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Micropolar fluid flow through porous channel assuming slip velocity conditions has 
been analyzed. An efficient numerical scheme based on Keller-box method is used as 
the main tool for solution approach. The primary objective is to study the influence of 
non-zero tangential slip velocity on velocity field, micro-rotation and pressure field. 
The dimensionless similarity equations of momentum, angular momentum are solved 
numerically using Keller-box scheme. The effect of slip and other pertinent parameters 
on velocity, micro-rotation field and also pressure are elaborated graphically. 
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1. Introduction 

 
The examinations on laminar flow through channels and pipes have acquired a significant amount 

of interest among researchers due to its wide spread applications in the field of biophysical flows. 
Berman [1] initiated the study on laminar flow of Newtonian fluid through a porous channel for small 
Reynolds number, obtained a first order perturbation solution. Subsequently several authors White 
[2], Sellar [3], Yuan [4], Terrill [5], Brady [6], Robinson [7], Cox [8] have extended the above Berman’s 
problem for large value of suction and injection. Later King and Cox[9] investigated time independent 
steady state Berman problem using asymptotic analysis. 

Most of the above studies have included Newtonian fluid in the flow phenomena. The theory of 
Newtonian fluids cannot accurately describe the coarse structure in the fluid, fiber materials such as 
colloidal fluids etc. To this end, non-Newtonian fluids have been widely used in industrial applications 
in the recent past. Micropolar fluid model is one of the prominent non-Newtonian fluid model that 
has acquired the special status in recent years. Investigation of such liquids speaks to a decent 
scientific model for classical and biological liquids. The theory of micropolar fluids introduced by 
Eringen[10] is an exceptional case of the theory of simple microfluids. These fluid elements can 
sustain stress moments, body couples and are also influenced by the spin inertial. The stress tensor 

                                                             
* Corresponding author. 
E-mail address: nn.katagi@manipal.edu (Nagaraj N Katagi) 

Open 

Access 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 66, Issue 2 (2020) 49-64 

50 
 

is not symmetric for such fluids. Due to the natural structure of elements in micropolar fluids, they 
represent a good mathematical model for many natural and industrial fluids. The applications of such  
fluids are in blood flow, lubricants, porous media, turbulent shear flows and flows in capillaries and 
microchannels. A very good review of this subject and its applications can be found in Lukaazewicz 
[10], Eringen [11-12], Ariman [13-14]. 

Kelson et al., [15] explored two dimensional stream of a micropolar liquid in a permeable channel 
with high mass transfer utilizing the perturbation method and numerical computations. Following 
researchers, Sastry and Rao [16], Takhar [17], Ashraf [18], and Rashidi [19] have contemplated the 
micropolar liquid through permeable channel utilizing Semi-numerical and numerical strategies for 
suction or injection. Later Xin-hui Si et al., [20] have studied the above problem with expanding and 
contracting walls. 

However, the previous literature on micropolar fluids flow between porous boundaries has been 
limited to no-slip boundary conditions. Beavers and Joseph [21] in their mass efflux experiments 
proved the existence of slip at the porous boundaries. The historical background to these Beavers - 
Joseph conditions were also reported by Nield [22]. In our present analysis we considered the slip 
boundary conditions at the porous wall and obtained the numerical solution for micropolar flow in 
channel using an implicit Keller-box method. The Keller box method is an implicit scheme with 
second-order accuracy in both space and time. This scheme differs from other techniques, where the 
second and higher order derivatives are replaced by first order derivatives through the introduction 
of additional variables, which results in a system of first order equations. The finite difference 
approximations to these derivatives results in an algebraic system involving unknown grid points at 
three levels. The resulting system of equations is a block tri-diagonal system and can be solved with 
the general block tri-diagonal algorithm. Keller [23] used the above scheme for solving diffusion 
problems, but it has subsequently been applied to a broad class of problems. A sketch of applications 
of this box scheme to a variety of boundary layer flow problems is given in [24-26]. This technique is 
used to solve the present problem and the effects of various pertinent parameters upon the flow 
field are presented.  

Organization of the present paper proceeds as follows. The formulation of problem is given in 
section (2). In section (3) we give the Keller-box solution of the governing equation which is described 
in detail. Section (4) is devoted to discussion of various results for all physical parameters. 

