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A steady tow-dimensional Magnetohydrodynamic (MHD) free convection flow in a 
square cavity filled with an electrically conducting fluid which is get under a uniform 
magnetic field at different angles is numerically investigated using lattice Boltzmann 
method (LBM). The bottom wall is non-uniformly heated and vertical walls are 
maintained at cold temperature whereas the top wall is well isolated. The influence of 
pertinent parameters such as, Reyleigh number (103 ≤ Re ≤ 105), the Hartmann number 
(0 ≤ Ha ≤ 70) and the inclination angle of the magnetic field (0° ≤ θ ≤ 180°) on the flow 
and heat transfer characteristics have been examined. The obtained results indicate 
that the heat transfer rate decreases with an increase of the Hartmann number but 
increases with increase of the Rayleigh number. Also, for high Rayleigh number (Ra = 
105) and for the range of Hartmann number, the heat transfer and fluid flow inside the 
enclosure depend strongly upon the magnetic field direction. 
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1. Introduction 
 

The problems of natural convection heat transfer and flow in electrically conducting fluid in the 
presence of magnetic field have received considerable attention due to their wide applications in 
engineering and industry such as aeronautical plasma flow, crystal growth, equipment cooling, 
electric machinery, solar technology and nuclear reactor cooling [1-2]. 

The MHD free convection inside closed cavities with different boundary conditions has been 
studied by widely researchers using analytical, experimental and numerical methods [3-11]. Most of 
them extensively considered the enclosures with uniform temperature distribution on the walls, but 
recently, the free convection in enclosures with boundary walls having non-uniform temperatures 
receives considerable attention due to their use in some engineering applications. The effects of non-
isothermal boundary condition of MHD flow in a square enclosure have been studied numerically by 
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Oztop et al., [12]. They observed that the heat transfer increased with increasing amplitude of 
sinusoidal function and decreased with increasing Hartmann number Sivasankaran et al., [13] 
performed a numerical study, with finite volume method, on mixed convection in a lid-driven cavity 
with sinusoidal temperature distribution on the side walls and a moving adiabatic top wall. The 
results show that the amplitude ratio increases the heat transfer rate. Sivasankaran et al., [14] 
examined Hydro-magnetic combined convection in a lid-driven cavity with sinusoidal boundary 
conditions on both sidewalls. They revealed that the flow behaviour and heat transfer rate inside the 
cavity are strongly affected by the presence of the magnetic field. Bhuvaneswari et al., [15] 
investigated magneto-convection in a square enclosure with sinusoidal boundary temperature 
distributions on both vertical walls using the finite volume method. They reported that the heat 
transfer rate is increased first and then decreased by increasing the phase deviation. Hossain and 
Abdul Alim [16] performed two dimensional MHD free convection within trapezoidal cavity with non-
uniformly heated bottom wall using the finite element method. The authors found out that the 
average and local Nusselt number at the non-uniform heating bottom wall of the cavity depends on 
the dimensionless parameters and also tilts angles. Belhaj and Ben-Beya [17] considered unsteady 
natural convection flow in a square cavity heated from below with sinusoidal temperature 
distribution in the presence of uniform magnetic field. The results indicate, that for large values of 
Hartmann number, increasing nanoparticle volume fraction results in an increase of the normalized 
average Nusselt number. 

