Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 48, Issue 1 (2018) 40-52

Journal of Advanced Research in Fluid
” Mechanics and Thermal Sciences

Advanced Research in Fluit
Mechanics and Therma
Sciences

Journal homepage: www.akademiabaru.com/arfmts.html
ISSN: 2289-7879

Analysis of Stagnation Point flow of an Incompressible
Viscous Fluid between Porous Plates with Velocity Slip HEBEES

Ashwini Bhat'*, Nagaraj N Katagi’

! Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Udupi Karkala Road, Manipal,
Karnataka-576104, India

ARTICLE INFO ABSTRACT

Article history: The present study investigates the effects of slip velocity on the stagnation point of
Received 8 April 2018 an incompressible viscous fluid between porous plates. The appropriate slip
Received in revised form 12 June 2018 boundary conditions have been introduced in place of no-slip condition. The

Accepted 1 July 2018

governing equations of motion is solved by Homotopy analysis and Computer
Available online 12 August 2018

extended series method. Padé approximants are further used to increase the
domain and rate of convergence of the series so generated. The above methods
admits a desired accuracy whose validity increases up to a sufficiently large values
of R, Reynolds number with different slip coefficients. The approximate analytical
results have been verified to be very accurate when compared with the previous
solutions observed by Chapman in the absence of slip coefficient.

Keywords:

Stagnation point flow, slip velocity,

computer extended series, homotopy

analysis method, Domb-Sykes plot. Copyright © 2018 PENERBIT AKADEMIA BARU - All rights reserved

1. Introduction

The study of flow between the porous or non-porous disk has significant importance due to its
applications in both scientific and industry. These types of flows have applications in bio-mechanics,
semiconductor manufacturing process with rotating wafers, hydrodynamical machines, etc. Hiemenz
[1] was the first researcher to propose the basic two dimensional stagnation flow towards plate.
Later, this study was extended to three dimensional case Howarth [2] and Davey[3]. Axisymmetric
stagnation flow on a cylinder was solved by Wang [4]. Many researchers have investigated the
problem on fluid flow between porous plates/ disks with suction or blowing[5, 6-10]. Rasmussen[11]
numerically analysed the problem of flow between two porous co-axial disks. Chapman and
Bauer[12] presented the asymptotic and numerical solution for stagnation point viscous flow
between porous plates with uniform blowing. Later, the problem of steady stagnation point flow of
an incompressible micro-polar fluid between two porous disks with uniform blowing was analyzed
by Agarwal and Dhanpal [13]. They have used shooting techniques for numerical solutions. Elcrat [14]
obtained the theorem of existence and uniqueness for non-rotational fluid motion between fixed
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porous disks with arbitrary suction or blowing. Bujurke et al., [15] discussed the solution of viscous
flow between two parallel porous plates by computer extended series analysis followed by Euler
transformation to increase the validity of series. A brief review of works on stagnation point flow can
be found in paper by Wang [16,17]. Mahapatra and Gupta [18] studied the laminar steady stagnation-
point flow of a viscoelastic fluid over a stretching surface; they studied flow when the stretching
velocity of the surface is more (less) than the free stream velocity. Following this work, an extensive
work has been carried out by many experts on the stagnation-point flow of viscoelastic fluid past a
stretching surface. In all the above analysis of flow with porous boundaries, a zero slip condition was
assumed, which characterizes flow with the solid boundary walls. Howeve, the effect of slip was not
considered by them. Beavers and Joseph [19] proved the existence of slip velocity at a porous surface
through theoretical explanations and experimental observations. The historical background to
Beavers - Joseph conditions at the interface of porous media and clear fluid were reported by Neild
[20]. Ashwini et al., [21,22] have implemented successfully these Beavers - Joseph conditions in the
analysis of flow in channels and pipes.

It is clear from the literature that no attempts have been made to analyse the influence of slip
velocity on the stagnation point flow of an incompressible viscous fluid between porous plates. The
current analysis has developed a model for the same by taking into consideration the velocity slip
effects and filled this gap. The obtained solutions are in well agreement with that of Chapman and
BauerError! Reference source not found. for smaller and large values of Reynolds number when slip
effect is zero. The resulting governing equations with slip boundary conditions are solved by two
novel semi-analytical techniques for different values of slip coefficient at different Reynolds number.
The influence of slip coefficient on pressure gradient, variations in dimensionless axial velocity,
dimensionless axial velocity derivative in the presence of velocity slip have been analysed.

2. Mathematical Formulation

Consider a steady, axially symmetric, laminar flow of a viscous incompressible fluid between two
parallel porous disks separated by a distance 2L (Figure 1). The fluid with uniform velocity having
magnitude v is injected through both porous plates, continuously which flows radially towards
middle plane z=0.

