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Present paper elaborates solution of partial differential equations (PDE) of two 
dimensional steady state heat conduction by using a bi quadratic triangular Galerkin’s 
finite element method (QGFEM). The steady state heat distribution is modeled by a 
two-dimensional Laplace partial differential equations. A six- point triangular planar 
finite element model is developed for the QGFEM based on quadratic basis functions 
on the Cartesian coordinate system where physical domain is meshed by structured 
grid. The elemental stiffness matrix is formulated by using a direct integration scheme 
along the trilateral domain area without the necessity to use the Jacobian matrix. 
Validation is conducted to an analytical solution of a rectangular plate having mixed, 
asymmetric boundary conditions. Comparisons of the present QGFEM results and the 
exact solution show promising results. The convergence of the method is presented by 
checking the error analysis for various number of elements used for the simulation. 
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1. Introduction  

 

Finite element method (FEM) is a widely used numerical technique to solve partial differential 
equations (PDE) arising in mathematical model of many engineering fields [1-9]. There are many 
approaches in the FEM techniques such as a direct stiffness method, minimum total potential energy 
method and residual methods [2]. In the residual method, the PDE solution is approximated by a 
basis function [9] where each basis function is selected such that it matches elemental boundary 
conditions. The basis function is substituted into the PDE model and arranged to give the residual 
function [10]. The Galerkin’s finite element method (GFEM) uses a weighted residual method where 
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it is formed based on the first derivative of the basic function with respect to the nodal variables [11]. 
The integral of the product is usually presented in a weak formulation by performing integration by 
part technique where the first derivative of the function is required. For this reason, GFEM is suitable 
since it uses the first derivative of the trial function.  

The integration on the domain in FEM is usually performed by dividing the total domain into 
discrete subdomains or elements. The integration of each subdomain is conducted to construct the 
local stiffness matrix as well as the load vector matrix. The present work attempts to implement the 
Galerkin’s weighted residual procedure above by using direct integration without the use of the 
Jacobian matrix. A simplified stiffness matrix is proposed that can be used for a heat conduction 
planar domain problem. The proposed scheme is suitable for a structured grid mesh generation 
where its scheme can reduce significantly the CPU time. The exact solution for this particular problem 
is derived and the results are compared to the GFEM results. 

 

2. Mathematical Formulation 
 

A steady state heat conduction/flow problem with no heat source in a homogeneous domain can 
be modeled as PDE in the form of Laplace’s equation [8-11] which can be combined with 
inhomogeneous Dirichlet or Neumann conditions as shown in Figure 1: 

 

 
Fig. 1. Physical domain of Ω bounded by Γ 

 
The PDE for a steady state heat conduction can be expressed as 
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with the boundary conditions are 
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where ub and fb are the Dirichlet and Neumann boundary conditions, respectively. The weighted 
residual of the PDE and its boundary of Eq. (1) and (2) can be written as 
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where w is the weighted function formulated.  By performing integration by part to Eq. (3), its weak 
formulation can be obtained as 
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Similar to the procedure of FEM given in [13], assume that the domain can be divided into a 

number of triangular elements as shown in Figure 2. Ref. 13 describes the procedure by using a linear 
basic function.  In the present work, a quadratic basic function is used for each axis.  Each triangular 
element has six nodes located on each vertex and mid-point of each side. The basic function of the 
element for this bi-quadratic element can be written as 
 

 
Fig. 2. Structured mesh using the six 
nodes, bi-quadratic triangular element 
model 
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Assume that the six node coordinates are(𝑥1 , 𝑦1),(𝑥2 , 𝑦2), (𝑥3 , 𝑦3), (𝑥4 , 𝑦4), (𝑥5 , 𝑦5) and 
(𝑥6, 𝑦6)and their six nodal variables are 𝑢1 , 𝑢2 , 𝑢3 , 𝑢4 , 𝑢5  and 𝑢6 . The value of the variable u at 
arbitrary location (x, y) within the elemental triangular domain region is approximated by the basis 
function above which can be written in a matrix form as follows: 
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where 𝑎𝑖 is the constant to be figured out. The basis function of Eq. (6) should satisfy the nodal 
variables at the six nodal points. By substitution of the x and y values at each nodal point gives into 
Eq (6) gives 
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where the shape function H can be constructed from Eq. (7) as follows 
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The stiffness matrix element can be obtained by the integration of the derivative of the shape 

functions as follows: 
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To solve the integration above most of the literatures suggest to use a Jacobian matrix so that it 

can handle arbitrary form of triangle shape. However, for a structured mesh where the triangular 
element shape can be of a straight triangle form as shown in Figure 3, a direct integration is possible. 
In the present work, the direct integration is conducted resulting to a simple stiffness matrix as given 
in Eq. (10). 

