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In this paper we study the effect of Brownian motion and Thermophorosis on Maxwell 
nanofluid flow over a linearly stretching sheet under the influence of oblique external 
magnetic field. The impact of cross diffusion, frictional heat and irregular heat are 
considered to be prominent. The effect of inclination of magnetic field and non-
uniform heat source/sink on fluid velocity, temperature and nanoparticle 
concentration are analyzed and depicted in graphs.  It is observed that as inclination of 
magnetic field increases, temperature and nanoparticle concentration also increases 
whereas fluid velocity decreases. The effect of Dufour number D, Eckrect number Ec, 
Prandtl number Pr, Brownian motion parameter Nb, Thermophorosis parameter Nt, 
and Lewis number Le are also studied. 
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1. Introduction 
 

Recently nanotechnology has invented nanofluids discovered by Choi and Jeffrey [5]  which are 
made of nanoparticles (<100nm) suspended in a base fluids such as water, oil and ethylene glycol in 
which  the nano layer acts as a thermal bridge between solid nanoparticle and base fluid.  Due to the 
presence of nanoparticles Brownian diffusion and heat transfer takes places in nanofluids. Hence 
nanofluids are highly conducting heat transfer fluids which enhance the efficiency of large scale heat 
exchangers used in chemical processing plants, smaller scale heat exchangers used in automotives.  
Ahmadreza [27] noted that due to their higher thermal conductivity nanofluids are used for industrial 
cooling applications resulting in to energy savings. Nura Mu’az Muhammad and Nor Azwadi Che Sidik 
[47] noted the applications of nanofluids and various minichannel configurations for heat transfer 
improvement. Nanofluids have heat transfer applications as a microelectronic fuel cells, electronic 
cooling, domestic refrigerator chillers, solar water heating chillers, heat pipes, lubrication, oil 
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recovery, detergency and processes of soil remediation,. Husam Abdulrasool Hasan et al., [49] 
discussed the heat transfer enhancement using nanofluids for Cooling a Central Processing Unit (CPU) 
System. Due to their higher thermal conductivity nanofluids are used for liquid cooling computer 
processors. 

Nanofluids also have Bio-medical application such as drug delivery, hyperthermia, and magnetic 
cell separation. Some nanofluids are used in cancer imaging in a cancer therapy. Since magnetic 
nanoparticles are more adhesive to tumour cells without damaging nearby healthy tissues, 
nanofluids allow doctor to deliver high local doses of drugs or radiation to the patient. Nano-
cryosurgery is one of the recent Bio-medical applications, effective treatment to kill cancer cell 
without any side effects with lower cost and safe recovery to the patient.  Jing Liu and Zhong-Shan 
Deng [10] and Chandran [24] discussed the surgical procedure of cancer treatment for minimizing 
the complication of surgery and kill the tumours within the target region. Imaging technology is one 
of the advantages in cryosurgery along with the treatment of skin cancer, brain, breast, liver, lung, 
prostate tumour, glaucoma etc. 

A fluid which obeys the Newton law of viscosity are called Newtonian fluid, on the other hand in 
non-Newtonian fluid the relationship between stress and rate of strain are not linear. Some of the 
non-Newtonian fluids are fruit juices, printer ink, polymers, suspension of starch and sand in water, 
blood, and gypsum pastes. Because of biological, engineering and industrial applications non-
Newtonian nanofluid flow and heat transfer over stretching sheets has considerable interest. Crane 
[2] investigated the concept of fluid flow caused by the stretching sheet.  Qasim [29]  observed the 
effect of heat and mass transfer in Jeffery fluid over stretching sheet. Sakiadis [1] first presented the 
concept of boundary layer flow over a moving surface. Many researchers are extended the idea of 
boundary layer flow over a stretching sheet. Bachok et al., [11], Olanerwajuet al., [17], Hamed [13], 
Makinde and Aziz [14] etc. Aminreza Noghrehabadi and Amin Samimi [18] observed that Brownian 
motion effect and thermophorosis effect which improves boundary layer flow of nanofluid over a 
moving surface. Sugunamma et al., [34] analyzed the flow and heat transfer characteristic of a 
nanofluid in a porous medium bounded by a moving vertical semi-infinite permeable flat plate.   