Under the assumed conditions, the relevent continuity and momentum equations which governs
the flow field and pressure distribution are [9],
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Fig. 1. Geometry of axi-symmetric flow between porous plates
with uniform injection velocities
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r-momentum and z-momentum equations.

V. % B p E 19(rv,)
o ) T T e 8z2

) (1)

10 P
g az)_ 0z (rar( r) azz) e @)

It is assumed that v,=0.
The boundary conditions are,

.=-Vat z=L (3)
V, =V, at z=L (4)
v=0 at z=0 (5)
M oat z=0 (6)
anZd p=p at r=0,z=0 (7)

The boundary conditions (6) and (7) are due to planar symmetry, that is we consider only upper
half of the flow field and Equation (4) is the slip boundary condition by Beavers and Joseph [16]. The
slip velocity at porous surface is being proportional to shear rate at the porous boundary, we have

V.=V

r slip aé:

Because of the symmetrical geometrical properties and uniform boundary conditions, it allows to
assume,

v, =re(z) (8)

k
—— is the slip coefficient.
T al

ov.
9,

=-2¢(z) (9)

Substituting (8) and (9) into (1) and (2) concludes that the quantity, [_?TP/r] is a constant. Equation
r

(1) becomes,

B(ﬂf_ v, d*v

u,dv, _, OP
4 4z T2 dz) PAPERbEwd (1)

Now, with dimensionless quantities defined as,

2
§=£,0=V_Z,Re:% and p =[-4 40P L ] (10)
L 1% U ’ arper

Equation Error! Reference source not found. reduces to

ée’”@?)— 20(6)87(E)+(O(E)* =D, (12)
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or

8”"(&) = Re 6(5)07($) (12)

The boundary conditions (4)-(7) reduces to,

6=—lat £=1 (13)

f=0at §=O (14)

0"=0at =0 (15)

and@ =—@0” at& =1 where ¢=—£]Ii, slip coefficient. (16)
a

Also, from (2), (7) and (10) the solution for pressure gradient can be rewritten as,

_p M rag— g Y P
P=h-* [[(rROO'~6"10¢ TE (17)
From (8) and (9) the radial component of velocity is given by,
v, = =Yg (E) (18)

2L

Thus Equation (12) along with boundary conditions (13)-(16) describes the entire flow situation
and expressions for 8(£,R), D,(R) provides solution to the problem. Solution of Equation (12) is

usually solved by direct integration which frequently involves more than one integration process
because of two point nature of boundary conditions. Thus the use of proposed series method
provides an attractive alternative approach. Also, the terms in the series method are capable of
providing results to any desired accuracy.

3. Method of Solution
3.1 Series Solution Method

We seek the solution of equation (12) for small values of R can be expressed in the form of
power series as,

0(&) =6, + SR'6,E) (19)

n=1

substituting equation (19) into equation (12) and comparing like powers of R on both sides, we get,

n—

0'=>0" 6 n=123,.. (20)

1
n=1-r"r>
r=0

the boundary conditions are,

6,0)=0,8,0)=0, Vh=0 (21)
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6(1)=—1,6,(1)=0, Vn>1 (22)

8,(1)=—¢8,(1) ¥n>0 (23)

The solution of above system of equations up to termin R are,

90(5) =7§ —660=3¢
2(3p+1)
08 = 0.00178571387 ¢+ &7 —126£°¢> ~1058°9—21&° +4208°¢* +273E°9+ 398 — 29489 ~171Ep—19¢)

Go+1)’
(24)
The solution for ¢ = 0 is given by Chapman and Bauer [9].

Computer extended perturbation solution:

As the series (20) is slowly converging, it is not possible to analyze the problem accurately with
just two terms [23,24]. We need sufficiently large number of universal polynomial coefficients which
reveal the true nature of the solution represented by series (19) [25,26]. Manually evaluating the
coefficients beyond second order terms is very difficult as one proceeds to higher approximations
the algebra becomes cumbersome. Towards this goal, we proposed recurrence relations along with
Mathematica, which efficiently generates higher order terms of the series.

The axial velocity component is directly obtained as (&) and dimensionless axial velocity

derivative is,
0(&)=6,()+YR'6,(£)=D R'a, (25)
n=1 n=0

The dimensionless pressure gradient Dp is represented by the series,
2 7777 44
D, =—6"(1)+20"() (26)

Coefficients of the series (19) representing 8(£) and pressure gradient (26) are decreasing in

magnitude and have no fixed sign pattern. Domb-Sykes plot [27] is drawn to find the nature of
nearest singularities which restricts convergence of the series.

