l ; n+1 n+1 ntl _ n+l

Uh = U/, Up= U/, Py = pk ¥ and with the test functiong, T V? and
j=1 j=1 k=1

y..I M, , we obtain the following linear algebraic systf@] in matrical form as:

A, A, B, uy* b

AL A, B, W =nbh, (8)
n+l

B, B, 0 p 0

whereu;™ = [u,?fll, U ]' and p"* = [ e ,pr'}:l]' are the vectors of unknown degree of
freedom and

Al:[Alij]Nh’Nh: 1/ + 1Dt Zﬂ/ T[/J_l_ﬂ/ ﬂ/

x ix Ty Ty ,
_ _ V.V, _ _ WV
A=Al = VS B,=[B,]  =- Wiy
2 [ ZJ]Nh Np, w ﬂX ﬂy - [ Jk]Nh m, w ﬂX k e
_ _ W I
By _[Byjk]Nh’nh - ﬂyyk bi = G ]l./l
W

Ny m, w N, 1
We can rewrite the above matrical equation in goemway

A B u b A A B* u
t = withA= + "2 B= __,u= ' andb=
BR O p O AL A, BY u,

by
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3.0 MATHEMATICAL MODELING AND IMPLEMENTATION OF BOU  NDARY
CONDITION

With the aim of modeling the blood flow we consitle fluid confined in a domain with upper
and lower boundary as rigid walls denoteddjy, an upstream sectio§ and downstream
section S,through which the fluid enters and leavés respectively. An inflow parabolic
profile with respect to time is prescribed on upatn section, while on downstream section
homogeneous Neumann conditions are assighexthd S, are fictitious boundaries, since the

vascular system is closed and there is no suchdasynWe also assume that the flow tends
smoothly to equilibrium +¥ , which mathematically translated bfy =0.Combined

form of above boundary conditions can be providetbdows:

u=0 on G"

T.n=sn= - LS 1- cos A on S (9)
2 25

T.n=0 onsS,

T being the Cauchy stress tensor. The first conddid®) guarantees the perfect adherence of
the fluid to the wall while the second stages o fluid enter with a pressure given by

o

- % 1- cos BT and the last indicates that there is no normalti@a over the boundary.

We suppose that the fluid is initially at resthaligh some time-varying transition should be
expected before reaching the time-periodic regtheemain characteristics of the flow patterns
are presented even when starting the simulatian tiee at-rest state. The input profile n

on S is shown in Fig. 3.1

dyne «cm?

V\J|5-U
T

2.5 5 7.5 10

Figure 3.1: The input profile of inflow Neumann boundary caiat.

Taking the test functiorvi V :{VT H(W):v=00n GW} and applying the Green’s formula
results
%W+ (uxN)uv- pNv+27 DU):D(v)- Tnv=0

w w w w w
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U ‘ET—:'V+ (uxX)uv- pNv+27 DU):D(v)= snv

w w w w w

So, the discrete variational problem of Navier-8®lequations with boundary condition as
follows:

Find (u, p)T L2(0,T;V)" L*(0,T;Q) with u(0,x) =0," x Wsuch that
Wyt (ux)uwv- pNv+27 DU):D(V)= sny,"vl V
w w w w w R
ug=0 "gql Q
w

We obtain the following discretized problem:

for eacht™ 1 [0, T], find(u{}*l, p,?*l)i V)" M such that

n+ n+1 n+ly . Dt NETLLE Ttk
utx, - Dt pi*N.v, + 2Dt D(up 1).D(vh)+? (N.Uh)Jh v,

W W W W
=B s A ny, vV
S 2 25
urr:ﬂ-qhzo "ql Q
w
u,(0) =0 onG"

n+l n+l n+1l

GivenDt, for eacht"™* = (n+1)Dt, n= 0L % ,wetakeu;,",u;, andp,”, we obtain a

system with:
_ M
= -2 1-cos— .n
b 2 25 /i
S N, 1

4.0 FLOWS IN A STRAIGHT PIPE

To analyze the flow in a straight pipe we consither propagation of a Newtonian fluid in a
straight pipe of lengthL =6by imposition of two fictitious border551:{0}' [0,1] and

S ={6}’ [0,1] with a pulsatile pressure type on irHeF;{l 1- cos% . With this aim, we
have taken the 2D rectangie=[0,6]" [0,1], and solved the problem with the Crout method
on a structured mesh of 1200 elements, with 254fes®2 for the velocity and 671 nodes P1
for the pressure (Fig. 4.1).
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/0

Figure 4.1: Structured mesh employed in a straight pipe.

We take a step tim®t = 001msand the interval of time [0, 10ms]; a kinematiccasity
n =1poiseand P, = 200(dyned cnr.

The normal velocity increases from the walls utité center, from inlet to outlet (Fig. 4.2 -
column at the left) along the pipe, symmetricalgjative to the longitudinal axis as a
consequence of the propagation of the impulse @fptiessure within the pipe. In tangential
velocity we can identify an anti-symmetrical belmawvith respect to the longitudinal axis of
symmetry of the pipe.

