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This study involved the performance of energy and exergy analysis on a 200 MW Steam 
cycle power plant (SCPP). The aim is to investigate the effect of using different number 
of feed water heaters (FWHs) on the cycle performance. Several simulation analyses 
were conducted in this study on a MATLAB platform. The computer model used was 
based on natural gas combustion, enthalpy balances, energy balances, and entropy 
changes of the SCPP. The real case study was simulated on a validated model of the 
SCPP for Shahid Montazeri Power Plant. The exergy destroyed within each components 
system and the exergy efficiency are determined to study the irreversibility of the 
system and identify the chances for the enhancement of the power system. Based on 
the result of the analyses, the energy and exergy efficiencies of the SCPP were 
determined to be about 37.52 % and 41.7 %, respectively. In the SCPPs, the combustion 
chamber (boiler) contributes the highest exergy destruction rate (around 48 % of the 
exergy value of the gas) among the main components of the power system. 
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1. Introduction 
 

Most of the power generation systems are designed and implemented based on the First Law of 
Thermodynamics, which indicates that only the energetic criteria are taken into account [1-5]. 
However, the actual useful energy loss must include the exergetic criteria to obtain both the quality 
and quantity of energy [6-10]. Hence, thermodynamics analysis of power plants performance has to 
be done energetically and exegetically to determine more accurate data and results. Recently, the 
evaluation of the performance of power plants has been moved towards the Second Law of 
Thermodynamics, which focus on exergy. According to previous studies, this method not only 
evaluates, but also optimizes and suggests improvements to be made on the power plant to achieve 
a better performance [11-14]. Steam power plants have been introduced since the 20th century as 
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steam turbine power plants at first for the generation of electricity [15-19]. 20There are few design 
patents and various auxiliary equipment supporting the system [20-25]. Steam power plants mainly 
consist of a de-aerating feed water tank, a high-pressure steam turbine, a high-pressure steam boiler, 
a low-pressure steam turbine, and a water-cool condenser connected in series in a closed circuit [4, 
26,27]. The function of the feed water tank is to remove air from the water before it flows into the 
steam boiler. Moreover, a steam jet is installed between the low-pressure steam turbine and the 
condenser for the movement of steam from the turbine to the condenser for cooling processes [28, 
29]. On the other hand, the condensate from the condenser is pumped by a steam jet pump to enter 
the feed water tank [30,31]. 

The feed water heater (FWH) is a component of the power plant which serve as a water preheater 
before it flows into the boiler to generate steam. This preheating process is expected to reduce the 
irreversibilities that occur in steam generation and thus, improves the thermodynamic efficiency of 
the system. The performance of the simulation model of a power unit depends on the design of the 
components. As per previous studies, there are few problems (such as first, the high installation cost 
of the sample steam power plant [32] and second, the temperature of feed water entering the boiler 
[33-38], and third, the thermodynamics analysis based on first law of thermodynamics is not enough 
to explain the efficiency and energy loss of the engineering system encountered in the SCPPs [39-41]. 
The aim of this study is to determine the effect of different numbers of feed water heaters on the 
performance of the SCPP. Thermodynamic analysis was conducted to determine the performance of 
the SCPP based on energy and exergy analyses, excluding aerodynamics and fluid flow. The 
operational parameters included in the analysis are the temperatures of the feed water, steam 
turbine temperature, pressure level, steam mass extraction, and fuel heating value. 

  
2. Plant Description 
 

The SCPP of Shahid Montazeri is located in the Northwest of Isfahan–Tehran highway. It consists 
of eight units, each with a 200 MW capacity. Table 1 shows the technical specifications of this power 
plant. The Rankine cycle represent the heat cycle of a power plant; the heat process of this plant is 
briefly depicted in Figure 1. 
 