3.2 Homotopy Analysis Method

To compare the solution obtained by extended series method, we also solve the governing
equations with boundary conditions by another useful semi analytical technique called Homotopy
analysis method (HAM). As HAM does not depend on a small parameter like other series methods
and allows to transfer a non-linear problem into an infinite number of linear sub-problems, along
with Padé sum it guarantees convergence of the solution in any case.
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Zeroth-order deformation problem:

We seek solution of Equation (12) by using HAM and choose the base function to express (&)
[28,29]. The initial guess which satisfies the boundary conditions is

’ 3 3
6,(5) = ¢ 30 3 (27)
23p+1) 3p+1 23¢+1)
and auxiliary linear operator is given by,
L[81=60"" (28)

The above linear operator which satisfies the following property,
a8
L[C1€+C27+C3§+C4]=0

where C,C,,C, and C, are constants to be determined. If ge[0,1] then the zeroth order
deformation problem can be constructed as,

(1= LI&n,q)—8,(E)1=ghHOMEAE, 9)] (29)

with relevant boundary conditions,

60,9) =0
0(l,q) =1

, ’” 30
9(1,4) =_¢6 (1,4) ( )
6”(0,q) =0

where 0 < g <1 isanembedding parameter, hand H are non-zero auxiliary parameter and auxiliary
function respectively. Further, N is a non-linear differential operator and is defined as,

~RoE.q) 200 1)

o&?

90,9
N[O(&,q)] = ——212
[6(S,9)] 2
For ¢ =0 and ¢ =1, Equation (29) has solution,

0(5.0) =6,(S)

32
EL) =0 (32)

As q varies from 0 to 1, 8(&,q) varies from initial guess 90(@&) to exact solution @(¢) By Taylor's
theorem, Equation (32) can be expressed as
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0(E.q)= 0,8+ 38, )" (33)

1 0”8
where, ﬁm(f)—%aq—mlqzo.

control parameter A, which is chosen in such a way that (33) is convergent at g = 1. Then we have,

Convergence of the above series (33) depends on the convergence

(&)= 0,&)+ >0, (8) (34)

m"-order deformation problem:

Differentiating the zeroth order deformation problem equation-(29) 'm' times with respect to ¢
and lastly setting ¢ = 0. The resulting m " order deformation problem becomes,

16,)~1,6,.,&)1=hHSOR () (35)

and the homogeneous boundary conditions are,

6,(0)=0, §,(1)=0, §,(1)=—$8,(1),6,(0)=0 (36)
where
m—=1
9'{m (5) = gm—l '”,_Rzen em—n—l v (37)
n=0
and
3 0,m<1 (38)
An = 1,m>1

We systematically utilized Mathematical software, Mathematica to obtain the solution for system
of linear equations (35) with appropriate homogeneous boundary conditions (36). The solutions up
to second order approximations are shown is Eq. (41).

Convergence of HAM:

The proposed series (34) contains the auxiliary parameter 4 which influences the convergence
region and rate of approximations for the HAM solutions. This parameter is known as convergence
control parameter. To ensure this series converges, we need to choose a suitable value for A To
obtain the permissible ranges of the parameter h, h-curves are plotted (Fig.6). Figure 6 shows i —
curve for the series D, for corresponding values of R and slip coefficient ¢ at 10th order

approximation.
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6 = 560(;“1)3 (-3hE"RP—hE R+126hE RP* +105hE r+21hER—4200E°RP —273hE R
—39hE R+294hERG® +1TThERP+19hER)

= 25872010(3)-4-1)5 (56T E"R*@* + 378 E"R* G+ 6310°E ' R* —2T7200°E'R*¢* —323400°ER* ¢
—123200°E R p—1540°E R* +374220°E" R*¢* +665280°E " R* ¢ +425500°E' R* ¢
+116820° ' R*p+11681°E'R* —87318M°ER*¢* —139708%°ER°¢* —79279H°ER* ¢
—188496*ERp—15708°ER> +291060°°E ' R*¢* +443520°E R° ¢ +19704H°ER* ¢
+310100°ER* g+ 2219°ER* + 207900 ER*¢* +316008°ER° ¢’ +2020200°ER* ¢ +526081°ER" ¢
+3288°ER* —124740°E' RY’ —1247400°E " RY” —415800°E’ Rp—46200°E’ R+523908h°E°R '
+7858620°E R’ +4365900°ERY” +106722H°E RP+970200°E R—17463600°E Re*
—22993740°E R’ —11129580°E R —234234M°E Rp—180180°E’R+12224520° R ¢
+15259860°ERP’ +688842°ER G +1316700*ERP+8T T80 ER—12474hE RY —124T4ME RY?
—41580m&" RP—4620hE" R+523908(E R +7858620E R +4365900hE° RY* +1067220E R
+970201E R—17463600E R —22993740E° RGP —1112958ME RGP —234234MERP—18018ER

+1222452BER " +1525986MERS +688842hERP +131670hERP+37T8MER)

6,($)

(39)
4, Results

The equation of motion for steady stagnation point flow between two parallel plates is governed
by nonlinear differential equation (12) together with boundary conditions (13)-(16) are solved by
computer extended series method and Homotopy Analysis Method. We study the effect of slip
coefficient on velocity profiles and pressure gradient at different Reynolds number. The results for
velocity profiles and pressure gradient have been presented through figures and tables.

