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In the present investigation, the effects of variable liquid properties along with wall 
properties are incorporated in the peristaltic mechanism of a Rabinowitsch fluid. The 
two-dimensional non-uniform channel is considered to be porous. The heat transfer 
characteristics are examined with convective conditions, whereas the mass transfer is 
considered with slip conditions at the walls. The model is developed with the 
assumptions of long wavelength and low Reynolds number. Exact solutions are 
obtained for velocity, streamlines, and concentration. Further, the perturbation 
technique is employed for obtaining the temperature solution. Moreover, the impact 
of relevant parameters on velocity, temperature, concentration, and streamlines are 
analysed for dilatant, Newtonian, and pseudoplastic fluid models. The variable liquid 
properties are found to enhance the fluid temperature for shear-thinning, shear 
thickening, and Newtonian fluids. 
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1. Introduction 
 

The natural mechanism of a progressive wave of area contraction and relaxation in the human 
body which is responsible for many of the biological processes like the movement of food through 
the esophagus and chyme through the gastrointestinal tract is called peristalsis. Latham’s [1] first 
investigations on peristalsis have led to its use in the modern day technology of dialysis machines, 
heart-lung machines, roller and finger pumps, etc. The concept of peristalsis has been studied and 
researched by many researchers on various fluids and geometries [2, 3]. Owing to the applications of 
heat transfer mechanisms during peristalsis in both thermal engineering and medical fields such as 
hemodialysis and cancer treatments, this field of research has garnered much attention in the past 
few years. Different parts of the human body are at different temperatures, which lead to the transfer 
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of heat from elements at a higher temperature to the lower ones. The critical mode of heat transfer 
in the human body is convection. These convective boundary conditions have been incorporated by 
Alsaedi et al., [4] by considering the Prandtl fluid with peristalsis. They observed that the Biot number 
has an increasing effect on the heat transfer coefficient and a decreasing impact on the temperature 
profiles. Joule heating and convective boundary conditions were used by Abbasi et al., [5] in the study 
of peristaltic mechanism. Divya et al., [6] have examined the peristalsis of a Herschel-Bulkley fluid 
with velocity and thermal conditions. They have also carried out examinations on the heat transfer 
of Jeffrey fluid model with convective boundary conditions in their study on the peristalsis through 
an elastic tube [7]. Of late, several researchers have investigated the heat transfer characteristics of 
biological fluids flowing through different geometries and with various assumptions [8-14].  

The widespread applications of non-Newtonian fluid models in industrial and medical fields, as 
mentioned above, speaks a lot for the importance of non-Newtonian fluids over the Newtonian 
fluids. This has encouraged many researchers to consider the non-Newtonian models in their 
peristaltic studies. Among the many models studied, the analysis of the non-Newtonian behavior is 
claimed to be more accurate with the Rabinowitsch fluid model, after the hypothetical examination 
was experimentally verified by Wada and Hayashi [15]. The model was then utilized by Akbar and 
Nadeem [16] to the peristaltic transport through a uniform tube. Sadaf and Nadeem [17] further 
worked on peristaltic transport of Rabinowitsch fluid with combined viscous dissipation and 
convective effects. They observed that for all three cases of shear-thinning, shear-thickening, and 
viscous fluids, the Brinkman number plays a vital role in enhancing the fluid temperature. The 
investigation has been done by Vaidya et al., [18] to study the heat transfer effects during the 
peristalsis of Rabinowitsch fluid flowing through a uniform inclined channel with compliant walls. 
Vaidya et al., [19] researched the impact of convective and variable fluid properties on the peristaltic 
flow of Rabinowitsch fluid through a non-uniform tube. Manjunatha et al., [20] have analysed the 
impact of heat and mass transfer on the Peristaltic mechanism of Jeffrey fluid through a non-uniform 
porous channel.  

Over the recent few years, numerous researchers have paid more attention to the porous walls 
of the tube/channel in the physiological fluid flows. The major reason for this is due to the human 
lungs, gallbladder stones, blood vessels of small radius, etc. acting as a permeable media for fluid 
flow. The concept of permeable media was initially studied by Lukashey [21] in his investigations on 
peristaltic transport of fluid motion through porous capillary walls. Subsequently, El-Shehawey and 
Husseny [22] explored the peristaltic mechanism of a viscous incompressible fluid through the porous 
walls of a channel. Rao and Mishra [23] consolidated the Beavers-Joseph and Saffman boundary 
conditions to investigate the power-law fluid exhibiting the peristaltic motion in a porous tube. 
Vajravelu et al., [24] considered the Casson fluid during the studies on the peristaltic flow through a 
porous walled circular tube along with Newtonian fluid. Their observations indicate that as the fluid 
turns more shear-thinned, the wall shear stress lessens. Several investigations accounting the effects 
of slip and porous media on the natural and biological fluids have been made [25-29]. 