Various investigations on free convection in the presence of magnetic field have been performed 
by researchers with applying different numerical methods. For more than one decade, the lattice 
Boltzmann method (LBM), based on Boltzmann equation (BE), has been demonstrated to be a very 
effective numerical tool for simulating fluid flow and modelling physics in fluids [18-21]. This method 
has also been adopted by different researchers to solve numerically the problem of the natural 
convection in different geometric cavities. Lattice Boltzmann Method simulation of MHD mixed 
convection in a lid-driven square cavity with linearly heated wall is investigated by Kefayati et al., 
[22]. Their result showed that the heat transfer increases with increasing of Richardson number and 
decreases by the increment of Hartmann number for various Richardson numbers and the directions 
of the magnetic field. Ashorynejad et al., [23] conducted a numerical study of the effect of magnetic 
field on the natural convection of water-Ag nanofluids in a horizontal cylindrical annulus enclosure 
using the Lattice Boltzmann method (LBM). According their results, the average Nusselt number and 
the Rayleigh number decrease with increasing Hartmann number. Mahmoudi et al., [24] also used 
LBM to examine the effects of linear temperature distribution on the natural convection in a square 
enclosure filled with a nanofluid under the influence of a magnetic field. They exhibited that the 
magnetic field direction has effects on the flow and heat transfer rates in the cavity. Sheikholeslami 
et al., [25] used lattice Boltzmann method to study the MHD natural convection heat transfer flow of 
nanofluids in a cavity heated from below in the presence of externally applied magnetic field. They 
have discussed the characteristics of flow and heat transfer for various values of system parameters. 
Bettaibi et al., [26] studied the mixed convection in a differentially heated lid-driven cavity with non-
uniform heating of the bottom wall using the lattice Boltzmann method. Ahrar and Djavareshkian 
[27] utilized the lattice Boltzmann method to investigate a nanofluid filled cavity with sinusoidal 
temperature boundary condition under the influence of an inclined magnetic field. They found that 
the influence of magnetic field direction on heat transfer was pronounced in high or moderate 
Rayleigh numbers. Javaherdeh and Najjarnezami [28] used the lattice Boltzmann method (LBM) to 
simulate the effect of magnetic field on the natural convection in a porous cavity. The sidewalls of 
the cavity are heated sinusoidally with a phase derivation, whereas the top and bottom walls are 
thermally insulated. Rahmati and Najjarnezami [29] proposed a double multi-relaxation-time lattice 
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Boltzmann method (2-MRT-LBM) to simulate MHD natural convection of nanofluid in a two-
dimensional square cavity. The results show that for Ra = 105 and for the range of Hartmann number, 
the heat transfer and fluid flow depend strongly upon the direction of magnetic field. 

In general, in our best knowledge, MHD free convection of electrically conducting fluid in a square 
enclosure with non-uniform heating of the bottom wall using Lattice Boltzmann method (LBM) have 
not been investigated in any paper previously. Thus, the main aim of the present study is to examine 
the effects of the Rayleigh number, Hartmann number and the inclination angle of the magnetic field 
on the fluid flow and heat transfer inside the cavity. The results are presented in terms of streamlines 
and isotherms inside the enclosure, local and average Nusselt number along the bottom and right 
walls. 
 
2. Problem Description and Mathematical Formulation  
 

The geometry of the present study is shown in Figure 1. It is a tow-dimensional square cavity with 
length L filled with a viscous, incompressible and electrically conducting fluid. The cavity is heated 
from the bottom wall with nonuniformly distributed temperature such that T=(Th−Tc) sin(πx=L)+Tc, 
the top wall is insulated and the left and right vertical walls are maintained at constant cold 
temperature (Tc). The thermo-physical properties of the fluid are considered to be constant except 
the density variation is approximated by the standard Boussinesq model. A uniform magnetic field 
with a constant magnitude B is applied at an angle (θ) with respect to the horizontal plane. It is 
assumed that the induced magnetic field produced by the motion of an electrically conducting fluid 
is negligible compared to the applied magnetic field. Further, the viscous heating and compression 
work are neglected. 

 

 
Fig. 1. Geometry of the present study 

 
Under the above-noted simplified assumptions, the governing equations for MHD natural 

convection flow using conservation of mass, momentum and energy can be written as 
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where Fx, Fy are are the total body forces at x and y directions, respectively, and are defined as 
follows 
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In the above equations /Ha LB    is the Hartmann number as σ is electrical conductivity, B 

is the magnitude of the magnetic field, L is the length of the cavity and θ is the direction of the 
magnetic field. The governing equations are subject to the following boundary conditions  
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left wall: u = v = 0, T(0,y) = Tc            (9)  
 

right wall: u = v = 0, T(L,y) = Tc                     (10)  
 
3. Simulation of MHD with Lattice Boltzmann Method (LBM) 
3.1 Brief Introduction to LBM 
 

In thermal lattice Boltzmann method, for incompressible flows problems, two different 
distribution functions f and g are used for solving flow and temperature fields, respectively. For the 
flow field 
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For the temperature field 
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where t and ∆t denote time and its interval, respectively, ei is the discrete lattice velocity in direction 
i and F is the external force in direction of lattice velocity. 