The proposed series expansion scheme using recurrence relation and Mathematica software we
generate large number (n = 30) of universal polynomial functions 8,(¢) for different slip coefficients

¢. The series representing velocity profiles 6(¢£), 6°(£) and pressure gradient D, are analyzed using

Padé approximants for larger Reynolds number R for different slip coefficients. Domb-Sykes plot
given in Figure 2 shows the singularity restricting convergence of the series representing velocity
profiles, which gives the nature and location of nearest singularity. After extrapolation, using rational
approximation yields the radius of convergence of series (25) to be 9.07441, 9.10747 and 9.37207 for
@ =0,0.1and 0.5 respectively.

The influence of slip coefficient on the velocity profiles are shown in Figure 3 which are found to
be identical with HAM curves. It shows that velocity profiles are decreasing with increasing value of
R . It is also observed that the shape of axial velocity profiles does not depend very strongly on
Reynolds number.

Figure 4 shows the variation of axial velocity derivative profiles for different values of Reynolds
number R. It is noted that larger values of Reynolds number R results in linear profiles. Influence of
slip coefficient ¢ on pressure gradient is explained by Figure 5. It is seen that pressure gradient, D,
decreases with the influence of ¢and attains a constant value D, =4, 3.55 and 3.32 for ¢=0, 0.1 and
0.5 respectively. To check validity of the methods, results were compared for ¢=0 with that of
Chapman and Bauer Error! Reference source not found. are given in Table 1. The agreement with
earlier findings is an excellent lending support to the methods proposed.
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Fig. 2. Domb-Syke plot for velocity profiles

0 = T T T T 0 = T T T T
0.6 0.8 0e 08
-0 f=0.1
-0.2 4 0.2 4
04 4 0.4 A
= =
= T
06 064 R=0,0.1,1,
R=0,0.1,1, 10, 50,100, ¥
10, 50,100, ¥
08 4 0.8 4
-1 = = -1 X
X X
0 ; . . .
\, 0.2 0.4 0.6 0.8
f=0.5
0.2 A
0.4 A
=
T
06 4 R=00.11,
10, 50,100, ¥
0.8 A
El 4
X
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Fig. 4. Variation in dimensionless axial velocity derivative for different Reynolds number
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To compare and prove efficiency of the results obtained by Computer extended Series method,
the problem is additionally analyzed by homotopy analysis method (HAM) alongside Padé sum to
accelerate convergence of the series. We plot h-curves to discover the convergence range and
furthermore the rate of approximations for the series representing 6’(0) and Dpwhen R=01,¢=0
respectively from 10 " order HAM approximations. The range for admissible values of & for different
values of R and ¢ is different. From the figures 6 and 7 it is observed that series representing 8’(0)

and p are convergent when —2.2</#<-0.1 and -2.8</<-0.7 respectively.

h-curve for ¢'(0)-10th order approximations

35

26T

051

L . s L
-3 -2.5 =2 -1.5 -1 -0.5 0 05 1

h
Fig. 6. h-curves for 8'(0) -10th order approximations

h-t%urve for pressure gradient, Dp-1 Oth order approximations
« 10

Fig. 7. h-curves for pressure gradient, D), -10th order approximations
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5. Conclusions

In this article, we have examined the steady stagnation point flow between two permeable plates
by Computer Extended Series method (CES) and Homotopy Analysis Method (HAM). The impact of
non-zero tangential slip velocity on velocity field and pressure gradient are analysed. The validity of
series solution is extended to a large values of Reynolds number by utilizing analytic continuation.
The examination affirms that the proposed methods converges to the solution for very large values
of Reynolds number as compared to the earlier findings when slip coefficient is reduced to zero.
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Appendix

Table 1: Values of 8, 8’ and D,, at various Reynolds number for ¢ = 0.