 
Fig. 1. Schematic diagram with 9th FWH 
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Table 1 
Operating condition of the power plant 
Operation Condition Value Units 

Generated power 200 MW 
Consumption power 14 MW 
Fuel Mass flow rate  54 Nm3/h 
Heat rate 10448.6 KJ/kW.h 
Total steam flow rate 670 Ton/h 
High pressure of the steam 130 Bar 
High temperature of the steam 540 ºC 
Temperature of the water inlet to the 
boiler 

247 ºC 

Temperature of the stack gases 160 ºC 
Volumetric flow rate of the Inlet gas to the 
burners 

9.6х106 Nm3/h 

Draft fans Number per unit 2 - 
burners Number  12 - 
Efficiency of combined pumps and motors 95 % 

 
3. Thermodynamics Analysis 
 

During the energy analysis, the balance equations developed is reliant on the first 
thermodynamic law. For the individual components of the power plant, mass and energy balances 
are expressed under a steady-state condition. Continuity equation [42-44] 

 
∑ �̇�𝑖 = ∑ �̇�𝑒               (1) 
 
Energy equation [45-47] 
 

�̇�𝑖𝑛 + ∑ �̇�𝑖 ℎ = �̇�𝑜𝑢𝑡𝑝𝑢𝑡 + ∑ �̇�𝑒 ℎ           (2) 

 
In the equations above, the mass flow rate, enthalpy, work output, and heat input are indicated 

as ṁ, h, Ẇoutput, and in, respectively. Generally, heat input depends on the fuel used in power plants. 
In this case, it is expressed as  

 

�̇�𝑖𝑛 = �̇�𝑓𝑢𝑒𝑙 ∙ 𝐻𝐻𝑉̅̅ ̅̅ ̅̅
𝑓𝑢𝑒𝑙            (3) 

  
where fuel used is natural gas with 48806 𝑘𝐽/𝑘𝑔. The power output of a steam power plant is  
determined by the work produced by the steam turbines [35]. 
 
�̇�𝑆𝑇 = 𝜂𝑆𝑇[�̇�𝑖(ℎ𝑖 − ℎ1) + (�̇�𝑖 − �̇�1)(ℎ1 − ℎ2) + (�̇�𝑖 − �̇�1 −∙∙∙∙ −�̇�𝑛)(ℎ𝑛 − ℎ𝑒)]    (4) 
 
Eq. (4) is dependent on the number of steam turbines installed in the steam power plant. 

The subscripts 1, 2 …n refer to the number of steam extraction in the steam turbines. For this 
case study, we assume that the only internal power consumption component is the pump used to 
deliver the condensate and feed water. The equation involved is: 
 

�̇�𝑝𝑢𝑚𝑝 =
�̇�(ℎ𝑒−ℎ𝑖)

𝜂𝑝𝑢𝑚𝑝
           (5) 
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Similar to steam turbines, the pump efficiency is considered in the calculation to obtain more 
accurate results. Thus, we can define the net electrical power output of the steam turbine by [1, 48-
50] 

 
 �̇�𝑛𝑒𝑡 = ∑ �̇�𝑆𝑇 − ∑�̇�𝑝𝑢𝑚𝑝            (6) 

 
Exergy can be divided into four focuses, consisting of physical, chemical, potential and kinetic 

exergies. Physical exergy demonstrates the maximum work capability of a particular system at the 
initial conditions (To). Meanwhile, chemical exergy is related to the changes in the systems’ chemical 
composition from the equilibrium conditions. Chemical exergy is determined from the combustion 
reactions process. A combination of the first and second thermodynamic laws will be expressed as 
[51] 

 

�̇�𝑥,ℎ𝑒𝑎𝑡 +∑ �̇�𝑖𝑒𝑥,𝑖 = ∑ �̇�𝑒𝑒𝑥,𝑒 + �̇�𝑥,𝑤 + 𝑖̇𝑑𝑒𝑠𝑡.𝑒𝑖          (7) 
 

�̇�𝑥,ℎ𝑒𝑎𝑡 = (1 −
𝑇°

𝑇𝑖
) �̇�𝑖      (8) 

 

�̇�𝑥,𝑤 = 𝑤𝑜𝑢𝑡𝑝𝑢𝑡     (9) 

 
𝑒𝑥 = 𝑒𝑥,𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 + 𝑒𝑥,𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙  (10) 

 
where T represents the absolute measured temperature (K) while i, e and 0 are the inlet, outlet and 
ambient conditions, respectively. Ėx,heat is calculated from the exergy flow associated with heat 
transfer. Contrarily, Ėx,W represents the exergy flow associated with the work done by the system. 
 