 
2.  Mathematical Formulation of the Problem 
 

 Let us consider an incompressible laminar flow of a micropolar fluid through two infinite parallel 
porous channel separated by a distance 2ℎ (Figure 1). Let the magnitude of uniform velocity of 
suction at channel walls be 𝑉0. Considering (𝑥, 𝑦) coordinate system, with center of channel axis as 
the origin, with 𝑥 axis is in a plane parallel to channel walls and 𝑦 axis is perpendicular it.  
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Fig. 1. Geometry of micropolar fluid flow through a porous channel 

 
The velocity and micro-rotation of the flow are,  

 
𝑢𝑥 = 𝑢(𝑥, 𝑦), 𝑢𝑦 = 𝑣(𝑥, 𝑦), 𝑢𝑧 = 0 (1) 

 
𝜈𝑥 = 𝜈𝑦 = 0, 𝜈𝑧 = 𝜈(𝑥, 𝑦) (2) 

 
The equations of continuity and momentum are given as follows 

 
∂𝑢

∂𝑥
+

1

ℎ

∂𝑣

∂𝜂
= 0 (3) 

 

𝜌(𝑢
∂𝑢

∂𝑥
+

𝑣

ℎ

∂𝑢

∂𝜂
) = −

∂𝑝

∂𝑥
+

𝑘

ℎ

∂𝜈

∂𝜂
+ (𝜇 + 𝑘)(

∂2𝑢

∂𝑥2 +
1

ℎ2

∂2𝑢

∂𝜂2) (4) 

 

𝜌(𝑢
∂𝑣

∂𝑥
+

𝑣

ℎ

∂𝑣

∂𝜂
) = −

∂𝑝

ℎ ∂𝜂
− 𝑘

∂𝜈

∂𝑥
+ (𝜇 + 𝑘)(

∂2𝑣

∂𝑥2 +
1

ℎ2

∂2𝑣

∂𝜂2) (5) 

 

𝜌𝑗(𝑢
∂𝜈

∂𝑥
+

𝑣

ℎ

∂𝜈

∂𝜂
) = 𝛾(

∂2𝜈

∂𝑥2 +
1

ℎ2

∂2𝜈

∂𝜂2) + 𝑘(
∂𝑣

∂𝑥
−

1

ℎ

∂𝑢

∂𝜂
) − 2𝑘𝜈 (6) 

 

where, 𝜂 =
𝑦

ℎ
, 𝜌 is the density of fluid, 𝑝 is the pressure, 𝑗 is the microinertia, 𝜇 is the coefficient of 

viscosity, 𝑘 and 𝛾 are material constants of micropolar fluid. 
For velocity slip at the porous wall, we incorporate the slip conditions due to Beavers and Joseph 

[14], that is slip velocity at porous boundary is proportional to wall shear rate and is given by, 
  

𝑢(𝑥,±1) = 𝑢slip = −𝜙
∂𝑢

∂𝜂
 (7) 

 

where 𝜙 =
√𝐾

𝛼ℎ
, in which 𝛼 is a dimensionless constant which depends on porous material and 𝐾 is 

the permeability. Eq. (7) reduces to no-slip condition if 𝜙 = 0. 
The other appropriate boundary conditions for the governing problem are,  
 

𝑣(𝑥,±1) = ±𝑣0, 𝜈(𝑥,±1) = 0 (8) 
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Assuming a suitable stream function satisfying from Eq. (3) to (5), the similarity solutions can be 
written as,  
 

𝑢 = (𝑣0 − 𝜈0
𝑥

ℎ
)

𝑑𝑓

𝑑𝜂
, 𝑣 = 𝜈0𝑓(𝜂)  

 

𝜈 =
1

ℎ
(𝑈0 − 𝑉0

𝑥

ℎ
)𝑔(𝜂) (9) 

 
where, 𝑈0 is the average velocity at the entry of flow. Eq. (4) to (6) can be reduced to,  
 
∂𝑝

∂𝑥
=

𝜇

ℎ2 (𝑈0 − 𝑉0
𝑥

ℎ
)[(1 + 𝑅)𝑓′′′ + 𝑅𝑔′ + 𝑆(𝑓′2 − 𝑓𝑓′′)] (10) 

 
∂𝑝

∂𝜂
=

𝜇𝑉0

ℎ
((1 + 𝑅)𝑓′′ + 𝑅𝑔 − 𝑆𝑓𝑓′) (11) 

 
𝐴𝑔′′ − 𝑅𝑓′′ − 2𝑅𝑔 = 𝐵𝑆(𝑓𝑔′ − 𝑔𝑓′) (12) 

 

where, the suction Reynolds number is 𝑆 =
𝜌𝑉0ℎ

𝜇
, 𝑅 =

𝑘

𝜇
, 𝐴 =

𝛾

𝜇ℎ2 , 𝐵 =
𝑗

ℎ2 are the micropolar 

parameters. The effects of microrotation on velocity and the couple stress on microrotation are given 
by the parameters 𝑅 and 𝐴 respectively. Eliminating pressure from Eq. (10) and (11) we have,  
 