R=0.1 R=1 R=10 R=100 R=1000 R=10000 R=100000

z —q —-q' —q —-q' —q —-q' —q —-q' —q —-q' —q -q' -q -q'
0.0 [ 0.00000 | 1.50338 | 0.00000 | 1.53258 | 0.00000 | 1.70672 | 0.00000 | 1.89268 | 0.00000 | 1.96497 | 0.00000 | 1.98889 | 0.00000 | 1.99669
0.1]0.14983 | 1.48817|0.15269 | 1.51549 | 0.16955 | 1.67288 | 0.18594 | 1.79784 | 0.18958 | 1.80091 | 0.18996 | 1.80014 | 0.19000 | 1.80001
0.2 [0.29662 | 1.44257 | 0.30197 | 1.46449 | 0.33250 | 1.57691 | 0.35651 | 1.60876 | 0.35967 | 1.59975 | 0.35997 | 1.60020 | 0.36000 | 1.60010
0.3]0.43733 | 1.36665 | 0.44448 | 1.38034 | 0.48326 | 1.43217 | 0.50732 | 1.40768 | 0.50975 | 1.40012 | 0.50997 | 1.40012 | 0.51000 | 1.40001
0.4 0.56894 | 1.26051 | 0.57697 | 1.26425 | 0.61936 | 1.25417 | 0.63804 | 1.20658 | 0.63982 | 1.20065 | 0.63998 | 1.20015 | 0.64000 | 1.20001
0.5]0.68844 | 1.12432|0.69632 | 1.11780 | 0.73360 | 1.05809 | 0.74864 | 0.99947 | 0.74987 | 1.00053 | 0.74999 | 1.00005 | 0.75000 | 1.00001
0.6 [ 0.79281 | 0.95820 | 0.79958 | 0.94290 | 0.81219 | 0.85170 | 0.83913 | 0.80440 | 0.83992 | 0.80040 | 0.83999 | 0.80000 | 0.84000 | 0.80000
0.7 0.87910 | 0.76252 | 0.88401 | 0.74151 | 0.90652 | 0.64065 | 0.90951 | 0.60330 | 0.90995 | 0.60037 | 0.91000 | 0.60004 | 0.91000 | 0.60004
0.8 0.94434 | 0.53739|0.94741 | 0.51588 | 0.97926 | 0.42772 | 0.95978 | 0.40221 | 0.95998 | 0.40021 | 0.96000 | 0.40002 | 0.96000 | 0.40002
0.9 0.98560 | 0.28313 | 0.98644 | 0.26799 | 0.98930 | 0.21394 | 0.98995 | 0.20113 | 0.98999 | 0.20012 | 0.99000 | 0.20001 | 0.99000 | 0.20001
1.0 | 1.00000 | 0.00000 | 1.00000 | 0.00000 | 1.00000 | 0.00000 | 1.00000 | 0.00000 | 1.00000 | 0.00000 | 1.00000 | 0.00000 [ 1.00000 | 0.00000
Dp 63.09800 9.19263 4.28365 4.02186 4.00200 4.00024 4.00000




Table 2: Values of 8, 8’ and D,, at various Reynolds number for ¢ = 0.1.

R=0.1 R=1 R=10 R=100 R=1000 R=10000 R=100000
z —q —-q' —q —-q' —q —-q' —q —-q' —q —-q' —q —-q' —q —-q'
0.0 [ 0.00000 | 1.38778 | 0.00000 | 1.41525 | 0.00000 | 1.61832 | 0.00000 | 1.87774 | 0.00000 | 1.89683 | 0.00000 | 1.90396 | 0.00000 | 2.00126
0.1]0.14983 | 1.37607 | 0.15269 | 1.40186 | 0.16955 | 1.54860 | 0.18643 | 1.79871 | 0.18721 | 1.87223 | 0.19003 | 1.89003 | 0.19000 | 1.97819
0.2 [0.29662 | 1.34096 | 0.30197 | 1.36239 | 0.33250 | 1.50813 | 0.36036 | 1.77256 | 0.37014 | 1.85270 | 0.37994 | 1.86238 | 0.38200 | 1.86336
0.3]0.43733 | 1.28249 | 0.44448 | 1.29684 | 0.48326 | 1.41534 | 0.51912 | 1.61563 | 0.52794 | 1.67828 | 0.53007 | 1.68588 | 0.53100 | 1.68666
0.4 [0.56894 | 1.20076 | 0.57697 | 1.20765 | 0.61936 | 1.28119 | 0.63870 | 1.29610 | 0.64808 | 1.29841 | 0.64941 | 1.30192 | 0.65002 | 1.31897
0.5]0.68844 | 1.09584 | 0.69632 | 1.09255 | 0.73360 | 1.05024 | 0.75046 | 1.02223 | 0.75944 | 1.02300 | 0.76141 | 1.15300 | 0.76100 | 1.15659
0.6 [ 0.79281 | 0.96791 | 0.79958 | 0.97561 | 0.81219 | 0.98805 | 0.83494 | 0.98771 | 0.84659 | 0.98935 | 0.84951 | 0.99497 | 0.85002 | 1.00559
0.7 | 0.87910 | 0.81923 | 0.88401 | 0.81923 | 0.90652 | 0.81923 | 0.92276 | 0.81923 | 0.93309 | 0.81923 | 0.93010 | 0.81923 | 0.93002 | 0.81923
0.8 0.94434 | 0.64360 | 0.94741 | 0.62210 | 0.94926 | 0.49351 | 0.95520 | 0.31813 | 0.96296 | 0.27555 | 0.96107 | 0.27068 | 0.96003 | 0.27019
0.9 [ 0.98560 | 0.44761 | 0.98644 | 0.42790 | 0.98930 | 0.32315 | 0.98685 | 0.20892 | 0.98654 | 0.18506 | 0.99968 | 0.18241 | 0.99014 | 0.18215
1.0 | 1.00000 | 0.22934 | 1.00000 | 0.21779 | 1.00000 | 0.17705 | 1.00000 | 0.14861 | 1.00000 | 0.03702 | 1.00000 | 0.00423 | 1.00000 | 0.00043
Dp 48.76843 7.32153 4.62626 3.55640 3.55252 3.55008 3.55000




