
 

Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 56, Issue 1 (2019) 43-58 

43 
 

 

Journal of Advanced Research in Fluid 

Mechanics and Thermal Sciences 

 

Journal homepage: www.akademiabaru.com/arfmts.html 
ISSN: 2289-7879 

 

Effect of Nonlinear Temperature Profile on Thermal 
Convection in a Binary Fluid Saturated an Anisotropic Porous 
Medium 

 

 

Nur Zarifah Abdul Hamid1, Nor Fadzillah Mohd Mokhtar2,*, Norihan Md Arifin1, Mohammad Hasan 
Abdul Sathar2 

  
1 Department of Mathematics, Faculty of Science, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia  
2 Laboratory of Computational Sciences and Mathematical Physics, Institute for Mathematical Research (INSPEM), University Putra Malaysia, 

43400 Serdang, Selangor, Malaysia 
  

ARTICLE INFO ABSTRACT 

Article history: 
Received 9 September 2018 
Received in revised form 23 November 2018 
Accepted 13 January 2019 
Available online 11 April 2019 

The thermal convection in a horizontal binary fluid layer saturated an anisotropic 
porous medium with the effect of non-uniform temperature profile is studied 
analytically by linear stability analysis. The generalized eigenvalues problem subjected 
to various boundaries conditions are solved numerically using Galerkin method. The 
effects of solute Rayleigh number, Lewis number, mechanical anisotropy and thermal 
anisotropy parameters corresponding to the six basic temperature profiles on the 
stationary thermal convection are shown graphically. It is found that the effects of 
thermal anisotropic parameter, Lewis number and solute Rayleigh number are to 
reinforce the stability of the system while the effect of mechanical anisotropic 
parameter is to advance the onset of convection. 
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1. Introduction 
 

The studies of convection driven due to density difference also known as thermal convection, 
Rayleigh Bénard convection or natural convection in a fluid saturated a porous medium has received 
many attentions of scientists and researchers due to its variety application in a real life. Bénard [1] 
was the first who scrutinize the thermal convection in an ordinary fluid layer. When a horizontal fluid 
layer is heated from below, it will cause the warmer fluid to rise up and the colder fluid to sink down 
due to the fact that the density of warmer fluid is less dense than the density of colder fluid. Thus, it 
will result in heat distribution vertically inside the system or in other words we say convection occur. 
The studies of convection in an isotropic porous medium has been considered by and Shivakumara 
et al., [2] and Mokhtar et al., [3]. Later, Mokhtar et al., [4] studied the onset of convection in a fluid 
overlying an isotropic porous medium in the presence of internal heat generation. 
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The studies of convection in a homogeneous isotropic porous medium may be relatively simple 
but it is also rather unphysical due to the assumption that it has no preferred direction. In real fields, 
almost all the porous mediums have an anisotropy property in a mean gradient of pressure, 
temperature or mass which will be consider to govern the equation for the convection problem as 
reported by Leslie [5]. Degan et al., [6] investigated the convection problem in a fluid saturated an 
anisotropic porous medium. Capone et al., [7] studied the effect of variable permeability on the 
penetrative convection in a fluid saturated an anisotropic porous medium. Capone [8] investigated 
the beginning of instability in a fluid saturated an anisotropic porous medium by considering both 
the linear and nonlinear permeability and thermal diffusivity. Sekar et al., [9] have explored the 
threshold of both steady and unsteady convection in a ferrofluid saturated an anisotropic porous 
medium in the presence of magnetic field and Soret effect. Kim [10] examined the originating of 
thermal convection in a fluid saturated an anisotropic porous medium by relaxed energy and solved 
the resulting eigenvalues numerically. Bhadauria and Kiran [11] studied the effect of temperature 
modulation on the onset of steady and oscillatory convection in a temperature dependent viscous 
fluid saturated an anisotropic porous medium. Hill and Morad [12] examined the onset of thermal 
convection in a fluid saturated an anisotropic porous medium in order to understand the process of 
carbon sequestration that take place in underground saline aquifers. Aly and Ahmed [13] studied the 
onset of thermal and mixed convection in a non-Darcy anisotropic porous medium. 