In the simulation of MHD natural convection, the external force term Fi in the Eq. (11) is given by 
 

i ix iyF F F                          (13)  
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The relaxation time for the flow field (𝜏𝑓) and temperature field (𝜏𝑔) are related to kinematic 

viscosity and thermal diffusivity of fluid, and these are expressed as follows 
 

3 0.5; 3 0.5f g                             (16)  

 
The kinematic viscosity (𝑣) and the thermal diffusivity (𝛼) are then related to the relaxation time by 
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where se the speed of sound which is equals to / 3se e . 

In the present model, local equilibrium distribution function for both flow eq
if and temperature 

fields eq
ig , in Eq. (11) and (12) are given by 
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u and   are the macroscopic velocity and density, respectively. 

The D2Q9 lattice model is applied to the present study. According to this model, the weighting 

factors i  and the discrete lattice velocity ie  are defined as follows 
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Finally, macroscopic quantities can be calculated in terms of these variables, with the following 
formula 
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3.2 Boundary Conditions 
3.2.1 Boundary conditions for flow field 

 
Bounce-back boundary conditions were applied on all solid boundaries, which mean that 

incoming boundary populations are equal to out-going populations after the collision. 
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3.2.2 Boundary conditions for temperature field 

 
The adiabatic boundary condition is used on the north boundaries. For the north boundary, the 

following conditions are imposed: 
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Temperature at the west, east and bottom walls are known. In the bottom wall T = (Th − Tc) sin 

(πx/L) + Tc. Since we are using D2Q9, the unknowns are g2, g5, g6 which are evaluated as 
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3.3 Nusselt Number 
 

Nusselt number, Nu, is one of the most important dimensionless parameters in describing the 
convective heat transport. The local Nusselt number at the bottom wall (Nub) and at the right wall 
(Nur) are calculated as 
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The average Nusselt numbers at the bottom and right walls are 
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4. Grid Testing and Code Validation 

 
In the present study, a grid testing procedure was conducted to guarantee a grid-independent 

solution of numerical code. Four different mesh combinations were explored for the case of Ra = 105, 
Ha = 0 and Pr = 0.7. The present code was tested by calculating the average Nusselt number on the 
bottom and right walls and the results are presented in Table 1. It was found that a grid size of (100 
× 100) ensures a grid independent solution. 

 
Table 1 
Grid independence test for Pr=0.7, Ha=0 and Ra=105 

Grid size Nub (Bottom wall) Nur (Right wall) 

60×60 4.79286718 2.54953647 
80×80 
100×100 
120×120 

4.86477757 
4.90215445 
4.90514324 

2.54351401 
2.53793979 
2.53363348 

 
To check the validity of the numerical simulation, a comparison is performed between the results 

obtained by the present numerical method with the results of Basak et al., [30], for Pr = 0.7, Ha = 0, 
Ra = 103 and Ra = 105.  

Figure 2 shows the effects of Rayleigh number (Ra) on the local Nusselt numbers at the bottom 
and right walls (Nub, Nur) which are compared with the results of Basak et al., the comparison shows 
an excellent agreement between the present calculations and the results of Basak et al., [30]. 
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(a) (b) 

Fig. 2. Comparison of local Nusselt number on the bottom wall (a) and right wall (b) 
between the present result and numerical results by Basak et al., [30] (Pr = 0.7, Ha = 0) 

 
5. Results and Discussion 
 

A present numerical study has been carried out to investigate the MHD natural convection heat 
transfer within square cavity with non-uniformly heated bottom. The results obtained for various 
values of Hartmann number (Ha = 0, 10, 30 and 50), Rayleigh number (Ra = 103, 104 and 105), 
magnetic field direction (θ = 0° to 180°) and constant Prandtl number (Pr = 0.7). 
 
