Evaluation of a Large Eddy Simulation on Thermal Boundary Condition in Underground Car Park

Ahmad Faiz Tharima1,2,*, Mohd Zamri Yusoff2, Md Mujibur Rahman2

1 Fire and Rescue Department of Malaysia, Lebuh Wawasan Presint 7, 62250 Putrajaya, Malaysia
2 College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang Selangor, Malaysia

\textbf{ARTICLE INFO}

\textbf{ABSTRACT}

\textit{Article history:}
Received 7 May 2018
Received in revised form 4 July 2018
Accepted 23 July 2018
Available online 12 August 2018

Both Fire Dynamic Simulator (FDS) and Smokeview (SMV) were adopted to predict the heat distribution and the smoke propagation. The data are important for determining the required tenability limit in an underground car park during fire. The credibility of FDS result depends heavily on the numerical setting and the imposed boundary conditions. The present study explored the influence of different thermal boundary conditions, i.e. adiabatic and constant wall temperature boundary conditions. The grid-independent Heat Release Rate (HRR) and the vertical temperature profiles on some selected locations were firstly obtained. It was found that the R^2 of the constant temperature thermal boundary condition was the highest (89.4%). Meanwhile, the R^2 of the adiabatic thermal boundary condition was 87.5%. Therefore, the constant wall temperature boundary condition was adopted for subsequent analysis. On the other hand, the temperature distribution was dependent on the imposed thermal boundary condition as well. For adiabatic condition, the smoke took lesser time to reach the floor. However, for constant temperature boundary condition, the smoke layer remained at the upper level and the smoke concentration was low near the end wall. Also, the predicted critical velocity for the case of constant temperature boundary condition was much lower than that of adiabatic boundary condition. In general, lower critical velocity indicates that the hot gases would reside at the upper level longer.

\textbf{Keywords:}
Adiabatic, critical Velocity, underground car park

1. Introduction

At current, there are many types of smoke back layering control. For instance, the smoke backflow can be prevented if the air velocity is sufficiently large [1]. In contrast, some authors indicated that the airflow velocity should be kept as low as possible in order to maintain the smoke stratification and to keep the downstream smoke-free [2]. There are many definitions on smoke-free nevertheless. Accordingly, smoke back layering is negligible when smoke is not detected at upstream [3] or downstream [4]. Thus, the effect of critical velocity is more apparent when there is no smoke back layering [4].

* Corresponding author.
E-mail address: pait.afz@gmail.com (Ahmad Faiz Tharima)
The critical velocity is usually measured at the target location where the smoke back layering is expected. Meanwhile, the horizontal velocity is measured at the air inlet [3,5–7] such as near the jet fan (forced ventilation) or the window (natural ventilation). The different of both forced and natural ventilation is proven to have a linear correlation to smoke back layering distance [5].

The degree of smoke back layering is dependent on factors such as ventilation velocity, tunnel surface condition, size of modelled fire source and obstacles near the fire source [8]. Moreover, the critical velocity in the case of transverse beams is much lower than that of parallel beams. Therefore, the jet fan in the former case is relatively smaller [6].

The critical velocity may differ due to the imposed boundary conditions. Owing to the fact that not all information were available while designing the CFD model [9], sensitivity analyses on several critical model setup parameters were performed to grasp better understanding on how the tenability limit would vary during fire in the future study. These critical parameters were ceiling height, beam span length, transversal beam depth, longitudinal beam depth and extraction fan rate [3,10–23]. In the current work, FDS was used to assess the effects of both boundary conditions.

2. Methodology

2.1 CFD Simulation

The computational fluid dynamics (CFD) simulation was performed by using FDS software, which is a specialized software in modelling fire-driven fluid flow. Flow turbulence was modelled via Large Eddy Simulation. Table 1 shows the numerical settings of the simulation.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>The numerical setting for simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Numerical setting</td>
</tr>
<tr>
<td>Geometry dimension</td>
<td>4m x 1.6m x 0.3m</td>
</tr>
<tr>
<td>Mesh size</td>
<td>0.94cm</td>
</tr>
<tr>
<td>HRRPUA</td>
<td>234.5kW/m²</td>
</tr>
<tr>
<td>Fuel</td>
<td>Methane (CH₄)</td>
</tr>
<tr>
<td>CO yield</td>
<td>0.2</td>
</tr>
<tr>
<td>Soot yield</td>
<td>0.07</td>
</tr>
<tr>
<td>Hydrogen Fraction</td>
<td>0.1</td>
</tr>
<tr>
<td>Fire source area</td>
<td>0.2m x 0.2m</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>28.95°C</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>65%</td>
</tr>
<tr>
<td>Combustion model</td>
<td>default mixture fraction combustion</td>
</tr>
<tr>
<td>Turbulence model</td>
<td>standard Smagorinsky LES, Cₛ=0.20</td>
</tr>
</tbody>
</table>