The simultaneous presence of two component liquid chemical namely a binary fluid together with 
the anisotropic parameters can lead to many interesting studies on the onset of convection in the 
system. Malashetty and Swamy [14] studied the onset of double diffusive convection in a binary fluid 
saturated an anisotropic porous medium in the presence of uniform temperature profile subjected 
to free-fee isothermal boundary. Malashetty et al., [15] analyzed the onset of marginal and oscillatory 
double diffusive convection in the binary viscoelastic fluid saturated an anisotropic porous medium 
in the presence of Coriolis force. Later, Malashetty and Kollur [16] studied the threshold of diffusive 
convection in a couple stress fluid saturated anisotropic porous medium. Srivastava et al., [17] have 
explored the threshold of both steady and unsteady convection in a binary fluid an anisotropic porous 
medium in the presence of both magnetic field and Soret effect. Bhadauria [18] have examined the 
arrival of steady and unsteady double diffusive convection in a binary fluid saturated an anisotropic 
porous medium in the presence of internal heat generation. Altawallbeh et al., [19] illustrated the 
onset of steady and oscillatory double diffusive convection in the binary fluid saturated an anisotropic 
porous medium in the presence of internal heating and Soret effect. El moustaine and Cheddadi [20] 
studied the onset of double diffusive convection in an annular space filled with binary fluid which 
bounded by two very long cylinders. 

In many practical studies, one considers more the nonlinear temperature gradient cases instead 
of uniform profile cases. A pioneering study of a convection problem in a fluid layer in the presence 
of nonlinear temperature profile has been considered by Nield [21]. Siddheshwar and Paranesh [22] 
solved numerically the onset of steady thermal convection in a micropolar fluid in the presence of 
non-uniform temperature gradient by Galerkin method for the case of symmetric and non-symmetric 
velocity boundaries together with adiabatic or isothermal temperature boundaries. Char and Chen 
[23] attempted to study the effect of non-uniform temperature profile on the threshold of oscillatory 
mode Bénard -Marangoni convection with the presence of electric and magnetic field. Degan and 
Vasseur [24] studied the thermal convection in a fluid-saturated-anisotropic porous medium by 
considering the effect of nonlinear temperature profile. Idris et al., [25] examined the threshold of 
Bénard Marangoni convection in a micropolar fluid in the presence of non-uniform temperature 
profile. Mokhtar et al., [26] examined the linear stability analysis on the threshold of stationary 
thermal instability in an isotropic porous medium by considering the effect of non-uniform 
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temperature profile and magnetic field and they solved the eigenvalue obtained numerically using 
Galerkin method for free-free and rigid-free together with adiabatic temperature boundary. Idris and 
Hashim [27] investigated the effect of cubic temperature gradient on the onset of Bénard Marangoni 
convection in a ferrofluid with the presence of feedback control. Shivakumara et al., [28] studied the 
effect of nonlinear temperature profile on the onset of thermal convection in a couple stress fluid 
saturated an isotropic porous medium.  

The aim of the present paper is to study the threshold of steady thermal convection in a binary 
fluid saturated an anisotropic porous medium. As far as our concern, there are no studies have been 
done to investigate the effect of nonlinear temperature profile in a binary fluid saturated an 
anisotropic porous medium. Therefore, we further the studies by considering nonlinear temperature 
profile subjected to various boundaries conditions. We applied the linear stability analysis and the 
resulting eigenvalue is solved using single-term Galerkin method. 
 
2. Methodology  
 

We consider an infinite horizontal binary fluid layer saturated anisotropic porous medium of 
thickness d heated from below with the gravity force, (0,0, )g g  acting vertically downward on it. 

The fluid are subjected to uniform adverse vertical temperature profile, 
l uT T T   , where 

l uT T , 

and concentration profile, 
l uS S S   , where 

l uS S , are maintained between the plane. The porous 

medium is assumed to have a vertical anisotropy and a horizontal isotropy property in terms of 
mechanical and thermal parameters. Following Altawallbeh et al., [19], the governing equations 
based on the Boussinesq approximation are   
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where,  , ,u v wu  is the velocity vector, p  is the pressure,   is the porosity,    x zK K K ii + jj kk  

is the is the permeability tensor,   is the dynamic viscosity,   is the ratio of heat capacity, T  is the 

temperature,    
x zT T T   ii + jj kk  is the thermal diffusivity tensor , S  is the solute concentration 

and s  is the solute diffusivity. 