MHD boundary layer flow of heat and mass transfer  have many physical and engineering 
applications such as plasma physics, packed-bed catalytic reactors, thermal insulation, geothermal 
reservoirs etc.  Rami [6] studied MHD flow in presence of thermal radiation Anuar Ishak [15] studied 
the effect of radiation on MHD boundary layer flow of a viscous fluid. Khan et al., [19] studied the 
MHD heat and mass transfer nanofluid flow on a moving surface.  

Viscosity of a fluid is the measure of its resistance to gradual deformation by shear stress. 
Elasticity is the ability of a body to resist a distorting influence and to get back its shape and size when 
force is removed. Viscoelasticity is the property of a material during the deformation it exhibits both 
viscous and elastic characteristic. Fluids like soap solution, polymers which have elastic properties as 
well as fluid properties. Such fluids are called viscoelastic fluids. Rathy [3] illustrated viscoelastic 
model by a spring and dashpot assembly. He explained that restoring force is directly proportional to 
the extension of the spring. The more we stretch a spring the harder it pushes back.  The elastic 
properties of a material can be represented by a spring and the viscous properties by a dashpot. 
Maxwell model is the combination of spring and the dashpot such that the same force acts on a spring 
as well as the dashpot. This model can be applied to fluids by replacing force by stress tensor and 
rate of extension by strain tensor, we get Maxwell fluid. The study of this fluid is more interesting 
and informative. 

Mustafa et al., [37] analyzed the steady flow of visco-elastic Maxwell nanofluid induced by an 
exponentially stretching sheet subject to convective heating. Muhammad Awais et al., [38] analyzed 
the comparison of analytic and numeric solutions of heat generation/absorption effects in a 
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boundary layer flow of Maxwell nanofluid. Ramzan et al., [39] studied the effect of Soret/Dufour and 
mixed convective flow of Maxwell nanofluid past a porous vertical stretched surface. Sidra Aman et 
al., [40] analyzed heat transfer enhancement in free convection flow of Carbon nanotubes Maxwell 
nanofluids with four different types of molecular liquids. Hloniphile Sithole et al., [41] analyzed an 
unsteady MHD Maxwell nanofluid flow over a shrinking sheet with convective boundary conditions 
using spectral local linearization method. Ramana Reddy et al., [42] studied the effect of cross 
diffusion on non-Newtonian fluids flow past a stretching sheet with non-uniform heat source/sink 
Asim Aziz et al., [43] analyzed the heat transfer capabilities and the energy generation of non-
Newtonian Maxwell nanofluid in presence of slip and convective boundary condition. Alireza Rahbari 
et al., [44] have done the comparison of semi-analytical and numerical solution of heat transfer and 
MHD flow of non-Newtonian Maxwell fluid through a parallel plate channel. Saraswathi et al., [45] 
studied the effects of heat source/sink and chemical reaction on MHD Maxwell nanofluid over a 
convectively stretching sheet using Homotopy Analysis Method.In this paper we applied semi 
analytical method HAM to Maxwell nanofluid flow over a linearly stretching sheet under the 
influence of external magnetic field and non-uniform heat source/sink. Hamzeh Taha Alkasasbeh [48] 
solved the nonlinear system of partial differential equations with boundary conditions of the 
Micropolar Casson fluid behaviour on steady MHD natural convective flow about a solid sphere by 
the Keller-box method. Saidu Bello AbuBakar et al., [46] discussed the numerical Prediction of laminar 
nanofluid flow in Rectangular Micro channel.  
 