 Until recently, the thermophysical properties like viscosity and thermal conductivity of the fluid 
were considered to be constant in the studies on peristaltic mechanisms. But, in fluids like blood and 
other physiological liquids, these properties are not consistent and may vary. Accordingly, in such 
conditions, it is essential to consider the variable viscosity as well as variable thermal conductivity. 
Inspired by this, Srivastava et al., [30] examined the peristalsis of a Newtonian fluid through uniform 
as well as non-uniform tubes with viscosity varying axisymmetrically. Studies on variable viscosity 
considerations were carried out by Khan et al., [31] in their peristaltic studies on Jeffrey fluid through 
a porous media. Moreover, the consideration of variable thermal conductivity along with variable 
viscosity has garnered the attention of many researchers due to its widespread applications in the 
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fields of medicine and industry. This has motivated Manjunatha et al., [32, 33] to investigate the 
effects of varying viscosity and thermal conductivity during peristalsis of Casson and Bingham fluids 
under the considerations of convective and porous boundary conditions. Further, Vaidya et al., [34-
36] have carried out studies on Rabinowitsch fluid to study the effects of variable liquid properties 
on it under different geometrical considerations and assumptions. 

The current paper deals with the influence of variable thermal conductivity and viscosity on the 
peristaltic mechanism of a non-Newtonian fluid. The fluid under consideration here is the 
Rabinowitsch fluid which flows through a two-dimensional non-uniform channel. Majority of the 
arteries, veins, and nerves are not horizontal but are inclined at a certain angle in the biological 
systems. Hence, the channel is considered to be inclined with respect to the horizontal surface. Also, 
the wall properties, along with the porous boundary conditions, are considered. Further, the heat 
and mass transfer characteristics are investigated with convective conditions and concentration slip, 
respectively. The closed-form solutions are obtained for velocity and concentration, whereas the 
temperature solution is obtained by the perturbation method. The graphs are plotted using MATLAB 
and are analysed for the effects of various parameters. 

 
2. Mathematical Formulation and Closed Form Solutions 
 

A Rabinowitsch fluid is considered to be flowing through an inclined non-uniform porous channel 
with complaint walls as shown in Figure 1. The angle of inclination of the channel with the horizontal 
surface is . The sinusoidal wave trains are of wavelength which move along the walls of the 
channel with speed c . The geometry of the channel wall is given by [20] 
 

2
( ) sin ( ) ,H l x b x ct





 
   

 
                                   (1) 

 

where ( )l x  is the non-uniform width of the channel, b  is the wave amplitude and t  is time. 

 

 
Fig. 1. Geometry of the model 

 
The set of equations which govern the flow of the fluid are [20] 
 

0
u w

x y

 
 

 
,                                                                     (2) 
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
  

    
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      
,                                                                     (3) 
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,                                                                     (4) 
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                                    (5) 
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                               (6) 

 

where 1, , , , , , , , , , , ' , ' ,  and p T mxx x y y y
u w p g c k D K T C T     are the velocity component in radial 

direction, velocity component in axial direction, fluid density, pressure, extra stress tensor 
components, acceleration due to gravity, specific heat, thermal conductivity, mass diffusivity 
coefficient, thermal-diffusion ratio, mean temperature, fluid concentration and temperature 
respectively. The equation of the flexible wall motion is expressed as [18] 
 

0( )M H p p  .                                                (7) 

 

where 0p  is the exterior pressure (taken to be 0 for simplicity) and M  is an operator which is used 

to characterize the motion of the stretched membrane with damping forces and is given as 
 

2 2 4

1 2 32 2 4
M e e e H

tx t x

   

     
  

           (8) 

 

where  is the elastic tension of the membrane, 1e  is the mass per unit area, 2e the coefficient of wall 

damping forces, 3e  is the flexural rigidity of the plate and H is the spring stiffness.  