The density of the fluid is assumed to vary linearly with temperature and solute concentration 
 

   0 0 01 ,T T S S                     (5) 

 
where, 0  and 0T  is the reference density and temperature respectively,   and   is the coefficient 

of thermal and solute expansion respectively. 
We assumed that the basic state of the fluid to be motionless which takes the form 
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 0,0,0 , ( ), ( ), ( ), ( ), ( ),b
b b b b b

dTd
p p z T T z f z S S z z

T dz
 


     


u        (6) 

 
where, ( )f z  is a non-dimensional temperature gradient which satisfy the following condition 

 
1

0
( ) 1.f z dz                (7) 

 
Substitute Eq. (6) into Eq. (1) – (4) to obtain 
 

,b
b

dp
g

dz
   

2

2
0,bd T

dz
  

2

2
0,bd S

dz
     0 0 01 .b b bT T S S                  (8) 

 
where, subscript b  indicate the basic state. The solution of the conduction state of the fluid takes 
the form 
 

,b l

T
T z T

d


   .b l

S
S z S

d


             (9) 

 
Subjected to an infinitesimal perturbation, the quiescent state of the fluid are given by 

 
',b u u u  ',bT T T   ',bS S S   ',bp p p   ',b                                   (10) 

 
which the primes represent the infinitesimal perturbation quantities. Substituting Eq. (10) into Eq. 
(1) – (5) together with the basic state solution and yields 
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where, 
2 2
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Eliminate the pressure term by applying the curl identity on Eq. (12) and using the following 

transformation 
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to get the non-dimensional form of Eq. (11) – (15) as 
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where, 
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parameter respectively, n





  is the normalized porosity. 

We applied the linear stability analysis to eliminate the nonlinear term on Eq. (17) – (19). The 
vertical velocity, temperature and concentration are assumed to be periodic waves and hence we 
seek the solution in the form of normal mode expansion as 
 

          , , , , exp ,w T S W z z z i lx my t           (20) 

 

where, l  and m  are horizontal wave number and   is the growth rate parameter, which generally 
a complex quantity. Substituting Eq. (20) into the linearized version of Eq. (17) – (19), we obtained 
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where, /D d dz  and 2 2 2 a l m   . Equations 21 - 23 are to be solved subjected to the following 
boundary condition: 
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(a) Rigid-rigid isothermal 
 

0W DW     at 0,1z  .  (24) 
 

(b) Rigid-free isothermal 
 

0W DW     at 0z  .   
2 0W D W D      at 1z  .  (25) 

 

(c) Lower rigid isothermal and upper free adiabatic 

0W DW     at 0,z   
2 0W D W D D      at 1z  .               (26) 

 

(d) Lower rigid isothermal and upper rigid adiabatic 
 

0W DW     at 0,z   

0W DW D D       at 1z  .               (27) 
 

A uniform and five non-uniform basic temperature gradient models are chosen as shown in Table 
1. 
 

Table 1 
Six models of basic state temperature profiles 

Model Basic state temperature profile  ( )f z   

1 Linear  c1Ra   1 1f   

2 Inverted parabola  c2Ra   2 2 1f z    

3 Cubic 1  c3Ra   
2

3 3 1f z    

4 Cubic 2  c4Ra   
2

4 0.6 1.02 1f z     

5 Heating from below 
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6 Cooling from above 
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We used a single term Galerkin technique to find the eigenvalues of the Eq. (21) – (23) subject to 

boundary conditions 24 - 27. The basis functions of the variables are given by 
 

1 1 1
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n n n n n n

n n n

W A W B C
  

                                      (28) 

 

where, 
nA , 

nB  and 
nC  are constants and nW , 

n  and 
n  are the trial functions that satisfies the 

boundary condition (24) – (27). Multiplying Eq. (21) by 
mW , Eq. (22) by 

m , Eq. (23) by 
m  and 

integrate by parts the resulting equation with respect to z  from 0 to 1, we obtained the system of 
homogeneous algebraic equations in the form 
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where, ...  represent the integration with respect to z  from 0 to 1. We set 0   to study the onset 

of stationary mode convection. 
Equation 29 can be asserted in the form 

 
0,LX                           (31) 

 
where, L  is the determinant of M M  matrices and X  is the eigenvector. Equation 30 is solved 
using a MAPLE software to obtain the critical Rayleigh number, cRa  with respect to various boundary 

conditions for the system. 
 
