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In hydrological cycle, evapotranspiration (ET) is one of the tedious processes to 
measure. This has caused a massive development of empirical estimation models and 
the most accurate is Food and Agricultural Organization-56 Penman-Montieth model 
(FPM-56). The setback of this model is its data demanding which is not applicable at 
data scarce region and more simple models are preferable. To that avail, evolution of 
optimization from soft computing, enhancing the performance of simpler empirical 
models in estimating ET. This paper highlights the application of particle swarm 
optimization (PSO) in catering the estimation for potential evapotranspiration (ETp). 
Although the number of papers in literature related to PSO application in hydrology or 
any other areas increases exponentially, the concerns is soft computing models keep 
advancing gambling the validity of today’s model improvement such ET estimation 
empirical model. To have a model that pertinent for a long time still needs a calibration 
from physical direct measurement. Despite all the arguments, a comprehensive AI 
algorithm is yet to come.  
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1. Introduction 
 

Water scarcity has become the main concern to the most of study area throughout the world. For 
a small region like Malaysia which received approximately 2000 to 3000 mm annual precipitation, 
the country still facing the water scarcity issue as the distribution of precipitation is not uniform let 
alone throughout the globe. Therefore, the increased of competition on preserving, managing and 
optimizing water resources are noticeable from various field of study. From the hydrological 
community, the fundamental understanding behind water vulnerability is the struggling in 
maintaining the water balance system. Evapotranspiration (ET) is one of the essential processes in 
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hydrological cycle amongst precipitation, evaporation, transpiration as well as infiltration. Unlike 
precipitation, physical measurement of ET is tedious nearly impossible for certain region.  

Lysimeter, Bowen-ratio energy, eddy covariance system and scintillometers are among the 
topnotch method in estimating ET as it gives the precise results of ET and very useful for calibration 
and validation [1] despite its setback in high maintenance. Direct measurement such lysimeter proves 
to be the prominent apparatus to measure actual ET though it consumes cost, time and labour [2]. 
As for indirect measurement can be either by empirical models, eddy covariance and remote sensing. 
Nevertheless, the empirical model has caught researchers’ attention as it is based on the statistical 
approach of relating dependent parameter to its independent parameter. 
 
2. Evapotranspiration 
 

ET is a combination of two processes named evaporation (E), the water evaporates to the 
atmosphere from water surface on the Earth and transpiration (T) from plants. Together, ET process 
has been identified as crucial parameter in hydrological cycle as it takes into account the total 
consumption uses of water lost from plants and water bodies simultaneously. ET can be divided into 
three main fractions as illustrates in Figure 1; actual ET (ETa), reference ET (ET0) and potential ET (ETp).  

 

 
Fig. 1. Evapotranspiration process (FAO) 

  
ETa can be collected by using lysimeter (Figure 2) a measuring device that records the amount of 

precipitation of an area and the amount of water loss due to infiltration so that the amount of water 
lost to the ET can be calculated. 
 

 
Fig. 2. Standard setup of lysimeter 
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2.1 Empirical Model for ET Estimation 
 
 The empirical model development has started since 1802 by John Dalton where the author derived 
an equation for estimating evaporation based on the water balance system [3]. Years later in 1945, 
Blaney and Criddle derived another formula estimating consumptive use for agricultural crops and 
this formula has been extensively used for estimating water requirements [4]. Although there are 
lots of empirical models been developed since Blaney and Criddle (1945), these models need 
calibration on its parameter before its application and it is not standardized to be used globally. 
Models that are based ranging from mass-transfer to temperature, radiation, aerodynamic concepts 
and combination-based models can be found for about more than 50 models till dates. FAO-PM takes 
place as the leading empirical model to be used worldwide. However, these physical principles model 
requires all the meteorological parameters where at certain region this could be the hindrance in 
developing country and scarce data situation regions. 

The FPM-56 model has been introduced by Allen et al., [5] and has been used globally since then. 
With over 10000 citations, the accuracy of this model proved to be as observed ET. Knowing it’s 
setback, the updated publication by Pereira et al., [6] suggested that instead of simplify the FPM-56 
model, user should estimate the missing data and use the Penman-Monteith [7] instead. 
Nevertheless, estimating physically-based processes can produce significant error as these processes 
are highly non-linear [8] and Almedeij [9] suggested that the estimation for hydrological parameters 
should be done by established forecasting methods in order to accurately predict these parameters. 