5.1 Effect of Hartmann and Rayleigh Numbers 
 

Streamlines and isotherms of flow for different values of Hartmann number (Ha = 0 − 50) and 
Rayleigh number (Ra = 103 − 105) and for horizontal magnetic field (θ = 0°) are shown in Figure 3 and 
4.  

It can be observed that streamlines and isotherms are generally symmetrical about the vertical 
centre line of the bottom wall due to the symmetry of the problem geometry and boundary 
conditions. For all Hartmann and Rayleigh number, two circulation cells are formed in different 
rotation direction. The strength of these cells decreases as the Hartmann number increases and 
increases as the Rayleigh number increases. 

The application of horizontal magnetic field has the tendency to slow down the motion of the 
fluid in the cavity at all Rayleigh number. As a result, the centre of circulation cells gets pushed 
towards lower horizontal wall of the cavity when Hartmann number gets increased. The isotherms 
are also affected by variations in the Rayleigh and Hartmann numbers. For low Rayleigh number, 
conduction dominant heat transfer compared to the convection mechanism. However, with increase 
in the Rayleigh number, the effect of natural convection increases and the isotherms are condensed 
next to the side walls. From the isotherms lines, we notice that the natural convection is reduced 
with increasing in Hartman number. 

Distributions of the local Nusselt number at the right wall (Nur) and at the bottom wall (Nub) are 
shown in Figure 5(a) and (b), respectively. It is seen from Figure 5(a) the local Nusselt number on the 
right wall decreases with distance at the side or cold wall for Ra = 103 only. However, at Ra = 104 and 
105, decreasing and increasing trends are observed for local Nusselt number. It can be seen from the 
Figure 5(b) that the local Nusselt number at the bottom wall increases from zero at both the edges 
of the bottom wall towards the centre with its maximum value at the centre for Ra = 103. For Ra ≥ 
104 Nub oscillates along the bottom wall, this behaviour is related to the presence of two symmetric 
cells rotating in opposite directions. 
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Fig. 3. Streamlines for different Hartmann and Rayleigh numbers and for θ = 0° 
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Fig. 4. Isotherms for different Hartmann and Rayleigh numbers and for θ = 0° 

 

 
(a) 

 
(b) 

Fig. 5. Local Nusselt number distributions on the right wall (a) and bottom wall (b) for Ha = 0 
and θ = 0° for different Rayleigh number 
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Figure 6(a) and (b) shows the distribution of the local Nusselt number at the right wall and at the 
bottom wall for various values of Hartmann number, for Ra = 105 and θ = 0°. It is observed that the 
local Nusselt number on the right wall for Ha = 50 decreases monotonically whereas for Ha = 30 Nur 
decreases and then increases. However, for Ha = 10 local Nusselt number decreases, attains a 
minimum and then increases to attain its maximum value and again decreases. 

 
 

 
(a) 

 
(b) 

Fig. 6. Local Nusselt number distributions on the right wall (a) and bottom wall (b) for Ra = 105 
and θ = 0° for different Hartmann number 

 
 
Figure 7(a) and (b) presents the variation average Nusselt number on the right wall (Nur) and 

bottom wall (Nub) with Hartmann number for different Rayleigh number for θ = 0°. It is observed that 
the heat transfer rate increases with increasing Rayleigh number but it decreases when the Hartmann 
number increases. 