3.1 Physical Exergy  
 

The equation below is used to calculate the physical exergy of water/steam phases. 
  
𝑒𝑥,𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 = (ℎ − ℎ°) − 𝑇°(𝑠 − 𝑠°)                     (11) 

 
Eq. (11) is used to determine the physical exergy of water/steam flowing in the power plant; it 

involves the enthalpy, ho, and entropy values of the system under environmental condition. For ideal 
gases, physical exergy is further divided into temperature and pressure terms as shown in the 
equation below [52, 53]. 
 

𝑒𝑥,𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 = 𝑒𝑥
𝑇 + 𝑒𝑥

𝑝                      (12) 

 

𝑒𝑥
𝑇 = 𝑐𝑝 [(𝑇 − 𝑇°) − 𝑇° ln

𝑇

𝑇°
]    (13) 

 

𝑒𝑥
𝑝 = 𝑅𝑇° ln

𝑝

𝑝°
      (14) 

 
 
 
 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 56, Issue 2 (2019) 211-222 

215 
 

3.2 Chemical Exergy  
 

Chemical exergy can be calculated by the molar composition, yk, and standard molar chemical 
exergy of the combustion product (exk

chemical) after the burning process. The subscript k refers to the 
type of gas contained in the gas mixture produced. Gases produced from combustion are assumed 
as ideal gas mixtures during exergy analysis [6, 7]. Hence, it is necessary that when determining the 
chemical exergy of a gas mixture, its molar composition should be considered after the combustion 
process. 

 

𝑒𝑥𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 = ∑ 𝑦𝑘𝑒𝑥𝑘
𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 + 𝑅𝑇°∑ 𝑦𝑘 ln 𝑦𝑘 + 𝐺𝐸𝑛

𝑘=1
𝑛
𝑘=1                   (15) 

 

The term G
E  is known as the excess free Gibbs energy. At low pressure conditions, it is negligible 

for gas mixtures. The gas constant R used in the calculation of the chemical exergy of combustion 
gases is 8.314 JK-1mol-1. Besides that, by using Eq. 16 

  

𝜉 =
𝑒𝑥,𝑓𝑢𝑒𝑙

𝐿𝐻𝑉𝑓𝑢𝑒𝑙
                     (16) 

 
It can be determined as the chemical exergy of fuel, where the term ξ is the ratio of the chemical 

exergy of the fuel, ex,fuel is the heating value of fuel (LHVfuel). As earlier stated, we used natural gas in 
this analysis; in fact, most of the gaseous fuel has the ratio of chemical exergy to the lower heating 
value close to 1 [54]. Thus, the value of ξ for natural gas is taken as 1.06. Since ambient condition 
varies at different locations and timeframe, it is necessary to identify them before carrying out the 
exergy analysis [55]. In this case, the environmental temperature and pressure were assumed as 298 
K and 101.3 kPa. Table 2 presents the reference ambient model for air used in the current analysis. 

 
Table 2 
Chemical exergy and mole fractions of the components of the air 
Combustion Mole Fraction Standard Molar Chemical Exergy (kJ/mol) 

O2 0.2034 3.97 
CO2 0.0003 19.87 
H2O 0.0303 9.49 
N2 0.7567 0.72 

 
Based on previous studies, usually, in steam power plants, the exergy of steam is determined at 

all states of points. The exergy changes are determined for every major component, such as the 
boiler, turbines, condenser, etc. The rate of exergy destruction and exergy efficiency is calculated to 
determine the main source of the loss in the operating system [56, 57]. 
 