Numerous methods have been introduced to estimates ET either by physical or computational. 
FPM-56 has been recognized in hydrologist world as the most prominent empirical model that gives 
close to accurate estimation of ET. However, note that this is also a data demanding model which is 
not applicable at some region. Despite that, estimation of ETp from FPM-56 is used as the observed 
data for analysis [10-15]. The mathematical equation is presented as in Eq. (1).  
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In which Rn is the net radiation (MJ/m2/day), G is the soil heat flux (MJ/m2/day), γ is the 
psychrometric constant (kPa/°C), es is the saturation vapor pressure (kPa), ea is the actual vapor 
pressure (kPa), Δ is the slope of the saturation vapor pressure-temperature curve (kPa/°C), Ta is the 
average daily air temperature (°C) and u2 is the average daily wind speed at 2m height (m/s). 
Therefore, grass height and bulk canopy resistance were assumed to be 0.12m and 70m/s 
respectively. 

More simple method is by empirical models [13, 15-17], remote sensing method [18-20] and 
lately adapting to the technology application, estimation by using artificial intelligence (AI) [21-23] as 
well as standardized precipitation evapotranspiration index (SPEI) [24] starting widely used around 
the world.  

ET empirical models can be classified as mass-transfer-based, temperature-based, radiation-
based, pan-evaporation-based and combination. The example of simpler empirical models such Turc 
[25], Hargreaves-Samani [26], Priestley-Taylor [27] and Makkink [28] is used at almost any region 
around the globe. These models though simple yet need calibration before it can be used at other 
region since it is a site specific model. By taking Hargreaves as example, the model shows 
overestimates ET0 under humid locations humid locations [29] and underestimates under arid 
locations [30] in [31]. Conclusively, Tabari et al., [15] found that the radiation-based and 
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temperature-based models are more suitable in estimating ET in humid climate in Iran. As according 
to Ahmad et al., [32], mean temperature and solar radiation variables are the most influential 
parameters of ETp for Peninsular Malaysia. 

 

2.2 Temperature-Based Empirical Model 
 

Temperature-based model is one of the simplest empirical based method in estimating ET. Back 
in early 1920s, ET is estimated by only based on temperature parameter [15]. Temperature based 
model could either take maximum, minimum and average air temperature as its data input or just 
the combination of temperature and other parameter such as wind speed and relative humidity. This 
based model is less popular among engineers with the presence of dew point temperature as its 
inputs [33]. The general form of this model is; 
 

 1 2 or nET c T ET c d T c c h                 (2) 

 
where c, c1 and c2 are constant, d is time duration parameter, T is air temperature (°C) and h is 
humidity.  
 
2.3 Radiation-Based Empirical Model 
 

Radiation based models are based on the solar radiation which has major influence in ET 
compares to temperature and humidity. Radiation based models are based on the simplified principle 
of energy balance and the general form of the model is; 
 

    or r r
s n

C C
ET wR ET wR

 
             (3) 

 
where Cr is generated empirical coefficient based on relative humidity and wind speed, λ is latent 
heat of evaporation (MJ/kg), w is generated empirical coefficient in accordance with temperature 
and latitude, Rs and Rn is solar radiation (MJ/m2/day) and net radiation (W/m2/day) respectively.  
 
2.4 Pan-Evaporation-Based Model 
 

This empirical-based method is simple, low cost and ease of application makes it suitable for data 
scarcity region. With the Class A pan evaporation (Epan) data and its coefficient (Kpan), ET can be 
determined. The model can be define as in Eq. (4). 
 

pan panE E K               (4) 

 
The Kpan varies depending on the models and this parameter calibrate with wind speed and relative 
humidity [34-36]. This may due to the factor that pan evaporation is being placed on the ground and 
wind speed measurement must be taken at 2m height above the ground and relative humidity tends 
to fluctuate as it closer to the ground. Doorenbos and Pruitt [37] is the pioneer for empirical based 
model; 
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where ET0 is grass reference ET (mm/day), W is the psychometric weigh function, Δ is slope of 
saturation vapor pressure-temperature relationship (mb/C), γ is the psychometric constant (mb/C), 
Rn is net radiation (MJ/m2/day) and u is wind speed a t 2m height from ground level (m/s). 
 
2.5 Mass Transfer-Based Model 
 

Mass transfer-based model is based on the concept of eddy transfer of water vapor from 
evaporating surface to the atmosphere which directly based Dalton’s law (Eq. (7)). Penman [38] 
stated that Eq. (7) is a radiation-aerodynamic combination equation that later been used as another 
based for development of other empirical model.  
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where Erad is radiation term, Eaero is aerodynamic component and fu is wind function by Penman 
[38].  

