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A non-Newtonian fluid of constant density is forced through the porous bottom of 

elliptic slider. The semi-major axis of the slider is assumed to be much longer than the 

gap width between the slider and the plane. The similarity transformation reduces the 

equations of motion to a set of nonlinear ordinary differential equations which are 

solved using a semi numerical technique for smaller and moderately large Reynolds 

numbers. In this method we develop the series expansion with polynomial coefficients 

for the solution, we calculate few terms manually and for obtaining a large number of 

terms we use computer. The region of validity of the series representing drag and lift 

is increased by Euler’s transformation. The results so obtained are compared with 

earlier findings.   
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1. Introduction  

 

Theoretical and practical study about porous slider are important in fluid cushioned moving pads and 

it is fact that fluid cushioned porous sliders are useful in reducing the frictional resistance between two 

solid surfaces moving relative to each other. Hydrostatic thrust bearing and air cushioned vehicles are the 

practical applications of such models. The application of porous bearing in mounting horsepower motors 

includes vacuum cleaners, coffee grinders, hair dryers, shaving machines, sewing machines, water pumps, 

record players etc. are the industrial applications. Developing these types of models for non-Newtonian 

[1,2] is very essential since the non-Newtonian fluids has many applications in various fields like, viscous 

coupling, military suits, sports shoes etc.  

For Newtonian fluids Berman [3], Proudman [4], Terrill [5,6], Elkouh [7], Murti [8]  and Rassmussen 

[9] studied the two dimensional or axis symmetry flow between porous plates. In each case the flow is 

either two dimensional or axisymmetric. Series of paper published by Wang [10-12] and his associates in 

                                                           
∗ Corresponding author. 

E-mail address: nppaimit@yahoo.co.in (NP Pai) 

Penerbit

Akademia Baru

Open 

Access 



 

 

 

Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 48, Issue 1 (2018) 80-90 

 

Penerbit

Akademia Baru

the 19th centuries on porous slider problems. Wang [12] studied the porous circular slider. A fluid is forced 

through the porous bottom of the slider and thus separates the slider from the ground and analysed the 

problem through perturbation method for small Reynolds numbers and matched asymptotic expansions 

for higher Reynolds number. Wang and Skalak [13], studied fluid injection through one side of a long 

vertical channel, the resulting nonlinear ordinary differential equations are analyzed by numerical 

integration technique and power series method. 

The perturbation method [14] was used earlier to solve the algebraic equations, next it used to solve 

the differential equations. In 1938 Goldstein [15] and his associate used this technique to solve the 

differential equation obtained in different fields. The numerical method are comparatively tedious and 

difficult to implement on computers due to nonlinearity of the equations. For this kind of geometry the 

method proposed here provide accurate results and it has advantages over numerical methods single 

computer run yields the results. Van Dyke [16-17] and his co-workers also used perturbation method  to 

solve the differential equations along with gives the efficient techniques to improve the convergence 

region of the series, this work makes the perturbation techniques to stronger in solving differential 

equations. Bujurke [18-20], Yasir Khan [21] and his associates successfully applied these techniques to 

solve different classes of problems occur in different engineering fields. 

In this paper we consider and discuss the problem of elliptic porous slider with special reference to 

non-Newtonian fluid model. The present analysis is primarily the extension of perturbation series by using 

computer. The forms of few manually calculated terms allow to propose generation of universal functions 

in compact form. Which are solutions of infinite sequence of linear problems. Using these universal 

coefficient functions, we generate series associated with various physical parameters. The region of 

validity of the series for drag and lift is further increased by Euler transformation 

 

2. Problem formulation  

 

A fixed porous elliptic plate is situated at z d= , 2 2 2x y Dβ+ =  and an infinite moving plate is at 0z =

We assume that D d≥ so that the edge effects can be neglected. A constant injection velocity W is 

developed through the porous plate. The equations of motion and continuity for the problem are as below 

[22]. 

 

2 23 2 2

22 2 2 2

1 2 32 3 2 2

3 2 2

3
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2 2 2 2

2 3(2 )
P u u v v

P
x z x z

υ υ
ρ

 ∂ ∂ ∂ ∂        
= − + + + + +        

∂ ∂ ∂ ∂         
                                                                        (3) 

Then the equation of motion governing the flow in z direction gives   

2 22 2 2 2
2 0

1 2 32 2

1 ( )
4 3

2 2

Pw w w w W K x y
P W w

z z z z d R

β
υ υ υ

ρ

 ∂ ∂ ∂ ∂ +    
= − − + − + −    

∂ ∂ ∂ ∂     
                                        (4)    

    0
u v w

x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
.                                                                                                                  (5) 

Here K is a constant υ1, υ2, and υ3 are respectively the coefficients of kinematic viscosity, viscoelasticity 

and cross-viscosity. 

