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Reduction of operating temperature to the range of 600 - 800 ˚C allows metallic alloys 
to be considered as solid oxide fuel cells (SOFCs) interconnects. Of all SOFC 
components, interconnects have the most stringent criteria as they are required to 
work in both oxidizing and reducing conditions. To date, Fe-Cr alloys are the most 
promising candidates owing to their good oxidation resistance, electrical conduction, 
and matching thermal expansion coefficient with SOFC components. Unfortunately, 
the alloys are susceptible to the formation of oxide scales which are (Mn,Cr)3O4 and 
Cr2O3 at elevated temperatures. Moreover, thermodynamic instability in the cathode 
environment causes Cr volatilization from the scales, which subsequently cause cell 
degradation. The volatilization can be retarded with the use of protective coating or 
specially designed alloys with tailored compositions that enhances Laves phase 
precipitation. The oxidation behavior of the metallic interconnects, Cr volatilization, 
and their relationship with the composition of metallic alloys will be discussed. 
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1. Introduction 
 

Solid oxide fuel cells (SOFCs) produce electrical energy through electrochemical reactions 
between air and fuel (e.g., H) and thus potential sustainable power sources [1–3]. SOFCs have three 
main components, namely, anode, cathode, and electrolyte, each of which uses different materials 
and has a distinct function. Cells are connected by interconnects, which build stacks to fulfill the 
power requirement of an application (Figure 1). Interconnects conduct electricity between cells and 
act as barriers to separate air and fuel in cathodes and anodes. 

The successful reduction of the high thermal operating temperatures of SOFCs to 600800 C has 
enabled the replacement of conventional ceramic interconnects with metal alloys, which 
demonstrate better mechanical strength, electrical conductivity, and manufacturability than 
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ceramics [4–6]. SOFCs must have at least 40 000 h of lifetime for them to be used in an application 
[7,8]. Therefore, interconnect materials should have good chemical stability in both oxidizing and 
reducing conditions, excellent oxidation resistance at high temperatures, excellent electrical 
conductivity, and good thermal conductivity, and compatible thermal expansion coefficient (TEC) 
with adjacent components [9,10]. 

 

 
Fig. 1. Illustration of Solid Oxide Fuel Cell 
(SOFC) components 

 
Among the potential candidates, Ni-Cr-based alloy and Fe-Cr-based alloy are of particular interest 

and widely studied in the past decade. Figure 2 shows the number of publications related to Fe-Cr- 
and Ni-Cr-based alloys for the past 10 years. Fe-Cr is preferred compared to Ni-Cr because of its 
economic cost and better TEC matching with other SOFC components because of its body-centered 
cubic structure [11]. The material forms dual-layer oxide scales, when exposed to high thermal 
operation for a long period namely, Cr2O3 and (Mn,Cr)3O4, which provide oxidation resistance and 
conduct electricity [12]. However, the incompatibility of TEC of the scales with metal alloys lead to 
cracks and spallation, which increase the electrical resistance (Figure 3) [13]. The scales also undergo 
Cr volatilization, which blocks the active area of cathode and degrade the cells. Thus, the Fe-Cr 
material with low oxide scale growth rate is preferred to be used as interconnects. 
 

 
Fig. 2. Number of publications on different types of metallic interconnect in 
the past 10 years (Keywords: “SOFC,” “interconnect,” “Ni-Cr,” and “Fe-Cr” in 
http://www.sciencedirect.com, March 2018) 
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Fig. 3. Scanning electron microscope 
image of Fe-Cr specimen after 61 h of 
oxidation at 800 °C. The specimen shows 
cracks and spallation of oxide scale. 
Reproduced with permission [14] 

 
2. Oxidation Behavior and Cr Volatilization  
 

Oxide scales and Cr volatilization are closely related to each other. Cr volatilization occurs when 
gaseous Cr species forms due to thermodynamic instability of O at the cathode environment. Given 
that reactions depend on the O partial pressure and water content [15], Cr poisoning at the anode 
can be neglected due to rich H gas and low O partial pressure [16]. The reactions between the scales 
and O gas can be represented though the following equations [17]. 

 
2Cr2 O3(s)

 + 3O2(g)
 ↔ 4CrO3(g)           (1) 

 
2Cr2 O3(s)

 + 3O2(g)
 + 4H2 O(g) ↔ 4CrO2 (OH)2(g)

         (2) 

 
Cr2 O3(s)

 + O2(g)
 + H2 O(g) ↔ 2CrO2 (OH)(g)         (3) 

 
The volatilization of Cr in oxide scales causes Cr migration to cathode which can be hastened by 

increasing partial pressure [18,19]. The migration causes cathode poisoning because of gaseous Cr 
species deposition at the triple phase boundary, which blocks the cathode active area and leads to 
cell degradation [20,21]. The volatilization is also closely related to the oxide scales microstructure 
where Cr2O3 is the inner layer, while the (Mn,Cr)3O4 is the outer layer (Figure 4). The (Mn,Cr)3O4 layer 
undergoes less Cr volatilization than the Cr2O3 layer, which is beneficial in enhancing oxidation 
resistance and preventing Cr migration from oxide scales [22–24]. Nevertheless, decreasing the 
growth rate of both layers may reduce Cr volatilization. 
 