2.2 Boundary Condition

Two different thermal boundary conditions were considered in the CFD model, i.e. adiabatic wall and constant wall temperature boundary conditions. The surrounding environment was however not modelled. In this condition, the ambient temperature was fixed at 28.95°C whereas the wind effects were not taken into account. The two longitudinal beams placed at the center of car park were supported by transversal beams and columns of various sizes.
2.3 Grid Refinement and Validation

The CFD models were discretized by using meshes of different sizes, i.e. 3.57 cm, 1.47 cm and 0.94 cm. The numerical results were then compared with the experimental data provided by Ji et al., [18]. Figure 1 shows the temperature values at 0.01m below the ceiling. The result converged to the maximum temperature as the grid was refined. Table 2 shows the FDS and experimental results. As seen, in the table, the error decreased as the grid size was reduced. It was interesting to note that the error was merely 4.33% at the finest mesh level. As shown in Figure 1, the coefficient of determination (R^2) for the finer mesh case (i.e. 87.9%) was quite similar to those of cases employing moderate and coarse meshes. Therefore, the FDS results obtained on the finer mesh could be regarded as grid-independent.

Figure 2 shows the geometry of the enclosed car park (i.e. located at the Simulator Building at the Fire and Rescue Academy of Malaysia). The CFD model was scaled down 10 times while preserving the dimensionless numbers such as Froude number, Prandtl number and Reynold number [22,23]. The results were obtained on mesh layouts of various sizes; 5.44 cm, 2.18 cm, 1.36 cm and 0.94 cm.

As reported in Figure 3, the HRR values obtained on mesh layouts of sizes 1.36 cm and 0.94 cm were quite similar. Therefore, the grid size of 0.94cm was selected for subsequent analysis. Also, the grid refinement factor $r = \frac{h_{coarse}}{h_{fine}}$ of >1.3 was considered desirable (see Table 3) [24].

![Fig. 1. Temperatures at thermocouple tree A](image)

<table>
<thead>
<tr>
<th>Mesh size (cm)</th>
<th>Number of cells</th>
<th>Experiment Temperature [°C]</th>
<th>FDS Temperature [°C]</th>
<th>Relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.57</td>
<td>32,928</td>
<td>166.33</td>
<td>166.33</td>
<td>19.01%</td>
</tr>
<tr>
<td>1.47</td>
<td>471,648</td>
<td>205.38</td>
<td>189.95</td>
<td>7.51%</td>
</tr>
<tr>
<td>0.94</td>
<td>1,797,760</td>
<td>196.48</td>
<td>196.48</td>
<td>4.33%</td>
</tr>
</tbody>
</table>
3. Results

3.1 Heat Release Rate

Here, both boundary conditions were imposed and their effects on the numerical results were studied. The heat release rate of 9.38 kW was imposed according to experiment investigated by Ji et al., [18]. Figure 4 indicates that the constant thermal boundary condition has higher R^2 (89.4%) as compared to that of the adiabatic thermal boundary condition (87.5%). It indicates that the highest temperature is obtained at the constant temperature boundary condition which gives the maximum heat transfer [25]. The highest measured temperature is expected to have influenced on velocity as...

Table 3

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>Number of cells</th>
<th>Grid refinement factor ‘r’</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.44 cm</td>
<td>15360</td>
<td>-</td>
</tr>
<tr>
<td>2.18 cm</td>
<td>240000</td>
<td>2.3</td>
</tr>
<tr>
<td>1.36 cm</td>
<td>983040</td>
<td>1.5</td>
</tr>
<tr>
<td>0.94 cm</td>
<td>2312000</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Fig. 2. An underground car park geometry

Fig. 3. Heat release rate in difference meshes
well as smoke concentration which represents the actual problem accordingly. Therefore, it was believed that the constant wall temperature boundary condition could be used for subsequent analysis.