𝑑

𝑑𝜂
[(1 + 𝑅)𝑓′′′ + 𝑅𝑔′ + 𝑆(𝑓′2 − 𝑓𝑓′′)] = 0 (13) 

 
implies,  
 
(1 + 𝑅)𝑓′′′ + 𝑅𝑔′ + 𝑆(𝑓′2 − 𝑓𝑓′′) = 𝑐(constant) (14) 

 
on differentiation,  
 
(1 + 𝑅)𝑓′′′′ + 𝑅𝑔′′ + 𝑆(𝑓′𝑓′′ − 𝑓𝑓′′′) = 0   (15) 

 
The corresponding boundary conditions in (7) take the form,  

 
𝑓′(±1) = −𝜙𝑓′′(±1), 𝑓(±1) = ±1, 𝑔(±1) = 0 (16) 

 
where 𝜙 is the velocity slip coefficient. The dimensionless axial velocity and the microrotation are, 
  

𝑢̅ =
𝜌𝑢ℎ

𝜇
= (

𝑅𝑒𝜉

4
− 𝑆𝑋)𝑓′(𝜂) (17) 

 
and  
 

𝜈̅ =
𝜌𝜈ℎ2

𝜇
= (

𝑅𝑒𝜉

4
− 𝑆𝑋)𝑔(𝜂) (18) 
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where 𝜉 =
1

𝑅+2
(

3𝐴

𝑅+2
(1 − 𝑞  𝑐𝑜𝑡ℎ  𝑞) + 2),  𝑞 = √

𝑅(𝑅+2)

𝐴(1+𝑅)
,  𝑅𝑒 =

4𝑈0𝜌ℎ

𝜇
 denotes Reynolds number at 

the flow entry of channel, and 𝑋 =
𝑥

ℎ
. 

The non-dimensional stream function describing the flow can be written as,  
 

𝜓̅ =
𝜓

ℎ𝑉0
= (𝜉 −

4𝑆𝑋

𝑅𝑒
)𝑓(𝜂) (19) 

 
The expression for pressure difference in the channel is given by,  

 

𝐶𝑝 =
(𝑝(0,𝜂)−𝑝(𝑥,𝜂))ℎ2𝜌

𝜇2 =
−𝑐𝑋

4
(𝑅𝑒𝜉 − 2𝑆𝑋) (20) 

 
Similarly, coefficient of shear stress 𝐶𝑓 and couple stress 𝐶𝑚   at the walls of the channel are 

respectively,  
 

𝐶𝑓 = (1 + 𝑅)(
𝑅𝑒𝜉

4
− 𝑆𝑋)𝑓′′(±1) (21) 

 

𝐶𝑚 = 𝐴(
𝑅𝑒𝜉

4
− 𝑆𝑋)𝑔′(±1) (22) 

 
Since the flow is symmetric with respect to the center line, boundary conditions in Eq. (16) 

reduces to,  
 
𝑓′′ = 𝑓 = 𝑔 = 0,    at  𝜂 = 0 

  
𝑓′ = −𝜙𝑓′′, 𝑓 = 1, 𝑔 = 0,    at  𝜂 = 1   (23) 

 
The governing Eq. (12) and (15) are not amenable to solve analytically, in a closed form solution. 

Thus, numerical solution is obtained using Keller-box scheme. In the following section we have 
elaborated in detail about Keller-box method.  
 
3.  Method of Solution 
 

The system of non-linear coupled ordinary equations represented by Eq. (12) and (15) for 
different values of micropolar parameter 𝑅 and suction Reynolds number 𝑆 are developed using 
Newtons linearization technique. The solution procedure first uses finite difference approximations 
and solves over a box scheme. This method is also called Keller-box technique. We initialize the 
procedure by writing in terms of system of first order equations by introducing new variables,  

 
𝑢 = 𝑓′, 𝑣 = 𝑓′′, 𝑤 = 𝑓′′′,    ℎ = 𝑔′ (24) 

 
The two coupled higher order differential equations and the boundary conditions may be 

transformed to six equivalent first order differential equation and boundary conditions respectively 
are given below.  
 
𝑓′ = 𝑢,    𝑢′ = 𝑣,    𝑣′ = 𝑤,    𝑔′ = ℎ  
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𝑤′ =
−𝑅

(1+𝑅)
ℎ′ −

𝑆

1+𝑅
(𝑢𝑣 − 𝑓𝑤)  

 

ℎ′ =
𝐵𝑆

𝐴
(𝑓ℎ − 𝑢𝑔) +

𝑅

𝐴
𝑣 +

2𝑅

𝐴
𝑔 (25) 

 
And the boundary conditions are,  

 
at    𝜂 = 0,    𝑓 = 0,    𝑣 = 0,    𝑔 = 0  
at    𝜂 = 1,    𝑓 = 1,    𝑢 = −𝜙𝑣,    𝑔 = 0  (26) 

