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The present study explores the impact of viscous dissipation on unsteady two 

dimensional boundary layer flow of viscoplastic Casson ferrofluid over semi-infinite 

vertical plate with leading edge accretion/ablation. Tiwari-Das model is used to 

incorporates the effects of volumetric fraction of nanoparticles. Sodium alginate (SA) 

is taken as viscoplastic Casson based fluid containing Fe2O3 ferroparticles. Formulated 

differential equations along with relevant boundary conditions are solved numerically 

by Runge Kutta Fehlberg fourth-fifth order (RKF45) method. The effects of sundry 

parameters such as the Prandtl number, Eckert number, Casson parameter, 

accretion/ablation parameter, and nanoparticle volume fraction on velocity and 

temperature fields are investigated for both Rayleigh-Stokes and Blasius flat plate 

problems. Thermal boundary layer thicknesses for Blasius flat plate problem is thinner 

than Rayleigh-Stokes problem. 

Keywords:  

Ferrofluid, Ferroparticles, Viscous 

dissipation, Accretion/ablation Copyright © 2018 PENERBIT AKADEMIA BARU - All rights reserved 

 

1. Introduction 

 

Creative and novel performance to perk up heat transfer by using solid particles in the 

conventional heat transfer fluids. Choi [1] is the first who introduced the term nanofluids to refer the 

fluids with suspended nanoparticles. Khanafer et al., [2] developed a model to study the heat transfer 

enhancement in solid particles dispersion nanofluids through enclosure and obtained numerical 

results with the help of finite volume method. Buongiorno [3] published a survey article on the 

convective transport in nanofluids. Tiwari and Das [4] investigated flow of nanofluids inside a two-

sided lid-driven differentially heated square cavity. Ahmed and Pop [5] studied nanofluid mixed 

convection flow embedded in a porous medium. Hamad [6] presented analytical solution of nanofluid 
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in the presence of magnetic field when the natural convection takes place over a linearly stretching 

sheet. Kandasamy et al., [7] used scaling group transformation and analyzed MHD flow of a nanofluid 

past a vertical stretching surface with wall suction or injection. Khan and Pop [8] used the Buongiorno 

model and studied the boundary layer flow of a nanofluid past a stretching sheet. Anwar et al., [9] 

investigated nanofluids flow over a nonlinearly stretching sheet. Qasim et al., [10] studied heat and 

mass transfer phenomenon in nanofluids with convective boundary conditions whereas Matin and 

Pop [11] used Brinkman model for the flow through porous channel and studied the force flow of a 

nanofluid in the presence of chemical reaction. Khairy et al., [12] obtained numerical solution for 

thermal boundary layer problem of nanofluid over a nonlinearly permeable stretching/shrinking 

sheet. Sun et al., [13] studied the heat transfer flow of Fe2O3-water nanofluids inside copper tubes. 

Aly and Ebaid [14] analyzed Marangoni boundary layer Cu/TiO2-water nanofluids with magnetic field 

and thermal radiation effects. Unsteady MHD flow of some nanofluids past an accelerated vertical 

plate embedded are investigated by Hussanan et al., [15]. Exact analysis for the flow and heat transfer 

characteristics of CNTs-water nanofluids in the presence of convective condition are obtained by 

Saleh et al., [16]. Hussanan et al., [17] studied the microstructure and inertial characteristics of  

nanofluids over a vertical plate. Recently, Hussanan et al., [18] discussed magnetite microploar 

ferrofluid over a stretching/shrinking sheet using effective thermal conductivity model. 

Casson fluid is a subtype of viscoplastic fluids which behaves like elastic liquid where no flow 

occurs with small shear stress. Casson [19] in his pioneering work introduced this model to simulate 

industrial inks. Later, numerous articles flooded the field of Casson fluid research and the area was 

widely explored due to its engineering applications. Mustafa et al., [20] have studied the heat transfer 

flow of a Casson fluid over an impulsive motion of the plate using the homotopy method. The exact 

solution of forced convection boundary layer Casson fluid flow toward a linearly stretching surface 

with transpiration effects are reported by Mukhopadhyay et al., [21]. In the same year, Rao et al. [22] 

considered the velocity and thermal slip conditions on the laminar boundary layer heat transfer flow 

of a Casson fluid past a vertical plate. Shehzad et al. [23] discussed the viscous chemical reaction 

effects on the MHD flow of a Casson fluid over a porous stretching sheet. Hussanan et al., [24] 

obtained the exact solution of free convection flow of a Casson fluid over an oscillating plate with 

Newtonian heating. Hussanan et al., [25] also developed exact solutions for suction and injection 

flow of a casson fluid in the presence of viscous dissipation over a stretching sheet. In another paper, 

Hussanan et al., [26] considered the magnetic field effects on unsteady flow of a Casson fluid.  