2. Basic Equations 
 

Consider the 2D flow of non-Newtonian Maxwell nanofluid past a linearly stretching surface. u is 
the velocity in the direction of x-axis parallel to the flow surface, v is the velocity in the direction of 
y-axis is orthogonal to it as in the physical model.  It is assumed that wall stretches with velocity given 
by Uw(x) = ax where a > 0 is the stretching rate. A magnetic field B is applied oblique to the sheet. In 
this analysis we ignored induced magnetic field, Joule heating and electric fields. The impact of cross 
diffusion, frictional heat and irregular heat are retained. Let T and C are temperature of the fluid and 
nanoparticle concentration of the fluid respectively.  Let T0andC0 are the reference temperature of 
fluid and nanoparticle concentration where as 𝑇∞and 𝐶∞  taken to be ambient temperature of fluid 
and nanoparticle concentration. The governing equations of the flow are taken as discussed by 
Ramana Reddy et al., [45], Hayet et al., [9], Abel et al., [21], and Raju et al., [38]. By taking γ →
∞where 𝛾 is the Casson nanofluid parameter and the relaxation timeδ ≠ 0. The geometry of flow is 
as shown in Figure 1, continuity, momentum, energy and nanoparticle concentration equation with 
the effect of cross diffusion on MHD non-Newtonian fluid flow past a stretching sheet with non 
uniform heat source/sink are given by 
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Fig.1. Physical model and co-ordinate system 
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νis the  kinematic viscosity coefficient, kis the  thermal conductivity, 𝐷𝐵  the Brownian diffusion 
coefficient, 𝐷𝑇the Thermophoresis diffusion coefficient, Bis the transverse magnetic field strength of 
the base fluid, α is the inclined angle of the magnetic field, g is the gravitational force,  σis theelectrical 
conductivity of the base fluid, τis the  ratio of the nanoparticle heat capacity and the base fluid heat 
capacity, Nb is the Brownian motion parameter, Nt is the Thermophoresis parameter, Cf is theSkin-
friction coefficient,Csthe Concentration susceptibility, a is the Stretching rate, λ is the thermal 
Buoyancy parameter, N is the Buoyancy ratio parameter, Ec is the Eckert number, D is the Dufour 
number, M is the magnetic field parameter, β1is Deborah number, βT and βc  are Thermal and 
concentration expansion co-efficient, s1 and s2 are thermal and concentration stratification 
parameters. 
 
The associated boundary conditions are taken as 
 
𝑣 =  0, U = Uw(x) =  ax, 𝑇 =  𝑇𝑊 = 𝑇0 + 𝑏𝑥, 𝐶 = 𝐶𝑊 = 𝐶0 + 𝑐𝑥 𝑎𝑡 𝑦 =  0     (5) 
 
𝑈 → 0,   𝑇 → 𝑇∞ = 𝑇0 + 𝑝𝑥, 𝐶 → 𝐶∞ = 𝐶0 + 𝑞𝑥 𝑎𝑠 𝑦 → ∞       (6) 
 
where a, b, c, p, q are constantsIn Eq. (3) Q* denote the non-uniform heat source or sink 
 

Q∗ =
𝑘𝑈𝑤(𝑥)

𝑥𝜈
[𝐴∗(𝑇𝑤 − 𝑇0)

𝜕𝑓

𝜕𝜂
+ (𝑇 − T∞)𝐵∗]          (7) 
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A* and B* are the non-uniform heat source/sink parameters, Here Q∗ is the heat sourcing if𝐴∗ >
0, 𝐵∗ > 0   and Q∗ is the heat sink if 𝐴∗ < 0, 𝐵∗ < 0 . 