Table 3: Values of 8, 8’ and D,, at various Reynolds number for ¢ = 0.5.

R=0.1 R=1 R=10 R=100 R=1000 R=10000 R=100000
z —q —-q' —q —-q' —q —-q' —q —-q' —q —-q' —q —-q' —q —-q'
0.0 | 0.00000 | 1.20203 | 0.00000 | 1.21972 | 0.00000 | 1.37390 | 0.00000 | 1.46613 | 0.00000 | 1.65482 | 0.00000 | 1.65518 | 0.00000 | 1.60045
0.1(0.12000 | 1.19593 | 0.12174 | 1.21277 | 0.13243 | 1.31704 | 0.18024 | 1.39115 | 0.18977 | 1.40967 | 0.18558 | 1.41199 | 0.18900 | 1.41179
0.2 (0.23878 | 1.16422 | 0.24209 | 1.18523 | 0.26066 | 1.29770 | 0.26666 | 1.31058 | 0.27242 | 1.32099 | 0.28194 | 1.37565| 0.28452 | 1.44098
0.3]0.35512 | 1.14721|0.35968 | 1.15753 | 0.38575 | 1.20593 | 0.39629 | 1.22787 | 0.40932 | 1.23657 | 0.40847 | 1.24043 | 0.40001 | 1.25800
0.40.46782 | 1.10464 | 0.47316 | 1.10992 | 0.50275 | 1.12422 | 0.51677 | 1.10066 | 0.51983 | 1.02352 | 0.52169 | 1.00362 | 0.52200 | 1.00037
0.5|0.57565 | 1.05000 | 0.58124 | 1.04964 | 0.60856 | 1.03185 | 0.60956 | 1.13994 | 0.61172 | 1.01388 | 0.62587 | 1.00282 | 0.62106 | 1.00220
0.6 | 0.67742 | 0.98334 | 0.68269 | 0.97745 | 0.70859 | 0.92218 | 0.71647 | 0.58910 | 0.72582 | 0.12774 | 0.74009 | 0.01446 | 0.74029 | 0.00147
0.7 0.77192 | 0.90474 | 0.77633 | 0.89378 | 0.79795 | 0.83221 | 0.80296 | 0.79870 | 0.81448 | 0.78782 | 0.80816 | 0.78615| 0.80030 | 0.78597
0.80.85797 | 0.81429 | 0.86109 | 0.79973 | 0.87498 | 0.72901 | 0.87904 | 0.59023 | 0.87793 | 0.17378 | 0.90169 | 0.02147 | 0.90040 | 0.00220
0.9|0.93439 | 0.71209 | 0.93595 | 0.69601 | 0.94490 | 0.62515 | 0.95604 | 0.58251 | 0.95858 | 0.28550 | 0.95887 | 0.04511 | 0.95890 | 0.00479
1.0 | 1.00000 | 0.59823 | 1.00000 | 0.58347 | 1.00000 | 0.60218 | 1.00000 | 0.10657 | 1.00000 | 0.01316 | 1.00000 | 0.00135 | 1.00000 | 0.00000
Dp 25.47242 3.94584 3.32353 3.32112 3.32005 3.32001 3.32000