![Graph showing HRR vs Time]

Fig. 4. Heat release rate

3.2 The Effect of Underground Surface Condition on Smoke Level

The residence time of smoke at the upper level is dependent on the type of boundary condition. The smoke concentration (at the symmetry plane) is shown in Figure 5. From Figure 5, in the case of adiabatic condition, the smoke took lesser time to reach the floor. Therefore, the tenability condition in the underground car park was not fulfilled. Nevertheless, for the case of constant temperature boundary condition, the smoke remained at the upper level and the smoke concentration was found to be low near the end wall due to the heat transfer to the end wall. According to the numerical simulation, it shows that the smoke reached to the floor level at approximately 103s by using the boundary condition of constant temperature while it is vice versa for the adiabatic condition where the smoke reached to the floor earlier. Based on this, all occupants have enough time to reach a place of safety. In the later intensive study, this boundary condition is found to be most appropriate for studying the required safe escape time.

![Images showing different smoke concentrations]

Fig. 5. The different smoke concentration at the upper level and near the end wall. Top: adiabatic, bottom: constant temperature.

3.3 Temperature Distribution

The temperature field would vary accordingly due to the difference in wall thermal boundary conditions. For adiabatic condition, the temperature near the ceiling was higher. Apparently it caused the smoke to reach the opposite direction due to the buoyancy effect. For the constant temperature
boundary condition, the buoyancy effect is minimal. Therefore, the smoke was concentrated at the fire source as well as the downstream region (Figure 6).

3.4 Critical Velocity

The influence of critical velocity on the smoke layer was studied with a bit differing of numerical setting. Here, the angular position of the transversal beam was varied between 30° and 65° [26]. The longitudinal beam depth was set larger than that of the transversal beam so that the smoke flow could be channeled to the exhaust fan.

The fire source (0.0762 m x 0.11684 m) was placed at the center of the car park compartment. The fuel source considered was propane. The carbon monoxide and soot yields were prescribed as 0.05 and 0.024, respectively. The value of 8 MW was chosen by considering possible failure in the sprinkler system [27]. Because scaling relations is used, the fire size was scaled down to be 25.3 kW, resulting in 2842.7 kW/m² heat flux [28]. Whereas the exhaust fan rate was set at 0.31 m³/s [7]. The exhaust fan was located at the downstream opening positioned below the transversal beam depth.

Table 4 shows that the critical velocity for the case of constant temperature boundary condition was much lower than that of adiabatic boundary condition. The hot gases would remain at the upper level if the critical velocity was low enough. The difference of critical velocity for the two cases was 0.14 m/s.

<table>
<thead>
<tr>
<th>Beam angular position</th>
<th>Constant temperature</th>
<th>Adiabatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>concave</td>
<td>0.03</td>
<td>0.14</td>
</tr>
<tr>
<td>30°</td>
<td>0.03</td>
<td>0.16</td>
</tr>
<tr>
<td>55°</td>
<td>0.02</td>
<td>0.13</td>
</tr>
<tr>
<td>60°</td>
<td>0.03</td>
<td>0.15</td>
</tr>
<tr>
<td>65°</td>
<td>0.03</td>
<td>0.13</td>
</tr>
</tbody>
</table>
4. Conclusions

Since not all information are available while designing the CFD model, this study intends to investigate the effect of different boundary condition towards heat release rate, smoke concentration, and temperature field as well as critical velocity which influence the occurrences of smoke back layering. Prior to examination, both grid and domain dependence studies were performed. The grid size of 0.94 cm was finally chosen. For heat release rate, it was found that the constant temperature boundary condition showed the higher R^2 (89.4%) than that of the adiabatic condition (87.5%). In the case of adiabatic condition, the smoke took lesser time to reach the floor level. Conversely, the tenability condition in the underground car park was met for the constant temperature boundary condition as the smoke remained longer at the upper level and less smoke was found near the end wall. Moreover, the temperature distribution near the ceiling was lower in the constant temperature boundary condition due to minimal buoyancy effect. The influence of critical velocity on the smoke layer was investigated as well. It was found that the critical velocity for the case employing constant temperature boundary condition was much lower than that of the adiabatic condition. As the intention of fire safety is to encourage the occupants to have longer time for escape by having the smoke to remain longer at the upper level, the constant temperature boundary condition should be used for the subsequent analysis.

Acknowledgement

This study work is supported by the scholarship provided by Malaysia Public Service Department to the first author.

References