To reduce the governing equations into a system of ordinary differential equations, we introduce 
the following Similarity transformations, 
 

 𝛹 =  (𝑎𝜈)
1

2 𝑥𝑓 (𝜂), 𝜃 (𝜂) =  
𝑇−𝑇∞

𝑇𝑤−𝑇0
           (8) 

 

𝜑(𝜂) =
𝐶−𝐶∞

𝐶𝑤−𝐶0
,                𝜂 =  (𝑎/𝜈)1/2𝑦          (9) 

 
where 𝑓 (𝜂),𝜃(𝜂)and 𝜑(𝜂) are the dimensionless stream function, temperature, and nanoparticle 
concentration respectively and η is the similarity variable.The stream function 𝛹  is defined as  
 

u =
𝜕𝛹

𝜕𝑦
and v =  −

𝜕𝛹

 𝜕𝑥
                      (10) 

 
Using similarity transformation and associated boundary conditions, the continuity equation is 

identically satisfied. Momentum equation, energy equation and nanoparticle concentration reduces 
to ODE. The governing coupled non linear equations for this problem is 
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Nt

𝑁𝑏
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f(0) = 0, f ′(0) = 1, f ′ → 0 as η → ∞                    (14) 
 
θ (0) = 1 − s1, θ → 0 as η → ∞                     (15) 
 
𝜑 (0) = 1 − 𝑠2, 𝜑 →  0 𝑎𝑠 𝜂 → ∞                     (16) 
 

Here f ′is the dimensionless fluid velocity, θ is the dimensionless temperature and  𝜑 is the 
nanoparticle concentration respectively. Pr the Prandtl number, Le Lewis number, 𝑞𝑤 is the heat flux, 
𝑞𝑚 Mass flux, Rex is the Local Renolds number where  
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𝜏𝑤 =  µ(
𝜕𝑢

𝜕𝑦
)𝑦=0,   𝑞𝑤 =  −𝑘(

𝜕𝑇

𝜕𝑦
)𝑦=0 ,   𝑞𝑚 =  −DB(

𝜕𝐶

𝜕𝑦
)𝑦=0                  (21) 

 
local Renolds number 
 

Rex =
𝑎²𝑥²

𝑏
                        (22) 

 
using similarity variables in Cf ,we get dimensionless form as    
 

𝐶𝑓 = (R𝑒x )
1

2f ′′(0)                       (23) 

 
Limiting case: Ramana Reddy et al., [45] explain that the comparative study of two different fluid 

flows by taking γ → ∞and the relaxation time δ ≠ 0  for Maxwell fluid whereas for Casson fluid  γ   
is very small and the relaxation time δ = 0  . We have extended the study for Maxwell nanofluid by 
taking γ → ∞and the relaxation time δ ≠ 0  which exactly matches with the previous result. 
 
3. Methodology   
 

In this paper we solve governing equations by using homotopy analysis method [26] which gives 
convergence for chosen linear operator.The governing coupled non linear equations for this problem 
are written as 
 
𝑁[f(η)] = f ′′′ + β1(2f ′f ′′ − f 2f ′′′) + (1 + M β1Sin2(α))(ff ′′) − MSin2(α)(f ′) − (f ′)2 +
                      λθ + λNφ                       (24) 
 
𝑁[θ(η)] = θ′′ + Pr f θ′ + Pr Ec (f ′′)2 +  Pr𝐷φ′′ + A∗f ′ + B∗θ                 (25) 
 

𝑁[𝜑(η)] = φ′′ + Le f φ′ +
𝑁𝑡

𝑁𝑏
θ′′                     (26) 

 
by selecting an auxiliary linear operator for the equation (24), (25), (26) respectively as  
 

Lf =
∂3

∂η3
+

∂2

∂ɳ2
 , Lθ =

∂2

∂η2
+

∂

∂ɳ
 , Lφ =

∂2

∂η2
+

∂

∂ɳ
                   (27) 

 
considerLf[f] = 0,  Lθ[θ] = 0, Lφ[φ] = 0 and using boundary conditions (14), (15), (16) for f, θ, φ  

we get the initial approximations are f0(η), θ0(η), φ0(η) as  
 
f0(η) = 1 − e−η                       (28) 
 
θ0(η) = (1 − s1)e−η                       (29) 
 
φ0(η) = (1 − s2)e−η                       (30) 
 
Homotopy equations for (24), (25), (26) are constructed as below 
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(1 − p)Lf[F(η, p) − f0(η)]   = {
∂3F