 
3. Particle Swarm Optimization 
 

The emerging of artificial intelligence (AI) in solving optimization problem such genetic algorithm 
(GA), genetic programming (GP), simulated annealing (SA) and more and more biologically-inspired 
methods been proposed by Chen et al., [39] such as particle swarm optimization (PSO) by Eberhart 
and Kennedy [40], artificial bee ant colony (ABC) by Karaboga [41] and ant lion optimizer (ALO) by 
Mirjalili [42] and whale optimizer algorithm (WOA) by Mirjalili and Lewis [43]. The most notable 
advantage of adapting soft computing technique in hydrological analyzing is it can be applied at local 
scales and applicable for physical implementation substitution such as evaporation rate and ET rate 
estimation [44].  

The application of (PSO) is no longer a stranger for computer science community. This based on 
the social behavior of animals theory model [40] may have not yet established but its evolutionary 
algorithm that can be used to find optimal solutions to numerical and qualitative problems [45] 
prevails to another field of study such hydrology [46, 47]. 

Based on the theory of animal social behavior, a certain number of individuals known as particles 
are collecting information from each other through their respective positions. Each particle has their 
own pbest and will update their position and velocity to their neighbors in order to obtain the objective 
function. The new velocity and position of the swarm is called as gbest that can be represent by using 
Eq. (8) and (9). This process iterates until the termination criteria is satisfied.  
 

   1 2
v v C p p C g p
new best best

                 (8) 

 

new newp p v                (9) 

 

where newv , v


, newp and p


 are new velocity, current velocity, new position and current position of 

particles respectively. Unlike the basic PSO proposed by Eberhart and Kennedy  [40] where no inertia 
weight (w) is included, Shi and Eberhart [48] has introduced initial weight as it helps in balancing the 
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both local and global search. The suggested range of initial weight is from 0.9 to 1.2 for a better 
performance. According to Gill et al., [47] and Chaturvedi et al., [49] a large inertia weight contributes 
in good global search while a smaller value aid in local exploration. The practice is to use larger initial 
weight during the initial exploration and gradual reduction of its values as the search proceeds in 
further iterations. 

The equation to update the velocity can be expressed as in Eq. (10).  
 

   1 2new best bestv w v C p p C g p                           (10) 

 
where c1 and c2 are the cognitive and social coefficients respectively. The summary of standard 
process of PSO is presented in Figure 3. 
 

Start

Initialize particles with random and velocity vectors

Evaluate the fitness of particles:

Fitness function

Find and update pbest and gbest

Calculate and update the velocity of particles

Calculate and update the position of particles

Termination criteria 

satisfied?

Yes

End

No

 
Fig. 3. Standard PSO flowchart [57] 

 
The non-parametric and assumption free of AI has a major advantage on estimation process non-

linear process like ET [50]. The specialty of PSO in developing solution for continuous variables and 
now with discrete variables [51] makes it one of the favorable optimization method for hydrologists. 
Many researchers have demonstrated the usefulness of PSO in hydrological analysis such Chau [52] 
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applied the PSO algorithm in Artificial Neural Network (ANN) training perceptrons to predict river 
water level, Sudheer et al., [53] has improvised the support vector machine by using PSO in predicting 
the monthly streamflow, Chen et al., [54] exhibited the application of PSO in large-scale flood 
forecasting, Fereidoon and Koch [55] developed a complex multi-crop planning derived from SWAT-
MODSIM with the adaptation of PSO and Nabinejad et al., [56] demonstrated the application of PSO-
MODSIM model in determining the optimal basin-scale water allocation. To date, the application of 
PSO in analyzing ET is still limited.  
 
4. Discussion 
 

The idea of adapting AI methods in analyzing hydrological problem is no longer a stranger to the 
research community. Commonly the AI is applied to improvise the existing hydrological model 
especially for situation where direct measurement is nearly impossible; ET measurement, 
evaporation measurement, groundwater analysis, reservoir operation along with others. 
Nevertheless, the uncertainty of the AI model itself can influence the output. Till dates, no standard 
algorithm parameters of PSO can be used directly without trial and error. Although AI has lots of 
potential in easing the analysis, the main concerns when applying AI is the evolution of soft 
computing models keep advancing. Hence for example, an improved empirical model of ET might not 
be applicable for the next few years. To have a model that pertinent for a long time still needs a 
calibration from physical direct measurement.  
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