3. Results and Discussions 
 

In this paper, we used the linear stability analysis to investigate analytically the effects of non-
uniform temperature profile on the threshold of steady thermal convection in a binary fluid saturated 
an anisotropic porous medium. We have performed the results numerically by single-term Galerkin 
method with respect to boundary conditions. The critical value of thermal depth which depend on 
the parameters of the problem,   for model 5 and 6 are shown in Table 2. The function of Rayleigh 
number, Ra  are express in terms of various parameters such as solute Rayleigh number, Lewis 
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number, mechanical anisotropy parameter, thermal anisotropy parameter and ( )f z . The effects of 

various parameter on the critical Rayleigh number,
cRa  for different function of ( )f z  are depicted in 

Figure 1(a) - 4(d). 
 

Table 2 

Critical thermal depth, 
c  for 10,sRa   5,Le   0.5   

and 0.3  . (a) rigid-rigid isothermal, (b) rigid-free 

isothermal, (c) rigid isothermal-free adiabatic and (d) rigid 
isothermal-rigid adiabatic 
Boundary profiles (a) (b) (c) (d) 

heating from below 0.71 0.77 0.87 0.78 
cooling from above 0.71 0.66 0.55 0.64 

 
Table 3 

Comparison table of cRa  for boundary profile (a) rigid-rigid isothermal, (b) rigid-free 

isothermal and (c) rigid isothermal-free adiabatic 
Boundary conditions Siddheshwar and Pranesh [22] Present 

(a) c6 c5 c1 c2Ra =Ra Ra =Ra  
c6 c5 c1 c2Ra =Ra Ra =Ra  

(b) c6 c5 c1 c2Ra Ra Ra Ra    
c6 c5 c1 c2Ra Ra Ra Ra    

(c) c6 c5 c1 c2Ra Ra Ra Ra    
c6 c5 c1 c2Ra Ra Ra Ra    

 
For the validity of the present studies, we have done the comparison studies between the present 

work and the result obtained by Siddheshwar and Pranesh [22] as shown in Table 3. Our results for 
the boundary conditions (a), (b) and (c) has shown a similarity with the result obtained by 
Siddheshwar and Pranesh [22]. In this paper, we also study the case of rigid-rigid boundaries with the 
lower part is isothermal and upper part is adiabatic and find that 

c6 c5 c1 c2 c4 c3Ra Ra Ra Ra Ra Ra    

. This is because when the plate is cooled from above (model 6) and heated from below, it caused the 
temperature difference between upper and lower plate to become greater. Since the rate of heat 
flow is directly proportional to the temperature differences, thus increasing the temperature 
difference will also increase the rate of heat flow in the fluid. Hence, convection set up earlier for 
model 6. It is observed that for all boundaries type, convection is delay for model 3. 

Figure 1(a), 1(b), 1(c) and 1(d) indicates that increasing the solute Rayleigh number, 
sRa  with the 

fixed value of other parameters will increase the 
cRa  for all the six models of non-uniform 

temperature profile with respect to rigid-rigid isothermal, rigid-free isothermal, lower rigid 
isothermal-upper rigid adiabatic and lower rigid isothermal-upper free adiabatic boundary conditions 
respectively. This can be explained by the fact that an increase in 

sRa  corresponds to an increase in 

concentration difference between the lower and upper plate. Since the density of the fluid depend 
linearly on temperature and concentration, increase the concentration difference will lead to 
increase in the density of fluid. Thus, the movement of warmer fluid upward is resisted by the high 
concentration of the fluid and hence convection is delay. From Figure 1(a), it can clearly be seen that 

c5 c6Ra Ra  is the most destabilize and 
c3Ra  is the most stabilize, while in Figure 1(b), 1(c) and 1(d) 

c6Ra  is the most destabilize and 
c3Ra  is the most stabilize as we increase the value of 

sRa . The value 

of Rac6 with respect to the upper rigid and upper free adiabatic boundaries are smaller than the 
value of 

c6Ra  for the upper rigid and upper free isothermal boundaries for various value of sRa  

respectively. This is because the uses of adiabatic plate can prevent the heat loss to the surrounding 
during convection as reported by Reynolds et al., [29] and thus enhance the onset of convection. 
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Figure 1(d) shows that the difference between the values of 
c2Ra  and 

c4Ra  are small enough

 c2 c4Ra Ra 1  . 