 

 
Fig. 3. Six nodes triangular element 
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where 𝑟 =  √𝑝2 + 𝑞2 

 
3. Results and Discussion 
 

To show the features of the present GFEM, the method is used to perform numerical simulation 
of a rectangular plate having mixed asymmetric boundary conditions shown in Figure 4. The Dirichlet 
boundary conditions at the sides AB and AD of the plate are T = 0ºC. The Neuman boundary condition 
at the side BC is dT/dx = 0. The Dirichlet boundary condition at the side CD is a sinusoidal function of 
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Fig. 4. Rectangular plate having mixed 
boundary conditions 

 
This particular problem is introduced in [12] for validation of their work, where the dimension of 

the plate are fixed at Lx = 5 and Ly= 10 cm and T0 = 100º C. For the purpose of validation of the present 
work, where the dimensions Lx and Ly may need to vary, the analytical solution to this problem is 
derived as shown in Appendix. The derivation shows that the exact temperature distribution on the 
plate is 
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The numerical simulations are conducted by varying the number of elements along x and y 
direction. The contour plot and surface plot presented in Figure 5a and 5b respectively shows the 
temperature distribution for nx= ny= 32. The temperature distribution behaves smoothly on domain 
as expected. The error contour plots for nx = ny = 5 and nx = ny = 10 are presented in Figure 6a and 6b 
respectively. The error here is defined as the temperature difference between the exact and 
numerical solutions for each point. Figure 6 shows that the order of error is drastically reduced from 
the maximum of 0.01 to 0.006 that demonstrate the convergence of the present method. Increasing 
the number of elements also reduces the error covering area. 

 

 

 

(a) (b) 
Fig. 5. Temperature distribution using QGFEM for nx = ny = 32 

 
To check the convergence and its accuracy, the error can be presented as function of matrix norm 

and the results as presented in Table 1 and Figure 6. Adjerid et al., [14] use the L1 norm for their error 

estimation.  Yi [15] use the L norm for the error estimate of the hp continuous Petrov Galerkin 
method. Wihler [16] use both L1 and L2 norms in his work on the continuous Galerkin FEM.  Similar 

to Ref. [17], in the present work three matrix norms L1 , L2 and L are used to show the non-
dimensional error of the present QGFEM where all norm are computed numerically subsequent to 
the mesh used. The three norm quantities are defined in Eq. (12). 
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where T is the exact temperature and u is the temperature calculated using the present QGFEM. The 

results presented in Table 1 are using non dimensional quantity where the temperature is normalized 

by To which is the maximum temperature at the boundary condition. Table 1 shows that increasing 

the number of elements or reducing the element size reduces significantly the error.  
 

 

  
(a) (b) 

Fig. 6. The error of the temperature distribution using QGFEM for nx = ny = 32 

 
Table 1 

L , 2L and L1 Error Analysis of the solution 
Number of elements 

nxny 

Element size 
h 

L1 L2 L 

8  8 0.8839 6.9209 10-4 1.3421 10-3 5.9827 10-3 

16  16 0.4419 4.6060 10-5 8.6499 10-5 4.2211 10-4 

24 24 0.2946 9.2828 10-6 1.7183 10-5 8.6637 10-5 

32 32 0.2210 2.9786 10-6 5.4389 10-6 2.7937 10-5 

40 40 0.1768 1.2422 10-6 2.2250 10-6 1.1576 10-5 

48 48 0.1473 6.1697 10-7 1.0769 10-6 5.6273 10-6 

56 56 0.1263 3.5833 10-7 5.9627 10-7 3.0563 10-6 

64 64 0.1105 2.4253 10-7 3.7828 10-7 1.8008 10-6 

72 72 0.0982 1.8556 10-7 2.7832 10-7 1.1295 10-6 

 
To assess the rate of convergence, the error norms are plotted as function of the element size as 

shown in Figure 6. By using a general regression to approximate the trend of the error norms as 
functions of the element size, the results show that the errors of the QGFEM can be generated as 
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where h is the average size of the triangular element calculated as 
 

ℎ =  √
𝐿𝑥× 𝐿𝑦

𝑛𝑥× 𝑛𝑦
                        (14) 

 
The result shows that the present formulation convergence rate is nearly 0 (h)3.8 which is a 

promising achievement to increase the accuracy of the simulation (Figure 7). 
 

 
Fig. 7. Non dimensional error norm plot as function of element size 

 

4. Conclusions 
 

The present Galerkin’s finite element method is developed based on a six-nodes, bi- quadratic 
triangular element model. The stiffness matrix of the element is formulated in a closed form solution 
such that it does not need additional procedure to evaluate its Jacobian matrix. The accuracy of the 
present model is demonstrated by comparison with analytical solution. The analytical solution of a 
heat conduction problem of a rectangular plate with an asymmetric, mixed boundary conditions is 
selected as a bench mark case. The error analysis and convergence study shows that the present 
GFEM convergence result is in the order of 0 (h)3.8. 
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