The boundary conditions are taken as  

 

0 ,u v w W= = = − at z d=                                                                                                                    (6) 

, , 0u U v V w= = =  at 0z =                                                                                                                 (7) 

By using the following transformations  

( ) '( )
Wx

u Uf h
d

η η= +  

( ) '( )
Wy

v Vg k
d

η η= +  

( )w W h k= − + , 
z

d
η = , 

equations (1) and (2) can be simplified by using (4) as 
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where 
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2 2
,M N

d d

υυ
= = .  

 

The boundary conditions becomes   

 

(0) (0) '(0) '(0) '(1) '(1) 0h k h k h k= = = = = =                                                                                            (12) 

 

(1) (1) 1h k+ =                                                                                                                                               (13) 

 

(0) (0) 1, (1) (1) 0f g f g= = = = .                                                                                                                (14)  

 

3. Method of Solution 

Assuming the solution of (8) to (11) as infinite series 
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( ) ( )
n

n

n
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=

= and 
0

( ) ( )
n

n

n

K R Kβ β
∞

=

= respectively. Substituting the assumed series in (8) to (11) 

and equating the various powers of R to zero, we get zeroth and first order equations as  

follows. 
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Solving the above system of equations (15) and (16) subjected to the conditions  

 

0 0 0 0 0 0
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0 0 0 0
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It is very much essential to get higher order approximations in the series if it has to reveal the true nature 

of the function represented by it. As we move to higher approximations the algebra becomes tedious and 



 

 

 

Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 48, Issue 1 (2018) 80-90 

 

Penerbit

Akademia Baru

difficult to calculate the terms manually. So, we use a systematic scheme to generate the terms of the 

order 15n = . 

 

4. Analysis and Improvement of the Series  

 

The expressions for drag on the slider may be obtained as  

 

'(1)
(1) ''(1)

Dx f
Dx Mf h

A WU Rρ
= = − −                                                                                                                                (17) 

 

'(1)
(1) ''(1)

Dy g
Dy Mg k

A WV Rρ
= = − −                                                                                                                               (18) 

As the series (1), (1), '(1), ''(1), '(1) ''(1)f g f h g and k are slow converging it is essential to get higher 

approximations to analyze the problem. By using the Mathematica programing, we generated the 15 

approximations.  

The coefficients of the series '(1), ''(1) '(1)f h and g  (Table 1) are decreasing in magnitude and have 

alternate sign pattern. The nearest singularity, lying on the negative axis has no direct physical 

significance. In this case, the simplest device to use is an Euler transformation based on estimate of 0
ε , 

the radius of convergence of the series '(1), ''(1) '(1)f h and g .With this transformation, the singularity is 

mapped to infinity. The transformation envisages using the new variable *ε such that 

*
* 0

*

0
1

R
or R

R

ε ε
ε

ε ε
= =

+ −
           

  

The series '(1), ''(1) '(1)f h and g takes the new form  

15
*

1

n

n

b ε
=

 , where 
0

1, 6, 1b = − − −   

 

For 

'(1), ''(1), '(1)f h g  respectively and 

( )
( ) ( ) 0

1 !

! 1 !

j

n j

n
b C

n j j
ε

−
=

− −
  

This new series can be used to approximate the solution for moderately higher values of R. The similar 

analysis is carried for 0.5β = and 1β = . 
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5. Results and Discussion 

 

The elliptic porous slider at low cross-flow Reynolds number using a non-Newtonian second-order 

fluid is governed by a system of nonlinear ordinary differential equations (8)–(11) together with boundary 

conditions (12)-(14). The proposed perturbation series scheme enables us to obtain the large number of 

coefficients. A carefully written Mathematica code makes it possible to perform the complex algebra. The 

coefficients of the series decreases in magnitudes and alternate in sign. This indicates the presence of a 

singularity.  