: t:3.5ms 4 ‘ ‘ 1 t35ms ‘
t:Sms J ‘ t5ms

Figure 4.2: Contour plots of normal velocity (on the left) apidpressure (on the right) at
different instant of time.

The following plots show the action of each compura velocity over the displacement of
the fluid. Both lead the fluid into the center bétpipe and towards the downstream.
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Figure 4.3: The representative vectorial filed of each compoiod velocity.

These behaviors are visible at any instant of timewever, the maximum magnitude is
reached at time t = 2.5ms and t = 7.5ms correspgrdi the maximum value of the pressure
at the inlet tube, and the minimum value of the niagle of the normal speed occurs at instant
times t = 5ms and t = 10ms, which is when the iptessure is zero. In fact, the magnitude of
normal velocity has the same sinusoidal behavianftdw (Fig. 4.4).

Figure 4.4: Variation of magnitude of the normal velocity imtction of time

We can observe a propagation of pressure alongifie The increase and decrease of
parabolic profile is directly related with the iease and decrease of inlet impulse (Fig. 4.2 -
column at the right). The pressure varies on iéeiping constant over time at the outlet. This
means that the wave of inlet impulse is not strengugh to travel until the end of pipe,
finishing by dissipate. The whole flow patternf®®/n in Fig. 4.5 as instantaneous streamlines
and the velocity vector plots. The behavior is sane along the time. We can observe a
unidirectional flow laminar type (flow where thei® a minimum of agitation of the fluid
layers). For each time, we can observe the adjasteeamlines are equally distant which
suggests a constant average speed and constamtevtiaw rate.

Figure 4.5: The representative vector plot (on the left) dreldtreamlines (on the right).

To confirm that, we computed the volume flux ofidlerossing a vertical lin& of the mesh,
corresponding to the position =ih,i =0, @hdh =01cm, on the axis, i.e.,

Q"(X)= uy.ndy= uj, .dy
s s
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Figure 4.6: The volume flux of fluid at different times

The behavior of velocity and pressure hi{5ms10mg repeats comparatively to the qualitative
behavior atl [0Oms5mg .

5.0 FLOWS IN A DEFORMED PIPE

5.1 Concave deformation of the upper wall

We take a pipe with a concave deformation of tipettall. We consider the kinematic viscosity
n=1and the same time step 00Ims. The mesh is unstructured of diameter
h=10.16060%m, beingh,,, = 0.0554262Zmthe diameter of the smallest element. The mesh
is formed by 1948 elements with 1070 nodes P1 &7@ hAodes P2.

Figure 5.1: Unstructured mesh employed, in a pipe with conclefermation of the upper
wall.

The figures below show the normal and tangenti&ory (cm/s) at three instants of time
significant for their behaviors close to the stesos

t=0.5ms t=2.5ms t=3.5ms

Figure 5.2: Normal velocity at different instants of time,arpipe with concave deformation
of the upper wall.
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t=0.5ms t=2.5ms t=3.5ms

Figure 5.3: Tangential velocity at different instants of tinme a pipe with concave
deformation of the upper wall.

We observe that the tangential velocity has angmtimetric behavior relatively to the axis of
symmetry of stenosis. The minimum values are reaehehe first half of the narrowing and
the maximum values are reaching in the other half he following plots show the action of
each component of velocity over the displacementheffluid. While the normal velocity
pushes the fluid against the upper wall slightlyaeds the downstream, the tangential velocity
has the opposite behavior in the first half of pifge and then reversing their action.

Figure 5.4: The representative vectorial field of each compowé velocity, in a pipe with
concave deformation of the upper wall.

We notice that the pressure decreases abruptlieonss.

t=0.5ms t=2.5ms t=3.5ms

Figure 5.5: Pressure at different instants of time, in a pyith concave deformation of the
upper wall.

We computed the average quantities on each velitiea§ of the mesh, corresponding to the

positionx =ih,i =0, 60andh=0I1cm, on the axis. In particular, we computed the di@me
of the pipe and the averaged pressure at each time:

A(x) = meanss) E”(x)=%}q) o dy
i/s

The Fig. 5.6 shows the averaged pressure at diff@nstants. It is clear from this plot that the
propagating inlet impulse is associated to thesatjies.
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Figure 5.6: The average pressure of fILﬁd()g), at different times, in a pipe with concave
deformation of the upper wall.

t=0.5ms t=0.5ms
t=1.5ms t=1.5ms
t=2.5ms t=2.5ms
t=3.5ms t=3.5ms
t=5ms t=5ms

Figure 5.7: The whole flow pattern: velocity vector plots astdeamlines at five different
times, in a pipe with concave deformation of thperpwall.
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Figure 5.8: The volume flux of fluidQ"(x ), at different times, in a pipe with concave
deformation of the upper wall.