On using the continuity of stress at y h and the x  component of the momentum equation, we 

obtain 
 

( )
sin

x yx xM h p u u u
u w g

x x x y t x y


  

      
        

       
.                  (9) 
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The non-dimensional quantities are 
 

2
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              (10) 

 
where Br is the Brinkmann number,  is the amplitude ratio,  is the wave number, p is pressure, 

Re  is the Reynold’s number, Bi  is the Biot number,  and Sc Sr are the Schmidt and Soret numbers, 
and 

1 2 3 4 5, , ,  and E E E E E are the wall tension, mass characterization, wall damping, rigidity and wall 

elastic parameters respectively. 
On using the above non-dimensional quantitates in Eq. (2)-(6), and considering the assumptions 

of long wavelength and low Reynolds number approximation, the resulting non-dimensional 
equations after dropping the bars are 
 

0
p

y





 ,                                                         (11) 
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,                                  (13) 

 
2 2

2 2
0ScSr

y y

  
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 
.                                                                  (14) 

 
where xy  is the constitutive equation of Rabinowitsch fluid and it is given by [30] 

 

3 ( )xy xy

u
y

y
  


 


,                       (15) 

 
where   represents the pseudoplasticity coefficient and ( )y  represents the varying fluid viscosity 

given by  
 

1 1( ) 1 , for 1y y     ,                      (16) 
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1 being the coefficient of viscosity. 

The thermal conductivity ( )k   is defined as 

 
( ) 1 , for 1k                                       (17) 

 
where    is the coefficient of thermal conductivity. 

The corresponding non-dimensional boundary conditions are given by [20] 
 

 1 at 1 sin 2 ( )
Da u

u y h mx x t
y

 



       


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u
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y
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 


,                                        (18) 

 

0 atBi y h
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
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
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
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y


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
,                                                   (19) 

 

2 1 at y h
y


 


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
,  0 at 0y

y


 


,                                                                           (20) 

 
where Da  is the Darcy number (porous parameter), m is the non-uniformity parameter, Bi is the Biot 
number and 

2 is the concentration slip parameter.     

 
3. Solution Methodology 

 
In order to get a solution for velocity field, Eq. (12), (13) and (17) are solved analytically with the 

help of boundary condition (18), 
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We now obtain the stream function from the following expression 
 

, and =0 at u y h
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which yields 
                 

   

 

 

3 3
1 1 1 1

5 4
1 1

2 2 23
1

3 2
1 1

3 3 3
1 1

2
1

( ) 1 log(1 ) log(1 ) ( ) 1 log(1 ) log(1 )

( ) 6 ( ) (3 )3( ) (2 ) 6( ) log(1 )

6 6

( ) log(1 ) log(1 ) 6( ) ( 2 ) ( ) ( 4 )

1

F P h y F P y h y

P F y F P h yP F h y y P F y

P F y h y F P y h y F P y h y

     


 

 

 

  



         
  

       
 

          


 
1

2 2

1

1 1

2

( ) (1 ( ) )

( 1 ) 1

y h P F Da h F P hy

h h



  

  



   


   

          (23) 

 
It is not easy to find a closed form solution for Eq. (14) and (18). This difficulty is overcome by 

suitably using the small value of coefficient of thermal conductivity ( 1  ) to obtain the perturbed 

solution for temperature. For this purpose, we write 
 

2

0 1 ( )O      .                                                                                                                            (24) 

 
The temperature function is obtained by the zeroth and first order solution of the above as: 
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          (26)   

 
Using the above in Eq. (24), we obtain the expression for temperature. The solution for 

concentration equation given by Eq. (14) along with Eq. (20) is found by utilizing Eq. (25) and (26) 
with the help of MATHEMATICA software. 
 
4. Results and Discussion 
 

In the current section, we discuss the graphical behavior of velocity, temperature and 
concentration profiles for the important parameters influencing them. Moreover, the phenomenon 
of trapping is also discussed. The values which are fixed in obtaining the graphs are 

1 1 2 3 4

5

0.05, 0.6, 0.02, , 0.2, 0.02, 0.02, 0.1, 0.04, 0.4, 0.002 
4

and 0.01.

m Da E E E E

E


              



 

 
4.1 Velocity Fields 
 

The influence of variable viscosity 1 , Darcy number Da , velocity slip parameter  , angle of 

inclination  and the non-uniform parameter m  are illustrated in Figure 2(a)-2(e). Each of these 
parameters are studied for their influence on velocity considering dilatant/shear thickening ( 0  ), 

Newtonian/viscous ( 0  ) and pseudoplastic/shear thinning ( 0  ) cases of the Rabinowitsch 

model. These figures clearly exhibit the parabolic profile for velocity. The variable viscosity is seen to 
accelerate the fluid motion for shear thickening as well as viscous fluids. However, with an increase 

in 1 , the fluid velocity along the axial direction diminishes for a shear thickening fluid (as shown in 