3.3 Exergy Destruction Rate  
 
Boiler 
 

�̇�𝐷,𝐵 = �̇�𝑓 + �̇�𝑥,𝑖 − �̇�𝑥,𝑒                                                                                           (17)  

 
Steam turbine 
 

�̇�𝐷,𝑆𝑇 = ∑ �̇�𝑥,𝑖 − ∑ �̇�𝑥,𝑒 − �̇�𝑜𝑢𝑡𝑝𝑢𝑡
𝑛
𝑜𝑢𝑡

𝑛
𝑖𝑛                                                              (18) 
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Pump 
 

 �̇�𝐷,𝑝 = �̇�𝑥,𝑖 − �̇�𝑥,𝑒 + �̇�𝑝𝑢𝑚𝑝                                                                                   (19) 

Feed water heater 
 

�̇�𝐷,𝐻 = ∑ �̇�𝑛,𝑖 − ∑ �̇�𝑥,𝑒
𝑛
𝑜𝑢𝑡

𝑛
𝑖𝑛                                                                                    (20) 

 
Condenser 
 

�̇�𝐷,𝐶𝑜𝑛𝑑. = �̇�𝑥,𝑖 − �̇�𝑥,𝑒 − ∑ (1 −
𝑇°

𝑇𝑘
) �̇�𝑘

𝑛
𝑘=1                                                          (21) 

 
3.4 Exergy Efficiency 
 
Boiler 
 

𝜂𝑥,𝐵 = 1 −
�̇�𝐷,𝑆𝑇

�̇�𝑓
                                                                                                   (22) 

 
Steam turbine 
 

𝜂𝑥,𝑆𝑇 = 1 −
�̇�𝐷,𝑆𝑇

�̇�𝑥,𝑖−�̇�𝑥,𝑒
                                                                                              (23) 

 
Pump 
 

𝜂𝑥,𝑝 = 1 −
�̇�𝐷,𝑝𝑢𝑚𝑝

�̇�𝑝𝑢𝑚𝑝
                                                                                                (24) 

 
Feed water heater 
 

𝜂𝑥,𝐻 = 1 −
�̇�𝐷,𝐻

∑ �̇�𝑥,𝑖
𝑛
𝑖𝑛

                                                                                                     (25) 

 
Condenser 
 

𝜂𝑥,𝐶𝑜𝑛𝑑. = 1 −
�̇�𝐷,𝐶𝑜𝑛𝑑.

�̇�𝑥,𝑖−�̇�𝑥,𝑒
                                                                                            (26) 

 
4. Result and Discussion 

 
The figures illustrate the results of the current analysis during this study. For each energy and 

exergy analyses, the results of the calculation exploited the mathematical model built in this study. 
Besides that, they are diagrammatically represented to provide a clearer view of the link between 
the parameters in power cycle. The performance of steam cycle power plants is mentioned and 
studied beneath the first and second law of thermodynamic. The impact of different operational 
parameters on the performance of the facility plant is investigated and discussed for optimum 
operational conditions. The thermal efficiency of Montazeri Steam power plant was determined for 
steam cycles to account for the development due to the implementation of a steam cycle facility. 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 56, Issue 2 (2019) 211-222 

217 
 

Several comparisons have been made between the calculated values and therefore, the information 
obtained from the facility station considered the deviation of the experimental values from the 
theoretical values. 

The effects of reheat pressure, boiler pressure, temperature of flue gases, and turbine inlet 
temperature on the performance of cycle have been parametrically studied and a specific range of 
Feed Water Heaters (FWHs) has been specified. The effect of the level of heat pressure increase on 
the exergy efficiency of the SCPP is presented in Figure 2. The magnitude of the reheat steam 
pressure varies from 0.1 to 0.9 in relation to the boiler pressure. The turbines’ work output and the 
heat input to the boiler reduces as the reheat pressure increases; hence, the plant experiences 
maximum efficiency at the optimum reheat pressure. 