∂η3 + β1 (2
∂F

∂η

∂2F

∂η2 − F2 ∂3F

∂η3) + (1 + Mβ1Sin2(α))F
∂2F

∂η2 −

 MSin2(α)
∂F

∂η
− (

∂F

∂η
)

2

+ λG + λNE}                     (31) 

 

(1 − p)Lθ[G(η, p) − θ0(η)] = hp {
∂2G

∂η2
+ PrF

∂G

∂η
+ PrEc (

∂2F

∂η2
)

2

+ PrD
∂2E

∂η2
+ A∗ ∂F

∂η
+ B∗G}            (32) 

 

(1 − p)Lφ[E(η, p) − φ0(η)] = hp {
∂2E

∂η2
+ LeF

∂E

∂η
+

Nt

Nb

∂2G

∂η2
}                  (33) 

 
For p=0 and p=1 we have 
 
F(η, 0) = f0(η),    F(η, 1) = f(η)                     (34) 
 
G(η, 0) = θ0(η),   G(η, 1) = θ(η)                     (35) 
 
E(η, 0) = φ0(η), E(η, 1) = φ(η)                     (36) 
 
thus as pincreases from 0 to 1, the solution f0(η) ,θ0(η), φ0(η) varies from the initial guess  to the 
exact solution f(η) , θ(η), φ(η).Boundary conditions are,  
 
F(0, p) = 0, Fη(0, p) = 1,  Fη(∞, p) = 0                    (37) 

 
G(0, p) = 1 − s1, G(∞, p) = 0                     (38) 
 
E(0, p) = 1 − s2, E(∞, p) = 0                     (39) 
 
Applying Maclaurin’s series expansion to F(η, p), G(η, p) and E(η, p) and using (28)-(30) we get  
 

F(η, p) =  ϕ0(η) + ∑ ϕk(η)pk∞
k=1                      (40) 

 

G(η, p) =  Ψ0(η) + ∑ Ψk(η)pk∞
k=1                      (41) 

 

E(η, p) =  ξ0(η) + ∑ ξk(η)pk∞
k=1                      (42) 

 
The convergence region of the above series depends upon the auxiliary linear operator L, and the 
non-zero auxiliary parameter h which are to be selected such that solution converges at p = 1 and 
hence we get 
 
f(η) =  ϕ0(η) + ∑ ϕm(η)∞

k=1                       (43) 
 
θ(η) =  Ψ0(η) + ∑ Ψm(η)∞

k=1                      (44) 
 
φ(η) =  ξ0(η) + ∑ ξm(η)∞

k=1                       (45) 
 
Differentiating equation (31), (32) and (33) m times about the embedding parameter p, using Leibnitz 
theorem and setting p = 0, dividing by m!  We get the following equations.   



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 55, Issue 2 (2019) 218-232 

225 
 

L[ϕm − χmϕm−1] = hRm(η)                      (46) 
 
L[Ψm − χmΨm−1] = hSm(η)                      (47) 
 
L[ξm − χmξm−1] = hTm(η)                      (48) 
 

where χm = {
0        when m ≤ 1
1        when m > 1

       and   

 

Rm(η) = ϕm−1
′′′ (η) + β1 ∑ ϕm−1−k

′ (η)ϕk
′′(η)m−1

k=0 − β1 ∑ ϕm−1−k
′′′ (η) ∑ ϕk−r(η)ϕr

k
r=0 (η)m−1

k=0 −
                M Sin2(α)ϕm−1

′ (η) + ∑ ϕm−1−k(η)ϕk
′′(η)m−1

k=0 + Mβ1Sin2(α) ∑ ϕm−1−k(η)ϕk
′′(η)m−1

k=0 −

                ∑ ϕ′m−1−k(η)ϕk
′ (η)m−1

k=0 +  λΨm−1 + λNξm−1                  (49) 
 