Figure 2(a)). From Figure 2(b), it can be observed that fluid velocity of the dilatant and Newtonian 
cases is enhanced with increasing porosity of the channel, whereas the decrease in the porous 
parameter Da is responsible for a rise in the fluid velocity for pseudoplastic fluids. The impact of 
velocity slip parameter   is seen to be exactly the opposite as compared to Da . This nature can be 

seen in Figure 2(c). The larger the inclination of the channel, the faster the dilatant and Newtonian 
fluid moves, and slower motion of the shear-thinning fluid, as observed from Figure 2(d). Also, as the 
channel becomes more non-uniform, the velocity of the dilatant and Newtonian fluid rises and that 
of the pseudoplastic fluid reduces (as shown in Figure 2(e)). To observe the effects of changes in the 
wall properties on the fluid velocity, Figure 3(a)-3(c) are plotted. From Figure 3(a), it can be noted 

that in the case of a dilatant fluid, an increase in the values of 1E and 2E  leads to an increase in the 

fluid velocity but higher values of 3E , 4E  and 5E diminishes it. Contrasting influence of these 

parameters is seen on Newtonian (Figure 3(b)) and pseudoplastic fluids (Figure 3(c)). 
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     Fig. 2. Velocity profiles for varying (a) 1 , (b) Da , (c)  , (d) and (e) m with 0.2,0,0.2    
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Fig. 3. Velocity profiles for varying wall properties with (a) 0.2   , (b) 0   and (c) 0.2   

 

 
 

 
4.2 Temperature and Concentration Profiles 
 

The effects of the pertinent parameters on the nature of temperature profiles are studied 

through Figure 4-9, where we consider the parameter of variable viscosity 1 , variable thermal 

conductivity  , non-uniformity parameter m , Biot number Bi , Brinkman number Br and the angle 

  by which the channel is inclined. These graphs are plotted for the three different cases of the 

Rabinowitsch fluid model. As the variable viscosity of the fluid 1  increases, Figure 4 shows that the 

fluid temperature also gets enhanced. The ability of the fluid particles to hold or disperse the heat to 
its environment gets enhanced for higher values of . This results in a higher temperature of the fluid 

than its boundary, irrespective of the fluid nature. This behavior is clearly illustrated in Figure 5. 
Likewise, the fluid temperature is seen to increase for higher values of the non-uniformity parameter 
m  (as shown in Figure 6). However, from Figure 7 it can be observed that with an increase in the 
magnitude of Bi , the fluid temperature falls for all the three types of fluids. This nature is because 
the Biot number plays a significant role in thermal conductivity of the fluid. Hence, higher values of 
Bi  results in a drop in the fluid thermal conductivity, thus reducing its temperature. An opposite 
influence of Br can be seen in Figure 8. The increasing effect of the angle of inclination on the fluid 
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temperature for dilatant, Newtonian and pseudoplastic fluids is depicted in Figure 9. The impact of 
the wall properties on temperature profile can be seen from the plots in Figure 10(a)-(c). For shear-

thickening fluids, the temperature profile sees an enhancement for 1E and 2E , whereas the 

temperature drops for 3E , 4E  and 5E (as shown in Figure 10(a)). Figure 10(b) and 10(c) also show a 

similar influence of the wall properties on viscous and shear-thinning fluids respectively. 

The ramifications of concentration slip parameter 2 , Schmidt number Sc  and Soret number Sr  

on mass transfer characteristics of shear-thickening, Newtonian and shear-thinning fluids are 
depicted in Figure 11-13. For all the three cases of the Rabinowitsch model, the concentration of fluid 
particles are found to increase near the lower wall and decrease near the upper wall for higher values 

of 2 , whereas no difference in the fluid concentration is observed in the central part of the channel 

(as shown in Figure 11). From Figure 12 and 13, higher values of Schmidt and Soret numbers are seen 
to decrease the fluid concentration irrespective of dilatant, Newtonian and pseudoplastic fluids. 
 