 

  
(a) rigid-rigid boundaries (b) rigid-free boundaries 

  
(c) lower rigid isothermal-upper rigid adiabatic 
boundaries 

(d) lower rigid isothermal-upper free adiabatic 
boundaries 

 
Fig. 1. Variation of 

cRa  with 
sRa  for different ( )f z  with respect to various boundaries conditions for 5,Le 

0.5,  and 0.3   

 

The effect of Lewis number, Le  for the fixed value of other parameters and various models of 
non-uniform temperature profile on the 

cRa  with respect to rigid-rigid isothermal, rigid-free 

isothermal, lower rigid isothermal-upper rigid adiabatic and lower rigid isothermal-upper free 
adiabatic boundary conditions are presented in Figure 2(a), 2(b), 2(c) and 2(d). It show that the value 
of cRa  increases as Le  increases, hence it delay the onset of stationary convection for all the non-

uniform temperature profile models. These results complement with the results obtained by 
Malashetty and Kollur [16] for the case of linear temperature gradient which they conclude that Le  
acted as stabilizer for the steady mode convection and acted as destabilizer for the unsteady mode 
convection in a coupled stress fluid saturated an anisotropic porous medium. 
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(a) rigid-rigid boundaries (b) rigid-free boundaries 

  
(c) lower rigid isothermal-upper rigid adiabatic 
boundaries 

(d) lower rigid isothermal-upper free adiabatic 
boundaries 

 
Fig. 2. Variation of 

cRa  with Le  for different ( )f z  with respect to various boundaries conditions for 

10,sRa  0.5,  and 0.3   

 
Figure 3(a), 3(b), 3(c) and 3(d) are the effects of mechanical anisotropic parameter,   on the 

onset of stationary convection for various non-uniform basic temperature gradients where the 
system are bounded by rigid-rigid isothermal, rigid-free isothermal, lower rigid isothermal-upper rigid 
adiabatic and lower rigid isothermal-upper free adiabatic plate respectively. On increasing the value 
of  , we found that the value of 

cRa  decrease for all the six models of non-uniform temperature 

gradient. The value of   is directly proportional to the horizontal permeability, 
xK  of the porous and 

inversely proportional to the vertical permeability, 
zK  of the porous medium. This is due to the facts 

that increasing the value of 
xK  will cause the size of the cell to become larger while decreasing the 

value of 
zK  will result in larger temperature difference between the lower and upper plate as 

reported by Degan et al., [6]. As a result, these will trigger the heat flow vertically upward through 
the porous medium and thus enhance the onset of convection. 
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(a) rigid-rigid boundaries (b) rigid-free boundaries 

  
(c) lower rigid isothermal-upper rigid adiabatic 
boundaries 

(d) lower rigid isothermal-upper free adiabatic 
boundaries 

 
Fig. 3. Variation of 

cRa  with   for different ( )f z  with respect to various boundaries conditions for 

10,sRa   5Le  and 0.3   

 
The critical Rayleigh number 

cRa  with thermal anisotropic parameter,   for different models of 

non-uniform temperature profile with respect to rigid-rigid isothermal, rigid-free isothermal, lower 
rigid isothermal-upper rigid adiabatic and lower rigid isothermal-upper free adiabatic plate are 
presented in Figure 4(a), 4(b), 4(c) and 4(d) respectively. It is observed that with increasing the value 
of   the value of 

cRa also increase. Increasing   is corresponds to decrease in vertical thermal 

diffusivity 
zT  which will slow down the heat flow vertically through it. This is due to the fact that the 

substances with low thermal diffusivity will conducts heat slowly relative to its volumetric heat 
capacity. Therefore, the effect of   is to inhibit the threshold of stationary convection. 
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(a) rigid-rigid boundaries (b) rigid-free boundaries 

  
(c) lower rigid isothermal-upper rigid adiabatic 
boundaries 

(d) lower rigid isothermal-upper free adiabatic 
boundaries 

 
Fig. 4. Variation of 

cRa  with   for different ( )f z  with respect to various boundaries conditions for 