Sm(η) =        Ψm−1
′′ (η) + 𝑃r ∑ ϕm−1−k(η)Ψk

′ (η)m−1
k=0 + PrEc ∑ ϕm−1−k

′′ (η)ϕk
′′(η)m−1

k=0 +
                      PrD ξm−1

′′ (η)  + A∗ϕm−1
′ (η) + B∗Ψm−1                   (50) 

 

Tm(η) = ξm−1
′′ (η) + Le ∑ ϕm−1−k(η)ξk

′ (η)m−1 
k=0 +

Nt

Nb
Ψm−1

′′ (η)                 (51) 

 
along with boundary conditions 
 
ϕm(0) = 0,  ϕm

′ (0) = 0, ϕm
′ (∞) = 0                    (52) 

 
Ψm(0) = 0, Ψm(∞) = 0                      (53) 
 
ξm(0) = 0, ξm(∞) = 0                      (54) 
 
we solve these non-linear equations given by (48), (49) and (50) for ϕm,Ψm, ξm by MATHEMATICA. 
Using these coefficients in (45), (46) and (47) we get the solution of the given equations. Data of 
above solutions are analyzed through graphs for different characteristic parameters. 
 
4. Result and Analysis 
 

The solutions for the (51)-(53) system of equation with corresponding boundary conditions are 
obtained by homotopy analysis method. With the help of Mathematica equations are solved and 
discussed through graphs. The variations of velocity, temperature and nanoparticle fraction are 
discussed for different values of N, Ec, M, Pr, D, Nb, Nt, Le, A*, B*, α, λ. In Figure 2-4 we have observed 
that the increase in the values of α suppress the fluid velocity where as enhance the temperature of 
the fluid and nanoparticle fraction. In Figure 5-7, shows that velocity of the fluid increases as 
buoyancy ratio parameter N increase, but higher the value of N suppresses the fluid temperature and 
nanoparticle concentration. In Figure 8-10 as fluid moves fast, higher the value of Eckeret number 
Ec, fluid velocity and temperature of the fluid increases due to the frictional heat but we notice that 
the reduction in the nanoparticle concentration as Eckret number Ec increases. In Figure 11-13 we 
notice that the A* enhances the thermal boundary layer thickness and it acts as an agent to generate 
heat. Hence magnification in velocity and temperature distributions are observed but fluid 
concentration decreases by increasing in the value of A*.In Figure 14 Brownian motion parameter Nb   
increases the nanoparticle concentration. In Figure 15 higher the Dufour values temperature of the 
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fluid increases.  In Figure 16 higher the value of thermophrosis parameter Nt lowers the nanoparticle 
concentration. In Figure 17 we observed nanoparticle fraction decreases as Lewis number increases. 
 

  
Fig. 2. Velocity profiles for different values of α Fig. 3. Temperature distribution for different 

values of α 

 

  
Fig. 4. Nanoparticle fraction for different 
values of α 

Fig. 5. Velocity profiles for different values of N 
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Fig. 6. Temperature distribution for different 
values of N 

Fig. 7. Nanoparticle fraction for different values of N 

 

 
 

Fig. 8. Velocity profiles for different values of Ec Fig. 9. Temperature distribution for different values 
of Ec 
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Fig. 10. Nanoparticle fraction for different 
values of Ec 

Fig. 11. Velocity profiles for different values of A* 

 

  

Fig. 12. Temperature distribution for different 
values of A* 

Fig. 13. Nanoparticle fraction for different values 
of A* 
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Fig. 14. Nanoparticle fraction for different values 
of Nt 

Fig. 15. Temperature distribution for different 
values of D 

 

  

Fig. 16. Nanoparticle fraction for different 
values of Nb 

Fig. 17. Nanoparticle fraction for different values of 
Le 
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5. Conclusions 
 

In this study we analysed that the homotopy analysis method works well for non-linear 
differential equations. We have proved that homotopy analysis method solution exactly matches 
with numerical result obtained by J. V. Ramana Reddy et al., [42] in which Runge-Kutta- Fehelberg 
integration scheme is applied directly to ODE. We have checked with R-K Merson method also. 
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