 

 
Fig. 2. Effect of number of FWHs with reheat pressure on exergy 
efficiency 

 
An increase in the number heaters will increase the exergy efficiency of the system. The systems’ 

reheat pressure is maximum at about 20-25 % of the maximum boiler pressure. Figure 3 depicts the 
outcome of the magnitude of reheat pressure in relation to the entire exergetic loss within the boiler. 
There was an initial decrease in the entire boiler exergetic loss but as the heat up pressure increases, 
the exergetic loss similarly increased as shown Figure 3. The incorporation of heaters reduces the 
boilers’ exergetic loss because of the small temperature difference between the water/steam and 
the flue gases. 
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Fig. 3. Effect of number of FWHs with reheat pressure on 
exergetic loss in boiler 

 
The influence of the boiler pressure and the number of FWHs on the exergy efficiency of SCPP is 

depicted in Figure 4. An increase in the boiler temperature and the number of FWHs increased the 
efficiency of the system. Although there was an increase in the exergy efficiency with increase in the 
number of heaters, it is not advisable to use the optimum number of additional FWHs as it will not 
have a significant improvement on the potency of the cycle. An increase in the boiler pressure to 160 
bar (with the addition of the initial FWH) increased the exergy efficiency from 34% to 37%. 

 

 
Fig. 4. Effect of boiler pressures with number of FWHs on exergy 
efficiency 

 
The result of different numbers of FWHs and turbine inlet temperatures on the exergy efficiency 

of SCPP is given in Figure 5. The increases in the turbine inlet temperature and the number of FWHs 
increased the exergy efficiency. The steam heat content at the inlet of the turbine was increased with 
an increase in the water temperature at a set pressure. The increase in the work output (the cycle 
efficiency) was due to the increased steam temperature and pressure. The effect of temperature on 
the cycle efficiency is quite dependent on the pressure. The cycle efficiency of energy and exergy 
increased by increasing the number of FWHs as shown in Figure 6. The energy and exergy with the 
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5th FWH were 33.24 and 37.35, respectively. With the 7th FWH, they were 35.81 and 39.6 respectively, 
while the 9th FWH showed 37.52 and 41.7 energy and exergy efficiencies, respectively. 

 

 
Fig. 5. Effect of turbine inlet temperatures with number of FWHs on 
the exergy efficiency. 

 

 
Fig. 6. Thermal Efficiency of the Cycle 

 
5. Conclusion 
 

In this study, a steam cycle power plant with different numbers of FWHs was investigated via 
energy and exergy analyses. The selected case study was discussed and applied via a general 
methodology that involved the use of mass balanced equation, energy balanced equation, and 
entropy generation balanced equation. First, the case study proposed by the author was discussed; 
the results of the analyses were presented in graphs. Additionally, the optimum number of FWHs 
was selected to be 9 since more heaters will increase the boiler temperature and decrease the 
amount of fuel consumed in the boiler. Energy and exergy analyses were carried out for a 200 MW 
steam cycle power plant (Mohammad Montazeri power cycle). By implementing the steam cycle, the 
thermal efficiency of this power plant can reach 40.1 % with the addition of 130 MW work done by 
the steam turbine. The energy loss of the condenser accounts for about 70% of the total energy losses 
in the SCPP whereas the energy loss of the boiler is about 10 % of the total energy lost. However, the 
analysis of SCPP based on exergy can identify the component that has the most rate of exergy 
utilization. In this case, the major exergy utilization was found to occur in the boiler mainly due to 
the fuel combustion process and the heat transfer between two widely different temperatures. 
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Hence, the performance of the plant can be improved by reducing the exergy utilized in these 
components for priority. From a thermodynamics point of view, clearly, the opportunity for a 
remarkable enhancement presents in the boiler; thus, the boiler is worth the efforts towards 
reducing the losses. The exergy efficiency of the overall power cycle was however determined to be 
40.3 % from the exergy analysis. 
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