Appendix

Table 1
Values of 8, 8’ and D,, at various Reynolds number for ¢p = 0.
R=0.1 R=1 R=10 R=100 R=1000 R=10000 R=100000
z —-q —-q' -q —-q' -q —-q' -q —-q' -q —-q' -q -q' -q —-q'

0.0 | 0.00000 | 1.50338 | 0.00000 | 1.53258 | 0.00000 | 1.70672 | 0.00000 | 1.89268 | 0.00000 | 1.96497 | 0.00000 | 1.98889 [ 0.00000 | 1.99669
0.1]0.14983 1.48817 1 0.15269 | 1.51549 | 0.16955 | 1.67288 | 0.18594 | 1.79784 | 0.18958 | 1.80091 | 0.18996 | 1.80014 | 0.19000 | 1.80001
0.2 0.29662 1.44257 1 0.30197 | 1.46449 | 0.33250 | 1.57691 | 0.35651 | 1.60876 | 0.35967 | 1.59975 | 0.35997 | 1.60020 | 0.36000 | 1.60010
0.3]0.43733 1.36665 | 0.44448 | 1.38034 | 0.48326 | 1.43217 | 0.50732 | 1.40768 | 0.50975 | 1.40012 | 0.50997 | 1.40012 | 0.51000 | 1.40001
0.4 0.56894 | 1.26051 | 0.57697 | 1.26425 | 0.61936 | 1.25417 | 0.63804 | 1.20658 | 0.63982 | 1.20065 | 0.63998 | 1.20015 | 0.64000 | 1.20001
0.5/ 0.68844 | 1.12432|0.69632 | 1.11780 | 0.73360 | 1.05809 | 0.74864 | 0.99947 | 0.74987 | 1.00053 | 0.74999 | 1.00005 | 0.75000 | 1.00001
0.6 0.79281 0.95820 | 0.79958 | 0.94290 | 0.81219 | 0.85170 | 0.83913 | 0.80440 | 0.83992 | 0.80040 | 0.83999 | 0.80000 | 0.84000 | 0.80000
0.7 10.87910 0.76252 | 0.88401 | 0.74151 | 0.90652 | 0.64065 | 0.90951 | 0.60330 | 0.90995 | 0.60037 | 0.91000 | 0.60004 | 0.91000 | 0.60004
0.810.94434 | 0.53739|0.94741 | 0.51588 | 0.97926 | 0.42772 | 0.95978 | 0.40221 | 0.95998 | 0.40021 | 0.96000 | 0.40002 [ 0.96000 | 0.40002
0.910.98560 | 0.28313 | 0.98644 | 0.26799 | 0.98930 | 0.21394 | 0.98995 | 0.20113 | 0.98999 | 0.20012 | 0.99000 | 0.20001 [ 0.99000 | 0.20001
1.0 [ 1.00000 | 0.00000 | 1.00000 | 0.00000 | 1.00000 | 0.00000 | 1.00000 | 0.00000 | 1.00000 | 0.00000 | 1.00000 | 0.00000 | 1.00000 | 0.00000
Dp 63.09800 9.19263 4.28365 4.02186 4.00200 4.00024 4.00000




Table 2

Values of 8, 8 and D,, at various Reynolds number for ¢ = 0.1.

R=0.1 R=1 R=10 R=100 R=1000 R=10000 R=100000
z —-q —-q' —-q —-q' —-q —-q' —-q —-q' —-q —-q' —-q —-q' —-q —q'
0.0 | 0.00000 | 1.38778 | 0.00000 | 1.41525 | 0.00000 | 1.61832 | 0.00000 | 1.87774 | 0.00000 | 1.89683 | 0.00000 | 1.90396 [ 0.00000 | 2.00126
0.1]0.14983 | 1.37607 | 0.15269 | 1.40186 | 0.16955 | 1.54860 | 0.18643 | 1.79871 | 0.18721 | 1.87223 | 0.19003 | 1.89003 | 0.19000 | 1.97819
0.20.29662 | 1.34096 | 0.30197 | 1.36239 | 0.33250 | 1.50813 | 0.36036 | 1.77256 | 0.37014 | 1.85270 | 0.37994 | 1.86238 | 0.38200| 1.86336
0.30.43733 | 1.28249 | 0.44448 | 1.29684 | 0.48326 | 1.41534 | 0.51912 | 1.61563 | 0.52794 | 1.67828 | 0.53007 | 1.68588 | 0.53100| 1.68666
0.4 0.56894 | 1.20076 | 0.57697 | 1.20765 | 0.61936 | 1.28119 | 0.63870 | 1.29610 | 0.64808 | 1.29841 | 0.64941 | 1.30192 | 0.65002 | 1.31897
0.5]0.68844 | 1.09584 | 0.69632 | 1.09255 | 0.73360 | 1.05024 | 0.75046 | 1.02223 | 0.75944 | 1.02300 | 0.76141 | 1.15300 | 0.76100 | 1.15659
0.6 | 0.79281 | 0.96791 | 0.79958 | 0.97561 | 0.81219 | 0.98805 | 0.83494 | 0.98771 | 0.84659 | 0.98935 | 0.84951 | 0.99497 | 0.85002 | 1.00559
0.7 0.87910 | 0.81923 | 0.88401 | 0.81923 | 0.90652 | 0.81923 | 0.92276 | 0.81923 | 0.93309 | 0.81923 | 0.93010 | 0.81923 | 0.93002 | 0.81923
0.80.94434 | 0.64360 | 0.94741 | 0.62210 | 0.94926 | 0.49351 | 0.95520 | 0.31813 | 0.96296 | 0.27555 | 0.96107 | 0.27068 | 0.96003 | 0.27019
0.90.98560 | 0.44761 | 0.98644 | 0.42790 | 0.98930 | 0.32315 | 0.98685 | 0.20892 | 0.98654 | 0.18506 | 0.99968 | 0.18241 | 0.99014 | 0.18215
1.0 | 1.00000 | 0.22934 | 1.00000 | 0.21779 | 1.00000 | 0.17705 | 1.00000 | 0.14861 | 1.00000 | 0.03702 | 1.00000 | 0.00423 | 1.00000 | 0.00043
Dp 48.76843 7.32153 4.62626 3.55640 3.55252 3.55008 3.55000