(Mn,Cr)3O4 

Cr2O3 

Substrate 

Fig. 4. Schematic illustration of 
oxide scales 

 
The growth rate of the scales can be measured by determining the oxidation kinetics of the 

material. The value of oxidation kinetics value can be calculated using Eq. (4), as follows 

Oxide layer 

Cracks 

Spallation 

Substrate 
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(
∆𝑊

𝐴
)

2

= 𝐾𝑝𝑡               (4) 

 
where ∆𝑊 is the weight gain, 𝐴 is the sample area, 𝑡 is the oxidation time, and 𝐾𝑝 is the oxidation 

kinetic. Weight gain shows how much scales were formed after several hours of oxidation. Figure 5 
shows the oxidation kinetics for different Fe-Cr materials according to previous studies. FeCrCo 

exhibits the lowest oxidation kinetics of 1.42 10−15 g2cm−4s−1
 [25], followed by Crofer 22H with 5.29 

10−15 g2cm−4s−1 [25] and SUS 430 with 17.2 10−15 g2cm−4s−1 [26]. The large difference in weight gain 
between the three materials is due to the different chemical compositions, as tabulated in Table 1.  
 

 
Fig. 5. Oxidation kinetic for different Fe-Cr materials at the 
temperature of 750 °C in air [25,26] 

 
Table 1 
Chemical compositions of FeCrCo, Crofer 22 APU, and SUS 430 (wt%) [25,26] 
Material Cr Mn Co Nb Zr La Y 

FeCrCo 12.44 0.57 9.68  0.024 0.0074 0.0014 
Crofer 22 H 20–24 0.3–0.8  0.2–1.0  0.04–0.20  
SUS 430 16.76 0.69      
Material C S P Si N W Ti Cu 
FeCrCo 0.0031 0.0016 0.0088 0.032     
Crofer 22 H <0.03 <0.006 <0.05 0.1–0.6 <0.03 1.0–3.0 0.02–0.20 <0.5 
SUS 430 0.12   0.75     

 
Elements such as Mn, Y, La, Zr, and Ti promote oxidation resistance and contribute to the growth 

of a second oxide layer, that is, a (Mn,Cr)3O4 layer that inhibits Cr volatilization [27–31]. As shown in 
Table 1, FeCrCo containing the aforementioned elements has lower oxidation kinetic than the other 
materials that do not have these elements or have lower content of these elements than FeCrCo. 
Meanwhile, materials that contain Nb, Ti, W, or Mo such as Crofer 22 H are considered as Laves-type 
materials due to the Laves phase precipitation of the elements near the oxide scales. Precipitation 
prevents O diffusivity into the oxide scales, which reduces the oxidation rate [32–35] (Figure 6). 
However, excess amounts of these elements can contribute to some disadvantages. For example, 
excess amounts of Mn and Ti causes faster oxidation rate and increases area-specific resistance [36–
38]. Meanwhile, excess Laves phase elements lead to the formation of brittle intermetallic secondary 
phases, which degrade the impact toughness and corrosion resistance of alloys [14,39,40].  

 

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0 200 400 600 800 1000

(W
e

ig
h

t 
ga

in
/a

re
a)

2
 (

m
g2

cm
-4

) 

Oxidation time (hours) 

Crofer 22 H

Fe-Cr-Co

SUS430

Kp= 17.2 x 10-15 g2cm-4s-1

Kp= 5.29 x 10-15 g2cm-4s-1

Kp= 1.42 x 10-15 g2cm-4s-1



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 59, Issue 1 (2019) 148-155 

152 
 

 
Fig. 6. (a) Selected area electron diffraction and (b) transmission electron 
microscopy of the Laves phase precipitation in 28% Cr–4%Ni–2%Mo–Nb 
superferritic stainless steel aged at 850 °C for 30 min. Reproduced with 
permission [39] 

 
3. Recent Achievements 
 

In previous years, researchers attempted to adopt spinel oxide properties into coating, which not 
only increases oxidation resistance and prevents Cr migration but also increases electrical 
conductivity with the presence of Co or Cu [41]. For example, Kumar et al., [42] sputtered (Mn,Co)3O4 
coating on SS 430, which not only reduces electrical resistance and increases oxidation resistance but 
also prevents inward O diffusion that promotes Cr volatilization. Talic et al., [30] doped Fe into 
(Mn,Co)3O4 to further match the TEC of the coating with Fe-Cr materials. The results also show that 
denser coating can further reduce oxide scale growth and Cr volatilization. Sun et al., [43] had coated 
(Mn,Cu)3O4 on Crofer 22 H, where the coating uses a Cu element instead of a Co element. In addition 
to having lower cost than (Mn,Co)3O4, this coating exhibits better electrical conductivity and 
eliminates the usage of toxic element such as Co [41]. 

Another method that also gains much attention is alloy design, which involves the alteration of 
the chemical composition of Fe-Cr materials, which can enhance oxidation resistance and electrical 
conductivity as well as reduce Cr volatilization [44–48]. Safikhani et al., [14] found that the low Ti 
amount of 0.04 wt% and high Nb amount of 0.18 wt% in the Fe-Cr material can significantly increase 
oxidation resistance. The results of the study of Niewolak et al., [49] showed that a high W content 
in Fe-Cr materials can strengthen the intermetallic phase, which increases the mechanical strength 
of the material. Ali-Löytty et al., [50] added the reactive element Si into a Ti–Nb stabilized ferritic 
stainless steel (EN 1.4521) to promote Laves phase precipitation, which reduces Cr volatilization. 
 
4. Conclusions 
 

The formation of oxide scales and its growth rate is closely related to the composition of Fe-Cr-
based interconnect. Cr migration is dictated by the behavior of oxide scales. Thus, the selection of 
right composition of Fe-Cr-based interconnect is the key factor in achieving high performance and 
excellent long-term stability. Apart from tailoring the composition of alloy to enhance oxidation 
resistance and electrical conductivity and effectively mitigate Cr migration, progressive efforts have 
been reported on the developments of coating materials to serve as a mass barrier, thereby retarding 
Cr migration in commercially available Fe-Cr-based alloys. 

(a) (b) 

Laves phase  

precipitation 

Intermetallic  

phase 
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