As in the case of a straight tube the magnitudin@fvelocity also increases with increase in
the input pulse. Values vary significantly with tthstance in area of stenosis and also in time
during the period of the inlet impulse. It react®s maximum value in narrowing at the same
time as maximum of inlet impulse occurs (see stie@® — Fig. 5.7). The minimum value is
reached behind the stenosis. As can be obsentkd irector field in the corners of the stenosis
exerts some tension, which being much higher atitfte where a recirculation arises and it
increases with the growth of inlet impulse and dases as the input pulse reduces. The
proximity of streamlines inside the stenosis intheathe increase of average velocity as we
refer before and the decrease of volume flux asameconfirm with the Fig. 5.8.

5.2 Convex deformation of the upper wall

We take a pipe with a convex deformation of thewali. We consider the kinematic viscosity
n=1and the same time stefp= 00Imsas before. The mesh is unstructured of diameter
h=0.15396&m, beingh_, =0.066444tmthe diameter of the smallest element. The mesh
is formed by 1582 elements with 867 nodes P1 ai® 88des P2.

Figure 5.9: Unstructured mesh employed, in a pipe with cordeformation of the upper
wall.

Here we observe two distinct flows, one insidedi@ation part and other in the straight pipe.
Inside the aneurysm we observed the formation @fa@lation of flow. As we can see from
the vector plots, there is a big tension on thd dizé to the deceleration of the local velocity.
This recirculation does not travel out of the bualgegion, it remains within the aneurysm. We
also observe that this recirculation increases withinlet impulse and the center of vortex
moves to the center of dilation for decreasingnitsnsity and decreases rapidly the remaining



Journal of Advanced Research in Fluid Mechanicsamtmal Sciences
ISSN (online): 228979 | Vol. 26, No. 1. Pages 1-19, 2016

inverse flows when the inlet impulse weakens. Fbeoway the flow in the pipe has minimum

of agitation. It is laminar type. The magnitudevefocity decreases in pipe in the area of the
aneurysm. From the streamlines we observe the wdveket impulse. In the zone of dilation,
the streamlines are spaced, which allows us toladadhat a decrease average speed and an
increasing volume flux in this place, as we canisddg. 5.10.

t=0.5ms t=0.5ms
t=1.5ms t=1.5ms
t=2.5ms t=2.5ms
t=3.5ms t=3.5ms
t=5ms t=5ms

Figure 5.10: The whole flow pattern: velocity vector plots astceamlines at five different
times, in a pipe with convex deformation of the eipwall.

The behavior of components of velocity and presateejualitatively the same along the time.
The normal velocity is lower in the region of ditat. We continue to observe anti-symmetric
behavior of the tangential velocity, this time, riglation to the axis of symmetry of zone
rounded, assuming the maximum value before of dedtion contrary to what happens with
the narrowing of the field (deformation concave)eTollowing plots show the action of each
component of velocity over the displacement of fthel. While the normal velocity pushes

the fluid against the upper wall.
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Figure 5.11: The volume flux of fluidQ"(x), at different times, in a pipe with concave
deformation of the upper wall.

The figures below show the normal and tangenti&ory (cm/s) at three instants of time
significant for their behaviors close to the stesnof¥he tangential velocity has four distinct
actions. First pushes the fluid to the center eftipe then pushes in the direction of expansion.
Within the aneurysm tangential velocity pushestbatfluid after and then it transports down
to the outlet. The magnitude of the pressure vagesrding to the variation of the input pulse,
decreasing from upstream to downstream, remainngay unchanged at the end of the tube.

We can better verify this behavior taking into aatiothe variation of the average
pressure along the tube.

t=0.5ms t=2.5ms t=3.5ms

Figure 5.12:Normal velocity at different instants of time,arpipe with convex deformation
of the upper wall.

t=0.5ms t=2.5ms t=3.5ms

Figure 5.13: Tangential velocity at different instants of tiniea pipe with convex
deformation of the upper wall.
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Figure 5.14:The representative vectorial field of each compbié velocity, in a pipe with
convex deformation of the upper wall.

t=0.5ms t=2.5ms t=3.5ms

Figure 5.15: Pressure at different instants of time, in a pyith convex deformation of the
upper wall.

Figure 5.16: The average pressure of fILﬁd()g), at different times, in a pipe with convex
deformation of the upper wall.

6.0 DISCUSSION AND CONCLUSIONS

The results of numerical simulations of incomprelesiNewtonian fluid flows in various
geometries is presented and analyzed. Flow behaf/different test cases is investigated an
approach of modeling of blood flow and the boundemoynditions considered attempted to
describe the conditions in the model of blood flow.

By comparing the simulations results from their oegtly, velocity vectors, pressure,
streamlines and volume flux many differences candied due to the geometry of the domain.
We observed that for the flow in a deformed pipéhvdoncave deformation the tangential
velocity has an anti-symmetric behavior to the aXistenosis and a recirculation arises at the
right which is directly related to the inlet impealsAnd for the convex deformation in the upper
wall we see the anti-symmetric behavior of tanggntelocity in relation to the axis of
symmetry of zone rounded and the formation of oetation of flow takes place inside the
aneurysm which remains same within the bulged regio
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