Table 3
Values of 8, 8’ and D,, at various Reynolds number for ¢ = 0.5.

R=0.1 R=1 R=10 R=100 R=1000 R=10000 R=100000
z —-q —-q' —-q —-q' —-q —-q' —-q —-q' —-q —-q' —-q —-q' —-q —-q'
0.0 | 0.00000 | 1.20203 | 0.00000 | 1.21972 | 0.00000 | 1.37390 | 0.00000 | 1.46613 | 0.00000 | 1.65482 | 0.00000 | 1.65518 | 0.00000 | 1.60045
0.1]0.12000 | 1.19593 | 0.12174 | 1.21277 | 0.13243 | 1.31704 | 0.18024 | 1.39115 | 0.18977 | 1.40967 | 0.18558 | 1.41199 | 0.18900 | 1.41179
0.20.23878 | 1.16422 | 0.24209 | 1.18523 | 0.26066 | 1.29770 | 0.26666 | 1.31058 | 0.27242 | 1.32099 | 0.28194 | 1.37565 | 0.28452 | 1.44098
0.3/0.35512 | 1.14721 | 0.35968 | 1.15753 | 0.38575 | 1.20593 | 0.39629 | 1.22787 | 0.40932 | 1.23657 | 0.40847 | 1.24043 | 0.40001 | 1.25800
0.40.46782 | 1.10464 | 0.47316 | 1.10992 | 0.50275 | 1.12422 | 0.51677 | 1.10066 | 0.51983 | 1.02352 | 0.52169 | 1.00362 | 0.52200 | 1.00037
0.5|0.57565 | 1.05000 | 0.58124 | 1.04964 | 0.60856 | 1.03185 | 0.60956 | 1.13994 | 0.61172 | 1.01388 | 0.62587 | 1.00282 | 0.62106 | 1.00220
0.6 | 0.67742 | 0.98334 | 0.68269 | 0.97745 | 0.70859 | 0.92218 | 0.71647 | 0.58910 | 0.72582 | 0.12774 | 0.74009 | 0.01446 | 0.74029 | 0.00147
0.7|0.77192 | 0.90474 | 0.77633 | 0.89378 | 0.79795 | 0.83221 | 0.80296 | 0.79870 | 0.81448 | 0.78782 | 0.80816 | 0.78615| 0.80030 | 0.78597
0.8|0.85797 | 0.81429 | 0.86109 | 0.79973 | 0.87498 | 0.72901 | 0.87904 | 0.59023 | 0.87793 | 0.17378 | 0.90169 | 0.02147 | 0.90040 | 0.00220
0.9 |0.93439 | 0.71209 | 0.93595 | 0.69601 | 0.94490 | 0.62515 | 0.95604 | 0.58251 | 0.95858 | 0.28550 | 0.95887 | 0.04511 | 0.95890 | 0.00479
1.0 | 1.00000 | 0.59823 | 1.00000 | 0.58347 | 1.00000 | 0.60218 | 1.00000 | 0.10657 | 1.00000 | 0.01316 | 1.00000 | 0.00135 | 1.00000 | 0.00000
Dp 25.47242 3.94584 3.32353 3.32112 3.32005 3.32001 3.32000