10,sRa   5,Le  and 0.5   

 
Figure 5(a), 5(b), 5(c) and 5(d) show the influence of ( )f z  on the neutral stability curves for 

isotropic  1   and anisotropic  1.5   cases with respect to rigid-rigid isothermal, rigid-free 

isothermal, lower rigid isothermal-upper rigid adiabatic and lower rigid isothermal-upper free 
adiabatic plate respectively. The stationary thermal convection is more advance for the anisotropic 

case when 1   as compared to the isotropic case  1    in each ( )f z  for all boundaries 

conditions types. In Figure 5(a), we found that both isotropic and anisotropic neutral curves for 4f   

and 3f  are lying above the isotropic curve of uniform temperature profile  1f  while both isotropic 

and anisotropic neutral curve for 5f and 6f  are lying below the isotropic curve of 1f . The neutral 

curves for 6 5f f  and 1 2f f  in both anisotropic and isotropic cases with respect to the symmetric 

boundary condition(rigid-rigid) while none of the curve are similar for every ( )f z  with respect to 

non-symmetric cases indicates that the convection are also affected by the boundaries conditions 

type. c5Ra  and c6Ra for anisotropic cases  1   have the more destabilizing effect on the system. 

The neutral curves for 4f , 3f  and 2f  are lying above the isotropic neutral curve of uniform 

temperature profile  1f  while both isotropic and anisotropic neutral curve for 6f  and 5f are lying 
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below the isotropic curve of 1f  as shown in Figs. 5(b), 5(c) and 5(d). Therefore, convection set up 

earlier for the combination of 6 5f f  and anisotropic case  1   while set up last for the 

combination of 3f and isotropic case. 

 

  
(a) rigid-rigid boundaries (b) rigid-free boundaries 

  
(c) lower rigid isothermal-upper rigid adiabatic 
boundaries 

(d) lower rigid isothermal-upper free adiabatic 
boundaries 

 

Fig. 5. Plot of Ra  versus a  for different ( )f z  in isotropic  1  and anisotropic  1.5  porous 

medium with respect to various boundaries conditions for 10,sRa   5Le   and 0.3   

 

The behavior of neutral curve for isotropic  1  and anisotropic  1.5   cases with respect to 

rigid-rigid isothermal, rigid-free isothermal, lower rigid isothermal-upper rigid adiabatic and lower 
rigid isothermal-upper free adiabatic plate are revealed in Figure 6(a), 6(b), 6(c) and 6(d) respectively. 
The system is more stable in the case of anisotropic porous when 1   as compared to isotropic case

 1   for all ( )f z  with respect to all boundaries types. In Figure 6(a), the onset of stationary 

convection in an isotropic porous medium in the presence of uniform temperature profile is similar 
with 2f . From Figs. 6(b), 6(c) and 6(d), we find that both anisotropic and isotropic neutral curves for 

6f  and isotropic neutral curves for 5f  are lying below the isotropic neutral curve for uniform 
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temperature profile  1f  while other neutral curves lying above it. Thus, convection is more advance 

for the combination of 6f  and isotropic case while for the combination of 3f  and anisotropic case 

1  , convection is delayed. 

 

  
(a) rigid-rigid boundaries (b) rigid-free boundaries 

 
 

(c) lower rigid isothermal-upper rigid adiabatic 
boundaries 

(d) lower rigid isothermal-upper free adiabatic 
boundaries 

 

Fig. 6. Plot of Ra  versus a  for different ( )f z  in isotropic  1  and anisotropic  1.5  porous 

medium with respect to various boundaries conditions for 10,sRa   5Le   and 0.5   

 
4. Conclusions 
 

The stationary thermal convection in a binary fluid saturated an anisotropic porous medium in 
the presence of non-uniform temperature profiles is investigated analytically using linear stability 
analysis. The resulting eigenvalues obtained from the governing equations are solved numerically by 
Galerkin method. The function of Rayleigh number is obtained with the purpose of investigating the 
effect of solute Rayleigh number, Lewis number, mechanical anisotropy and thermal anisotropy 
parameter with different models of basic temperature gradient on the onset of thermal convection. 
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The effect of solute Rayleigh number can make the system become more stable and choosing 1Le   
can give a positive impact on the onset of stationary convection, since it acts as stabilizer on the 
system. The effect of mechanical anisotropy parameter can advance the threshold of stationary 
thermal convection while the presence of thermal anisotropy parameter can slow down the 
threshold of stationary convection in the system. We can conclude that for the case of rigid-rigid 
boundaries with both upper and lower plate are isothermal, 

c6 c5 c1 c2 c4 c3Ra =Ra Ra =Ra Ra Ra   . For 

the case of rigid-free isothermal boundaries, lower rigid isothermal-upper rigid adiabatic and lower 
rigid isothermal-upper free adiabatic, 

c6 c5 c1 c2 c4 c3Ra Ra Ra Ra Ra Ra     . 
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