The above published data reveal that no work has yet to be conducted on non-Newtonian 

viscoplastic casson fluids with nanoparticles over a vertical plate with leading edge 

accretion/ablation. Therefore, present study investigates the behavior of sodium alginate viscoplastic 

Casson based fluid containing Fe2O3 ferroparticles and a comparison between the sodium alginate 

base fluids and the nanoparticle interaction is conducted. Based on comparisons, we are able to 

obtain a better understanding of how ferroparticles properties might alter flow patterns of 

viscoplastic Casson. The governing equations are solved numerically. Flow and convective heat 

transfer are discussed with corresponding figures. 

 

2. Problem Formulation 

 

Consider an unsteady two-dimensional boundary layer flow and heat transfer of a viscoplastic 

Casson ferrofluid past a semi-infinite vertical plate with leading edge accretion/ablation. Let the 

uniform free stream velocity be U  and free stream temperature be denoted by T∞ . The x -axis is 
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taken vertically up in direction of free stream, while y  is the coordinate measured normal to it and 

the flow being confined to 0y > . Governing boundary layer equations subjected to above 

assumptions, considering viscous dissipation are 
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The above equations are subjected to following initial and boundary conditions 

  

0 : 0, for all , ,t u v T T x y∞< = = =    (3) 
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where u  and v  are the velocity components in the x  and y  directions, respectively, β  is the Casson 

parameter. Further,  nfµ , nfρ , nfk and ( )p nf
cρ  are dynamic viscosity, density, thermal conductivity 

and heat capacitance of the ferrofluid, respectively, which are defined as [27, 28] 
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The following similarity functions are introduced to translate the governing equations into its 

non-dimensional forms are 
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where ψ  is the free stream function. The free stream function ψ  defines the velocity components 

as 
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Using equation (6) into equation (7), velocity components u  and v  take the form 
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With the help of equations (6) to (8), equations (1) and (2) take the new dimensionless form as 
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The corresponding boundary conditions are 
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are the Prandtl number and Eckert number.  

 

3. Results and Discussions 

 

In this study we used Tiwari-Das model to investigate the impact of viscous dissipation on 

unsteady two-dimensional boundary layer flow of viscoplastic Casson ferrofluid over semi-infinite 

vertical plate with leading edge accretion/ablation. The effects of sundry parameters such as the 

Prandtl number Pr,  Eckert number ,Ec  Casson parameter ,β  accretion/ablation parameter α  and 

nanoparticle volume fraction φ  on velocity ( )F η′ and temperature ( )θ η  fields are investigated for 

both Rayleigh-Stokes problem ( )0α =  and Blasius flat plate problem ( )2α π=  cases, separately. 

Figures 1(a) and 1(b) describe the effect of Casson parameter β  on velocity field ( )F η′  for both 

Rayleigh-Stokes problem ( )0α =  and Blasius flat plate problem ( )2α π= . The results show that 

the velocity field ( )F η′  decreases with increase of β . It is also noticed that there is a sharp fall in 

the velocity field for Blasius flat plate problem ( )2α π=  as compare to Rayleigh-Stokes problem 

( )0α =  within the layer 10η <  and then it becomes uniform for both cases as η → ∞ . The 

temperature field ( )θ η  with Casson parameter β  for 0α =  and 2α π=  is plotted in Figures 2(a) 
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and 2(b). It is found that temperature field ( )θ η  decreases with increasing β  in both cases of 

Rayleigh-Stokes problem and Blasius flat plate problem. The effects of Eckert number Ec  on 

temperature field ( )θ η  are illustrated in Figures 3(a) and 3(b) for stretching sheet with both 

Rayleigh-Stokes ( )0α =  and Blasius flat plate problems ( )2α π= , keeping the other parameters 

fixed. Based on the definition of Eckert number (relationship between a kinetic energy flow and the 

enthalpy), the increase in its value suggests a progressive increase in temperature ( )θ η . It is also 

seen that temperature of fluid increases for both cases. 

 

  
(a) (b) 

Fig. 1. Velocity field for different .β  (a) Rayleigh-Stokes problem, (b) Blasius flat plate problem 

 

  
(a) (b) 

Fig. 2. Temperature field for different .β  (a) Rayleigh-Stokes problem, (b) Blasius flat plate problem 
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(a) (b) 

Fig. 3. Temperature field for different .Ec  (a) Rayleigh-Stokes problem, (b) Blasius flat plate problem 

 

 

4. Conclusions 

 

In this study, flow and heat transport of viscoplastic Casson ferrofluid over semi-infinite vertical 

plate with leading edge accretion/ablation is investigated numerically. Some of the interesting results 

of the present study can be epitomized as  

i. Remarkable change occurs to velocity for Rayleigh-Stokes and Blasius flat plate problems. 

ii. In the absence of viscous dissipation, the fluid has lower temperature along the plate. 

iii. Thermal boundary layer thicknesses for Blasius flat plate problem is thinner than Rayleigh-

Stokes problem. 
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