 
 

 
(a) 

 
(b) 

Fig. 7. Variation of the average Nusselt number on the right wall (a) and bottom wall (b) with 
Hartmann number for different Rayleigh number for θ = 0° 
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5.2 Effect of the Magnetic Field Direction 
 

The change of the magnetic field direction causes the modification of the Lorentz force direction 
relative to the gradient temperature which controls the heat transfer rate [24]. 
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θ
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5°
 

   

θ
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0°
 

   

θ
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35
° 

   

Fig. 8. Streamlines for different direction of the magnetic field and Hartmann number 
for Ra = 105 

 
 

Figure 8 and 9 presents the effect of the direction of the magnetic field on the streamlines and 
isotherms of flow for three different Hartmann numbers, as Rayleigh number is fixed at Ra = 105. For 
all Hartmann number two circulation cells are formed inside the cavity. The symmetry of these cells 
is broken for θ = 45° and 135°. 
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Fig. 9. Isotherms for different direction of the magnetic field and Hartmann number 
for Ra = 105 

 
 

  
(a) (b) 

Fig. 10. Local Nusselt number distributions on the right wall (a) and bottom wall (b) for Ra = 105 and 
Ha = 30 for different θ 
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Figure 10(a) and (b) illustrates the distributions of the local Nusselt number on the right and 
bottom walls for different direction of magnetic field for Ra = 105 and Ha = 30. It may be noted that, 
the local Nusselt numbers on the right wall initially decreases and later increases with distance for all 
values of θ. As can be seen from Figure 10(b), the local Nusselt number on the bottom wall (Nub) 
oscillates with the direction. 

Figure 11(a) and (b) shows the variation of the average Nusselt numbers on the right wall (Figure 
11(a)) and bottom wall (Figure 11(b)) as a function of the direction of magnetic field for different 
Hartmann numbers for Ra = 105. It is observed that as Hartmann number increases, the heat transfer 
rate decreases for all values of θ. Also, for all values of Hartmann numbers, the heat transfer rate 
reaches its maximum value for θ = 90° on bottom wall of the cavity. The figure also shows that the 
distribution of the average Nusselt number of the vertical right wall (Nur) is not symmetrical, contrary 
to Nub.  
 

  
(a) (b) 

Fig. 11. Variation of the average Nusselt number on the right wall (a) and bottom wall (b) with θ 
for different Hartmann number for Ra = 105 

 
 

  
(a) (b) 

Fig. 12. Variation of the average Nusselt number on the right wall (a) and bottom wall (b) with θ for 
different Rayleigh number for Ha = 30 

 
Variations in the average Nusselt number on the right and bottom walls as function of the 

direction of magnetic field for different Rayleigh numbers and for Ha = 30 are presented in Figure 12. 
For low values of Rayleigh number (Ra ≤ 104), the values of Nur and Nub are almost same due to 
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dominant conduction mode of heat transfer, the direction of magnetic field does not affect the heat 
transfer in the enclosure. For Ra = 105, the average Nusselt number on the right and bottom walls 
increases when θ increases in the range of 0° to 90° and decreases for 90° < θ < 180°, and reaches its 
maximum value for the angle θ = 90°. 
 
6. Conclusions 
 

In the present paper, MHD free convection in a tow-dimensional square cavity with sinusoidal 
temperature distribution on the bottom wall has been investigated with Lattice Boltzmann method. 
Effects of different parameters such as Rayleigh number, Hartmann number and the direction of the 
magnetic field have been considered. With respect to the present results the following conclusions 
are drawn 

i. A good agreement, valid with previous numerical investigations demonstrates that the Lattice 
Boltzmann Method is an appropriate method for different applicable problems. 

ii. Heat transfer rate is augmented by the growth of Rayleigh number. 
iii. Heat transfer rate and fluid flow inside the cavity declines with the increment of Hartmann 

number for various Rayleigh numbers and for all magnetic field direction. 
iv. For Ra = 105 and for 10 ≤ Ha ≤ 50, the heat transfer mechanism depends on the magnetic field 

angle. For the bottom wall, the average Nusselt number is maximum for θ = 90°. For the right 
wall Nur oscillates with θ. 

v. The direction of magnetic field does not affect the heat transfer in the enclosure for low 
values of Rayleigh number. 

vi. For Ra = 105 and Ha = 30, with increasing the magnetic field angle from 0° to 90° the average 
Nusselt number on the right and bottom walls increases and with increasing the magnetic 
field angle from 90° to 180° the average Nusselt numbers decreases.  
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