 

 

Fig. 1. Domb-Sykes plot for '(1)f  when 0β =  

Table 1 

Coefficient of series 

Coefficient of the series '(1)f  when 

0β =  

Coefficient of the series ''(1)h  when 

0β =  

Coefficient of the series '(1)g  when 

0β =  

n Cn n Cn n Cn 

0 -1 0 -6 0 -1 

1 0.25 1 5.4286E-01 1 0.4000 

2 2.3174E-02 2 -3.7647E-02 2 -8.0905E-02 

3 8.5677E-03 3 5.9955E-02 3 4.9949E-02 

4 -5.7328E-03 4 -3.1705E-02 4 -2.8078E-02 

5 4.4600E-03 5 2.4335E-02 5 1.8277E-02 

6 -3.8261E-03 6 -1.8309E-02 6 -1.2887E-02 

7 3.0570E-03 7 1.4417E-02 7 9.6922E-03 

8 -2.3594E-03 8 1.1371E-02 8 -7.7676E-03 

9 1.7934E-03 9 9.0114E-03 9 6.5853E-03 

10 -1.4521E-03 10 -7.2388E-03 10 -5.7601E-03 

11 1.3146E-03 11 6.02787E-03 11 4.9927E-03 

12 -1.2242E-03 12 -5.2405E-03 12 -4.1808E-03 

13 9.3504E-04 13 4.5444E-03 13 3.5794E-03 

14 -3.8985E-04 14 -3.5466E-03 14 -3.6764E-03 

15 1.4871E-04 15 2.3288E-03 15 4.3073E-03 
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Fig. 2. Domb-Sykes plot for ''(1)h  when 0β =  

 

 

 

Fig. 3. Domb-Sykes plot for '(1)g  when 0β =  

 

 

Fig. 4. Domb-Sykes plot for '(1)f  when 0.5β =  
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Fig. 5. Domb-Sykes plot for ''(1)k  when 0.5β =  

 

 

Fig. 6. Domb-Sykes plot for '(1)f  when 1β =

 

Table 4 

Values of  xD and yD non-Newtonian 

fluids when

0, 0.1 0.15M and Nβ = = − =  

R xD  
y

D  

1 0.721645 0.6482 

2 0.19043 0.16296 

3 -0.00264 -0.00189 

4 -0.110416 -0.08706 

5 -0.16436 -0.13836 

6 -0.20154 -0.17111 

7 -0.22459 -0.19234 

8 -0.23851 -0.20596 

9 -0.24635 -0.21435 

10 -0.25009 -0.21910 
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Table  5 

Values of xD and yD non-

Newtonian fluids when

0.5, 0.1 0.15M and Nβ = = − =  

R xD  
y

D  

1 0.69920 0.67383 

2 0.18611 0.17631 

3 0.00192 0.001765 

4 -0.09631 -0.09334 

5 -0.15498 -0.15476 

6 -0.19052 -0.19712 

7 -0.21135 -0.22696 

8 -0.22253 -0.24799 

9 -0.22736 -0.26260 

10 -0.22799 -0.27245 

 

Table 6 

Values of xD and yD non-Newtonian fluids 

when 1, 0.1 0.15M and Nβ = = − =  

 

 

 

 

 

 

 

 

 

 

 

 

A Domb-Sykes plot (Figure 1 to 6) provides nearest singularity. In each case singularity is identified, 

restricting the convergence of the series, which happen to be in the complex plane in all cases. The series 

is recast into a new form using Euler transformation. This singularity has no physical significance. Our 

results, drag on the slider (Table 2 to 4) are good in agreements with results obtained by Bhatt [22]. Once 

the universal coefficients of the series are generated the rest of the analysis can be done at a single 

stretch, taking hardly any computer time and storage, while other numerical methods require huge 

storage and long computer time. 

 

6. Conclusion 

In this work we analysed the problem of porous elliptic slider using semi analytical technique. The 

models associated non-Newtonian fluids are near to reality and the drag evaluated is constant after one 

stage. The method used here is flexible and very efficient compared to pure numerical methods. Once 

the coefficients generated, the rest of the analysis can be done efficiently. The method gives the analytic 

structure of the solution. The derived quantity can be obtained very easily, unlike numerical schemes in 

which a separate scheme is to be developed. The method required less time and storage. 

R xD  
y

D  

1 0.686733 0.686733 

2 0.181813 0.181813 

3 0.001477 0.001477 

4 -0.098722 -0.098722 

5 -0.164615 -0.164615 

6 -0.210772 -0.210772 

7 -0.243750 -0.243750 

8 -0.267302 -0.267302 

9 -0.283901 -0.283901 

10 -0.295292 -0.295292 
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