 

 
Fig. 4. Temperature profiles for varying 1  with (a) 0.0005   , 

(b) 0   and (c) 0.0005   
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Fig. 5. Temperature profiles for varying   with (a)

0.0005   , (b) 0   and (c) 0.0005   

 

 
Fig. 6. Temperature profiles for varying m  with (a)

0.0005   , (b) 0   and (c) 0.0005   
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Fig. 7. Temperature profiles for varying Bi  with (a)

0.0005   , (b) 0   and (c) 0.0005   

 

 
Fig. 8. Temperature profiles for varying Br  with (a)

0.0005   , (b) 0   and (c) 0.0005   
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Fig. 9. Temperature profiles for varying   with (a)

0.0005   , (b) 0   and (c) 0.0005   

 

  

 
Fig. 10. Temperature profiles for varying wall properties with (a) 0.0005   , (b) 0   and (c) 

0.0005   
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Fig. 11. Concentration profiles for varying 2  with (a)

0.0005   , (b) 0   and (c) 0.0005   

 

  
Fig. 12. Concentration profiles for varying Sc  with (a)

0.0005   , (b) 0   and (c) 0.0005   
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Fig. 13. Concentration profiles for varying Sr  with (a)

0.0005   , (b) 0   and (c) 0.0005   

 
4.3 Trapping Phenomenon 
 

The most important topic of discussion in studies on peristaltic transport is the phenomenon of 
trapping which results in bolus formation.  This bolus moves forward along with the sinusoidal waves 
of peristaltic mechanism. This section focuses on the trapping phenomenon for variation in the 

variable viscosity parameter 1 , porous parameter Da  and the non-uniformity parameter m  on all 

three fluid cases. For this purpose, the contour plots, as shown in Figure 14-16 are drawn. For an 

increase in 1 , the size of the bolus trapped increases for shear-thickening as well as shear-thinning 

fluids (as shown in Figure 14(a)-(b) and Figure 14(e)-(f)). However, the trend is reversed for a 
Newtonian fluid (as shown in Figure 14(b)-(c)). From Figure 15(a)-(f), it can be noticed that for all the 
three types of fluids, the size of the trapped bolus increases for higher values of the porous parameter
Da . A similar impact of the non-uniformity parameter is seen on the trapping phenomenon in Figure 
16(a)-(f), where the bolus size increases as the channel becomes more non-uniform.  
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Fig. 14. Bolus for varying 1  with (a) 1 0.01, 0.2    , (b) 1 0.02, 0.2   

, (c) 1 0.01, 0   , (d) 1 0.02, 0   , (e) 1 0.01, 0.2    and (f)

1 0.02, 0.2    

 

 
Fig. 15. Bolus for varying Da  with (a) 0.01, 0.2Da    , (b)

0.02, 0.2Da    , (c) 0.01, 0Da   , (d) 0.02, 0Da   , (e)

0.01, 0.2Da    and (f) 0.02, 0.2Da    
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Fig. 16. Bolus for varying m  with (a) 0, 0.2m    , (b) 0.05, 0.2m    , (c)

0, 0m   , (d) 0.05, 0m   , (e) 0, 0.2m    and (f) 0.05, 0.2m    

 
5. Conclusions 
 

The present investigation attempts to examine the peristaltic mechanism of a non-Newtonian 
fluid with heat and mass transfer mechanisms along with wall properties. The channel through which 
the fluid flows is taken to be non-uniform, inclined and porous. Also the convective and concentration 
slip conditions are considered. Further, the Rabinowitsch fluid model is considered with variable fluid 
properties. Analytical solutions are obtained for velocity and concentration fields, while perturbation 
technique is employed for obtaining the solution for temperature equation. The results are obtained 
for all the three cases of the Rabinowitsch model, namely dilatant/shear thickening fluid ( 0  ), 

Newtonian/viscous fluid ( 0  ) and pseudoplastic/shear thinning fluid ( 0  ). The major findings 

of the study are 
i. Variable viscosity, inclination angle, porous and non-uniformity parameters play a significant 

role in the enhancement of the fluid velocity of dilatant and pseudoplastic fluids. 
ii. For pseudoplastic fluids, a rise in velocity occurs for smaller values of variable viscosity and 

non-uniformity parameter, and for large values of the velocity-slip parameter. 
iii. The fluid temperature rises with variable liquid properties and Brinkman number. 
iv. Higher values of Biot number lead to a drop in the temperature of the fluid. 
v. Increase in the value of Brinkmann number enhances the temperature profile. 

vi. Schmidt and Soret numbers have a decreasing effect on the concentration profile for all types 
of fluids. 

vii. The parameters 1E and 2E  decrease the velocity of dilatant fluids, whereas the temperature 

of Newtonian and pseudoplastic fluids increase.  
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viii. The size of boluses formed during peristalsis gets magnified with non-uniformity and porous 
parameters for all types of fluids.  

ix. The size of trapped bolus diminishes for an increase in the value of variable viscosity for 
Newtonian fluid. 
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