 
We initiate discretization process by writing the finite difference approximations of the ordinary 

differential equations in Eq. (25) as,   
 

𝑓𝑗 − 𝑓𝑗−1 =
𝜂𝑗

2
(𝑢𝑗 + 𝑢𝑗−1) (27) 

 

𝑢𝑗 − 𝑢𝑗−1 =
𝜂𝑗

2
(𝑣𝑗 + 𝑣𝑗−1) (28) 

 

𝑣𝑗 − 𝑣𝑗−1 =
𝜂𝑗

2
(𝑤𝑗 + 𝑤𝑗−1) (29) 

 

𝑔𝑗 − 𝑔𝑗−1 =
𝜂𝑗

2
(ℎ𝑗 + ℎ𝑗−1) (30) 

 

𝑤𝑗 − 𝑤𝑗−1 =
−𝜂𝑗𝑅

1+𝑅
(ℎ𝑗 − ℎ𝑗−1) −

𝜂𝑗𝑆

4(1+𝑅)
[(𝑢𝑗 + 𝑢𝑗−1)(𝑣𝑗 + 𝑣𝑗−1) − (𝑓𝑗 + 𝑓𝑗−1)(𝑤𝑗 + 𝑤𝑗−1)] (31) 

 

ℎ𝑗 − ℎ𝑗−1 =
𝜂𝑗𝐵𝑆

4𝐴
[(𝑓𝑗 + 𝑓𝑗−1)(ℎ𝑗 + ℎ𝑗−1) − (𝑢𝑗 + 𝑢𝑗−1)(𝑔𝑗 + 𝑔𝑗−1)] −

𝑅𝜂𝑗

2𝐴
(𝑣𝑗 + 𝑣𝑗−1) 

+
2𝜂𝑗𝑅

2𝐴
(𝑔𝑗 + 𝑔𝑗−1) (32) 

 
We introduce Newton’s method by linearizing the system of equations using following iterates,  

 

𝑓𝑗
(𝑖+1)

= 𝑓𝑗
(𝑖)

+ 𝛿𝑓𝑗
(𝑖)

 (33) 

 

𝑢𝑗
(𝑖+1)

= 𝑢𝑗
(𝑖)

+ 𝛿𝑢𝑗
(𝑖)

 (34) 

 

𝑣𝑗
(𝑖+1)

= 𝑣𝑗
(𝑖)

+ 𝛿𝑣𝑗
(𝑖)

 (35) 

 

𝑤𝑗
(𝑖+1)

= 𝑤𝑗
(𝑖)

+ 𝛿𝑤𝑗
(𝑖)

 (36) 

 

𝑔𝑗
(𝑖+1)

= 𝑔𝑗
(𝑖)

+ 𝛿𝑔𝑗
(𝑖)

 (37) 

 

ℎ𝑗
(𝑖+1)

= ℎ𝑗
(𝑖)

+ 𝛿ℎ𝑗
(𝑖)

 (38) 
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Substituting the iterates in Eq. (33) to (38) into Eq. (27) to (32) and neglecting the terms that are 
quadratic in (𝛿𝑓𝑗

𝑛 , 𝛿𝑢𝑗
𝑛 , 𝛿𝑣𝑗

𝑛 , 𝛿𝑤𝑗
𝑛 , 𝛿𝑔𝑗

𝑛 , 𝛿ℎ𝑗
𝑛 , ), and rewriting, we get the following system of 

algebraic equations.   
 
𝛿𝑓𝑗 − 𝛿𝑓𝑗−1 − 𝑑𝑗(𝛿𝑢𝑗 + 𝛿𝑢𝑗−1) = (𝑟1)𝑗  (39) 

 
𝛿𝑢𝑗 − 𝛿𝑢𝑗−1 − 𝑑𝑗(𝛿𝑣𝑗 + 𝛿𝑣𝑗−1) = (𝑟2)𝑗 (40) 

 
𝛿𝑣𝑗 − 𝛿𝑣𝑗−1 − 𝑑𝑗(𝛿𝑤𝑗 + 𝛿𝑤𝑗−1) = (𝑟3)𝑗 (41) 

 
𝛿𝑔𝑗 − 𝛿𝑔𝑗−1 − 𝑑𝑗(𝛿ℎ𝑗 + 𝛿ℎ𝑗−1) = (𝑟4)𝑗 (42) 

 
(𝑎1)𝑗𝛿𝑤𝑗 + (𝑎2)𝑗𝛿𝑤𝑗−1 + (𝑎3)𝑗(𝛿ℎ𝑗 + 𝛿ℎ𝑗−1) + (𝑎4)𝑗(𝛿𝑢𝑗 + 𝛿𝑢𝑗−1) 

+(𝑎5)𝑗(𝛿𝑣𝑗 + 𝛿𝑣𝑗−1) + (𝑎6)𝑗(𝛿𝑓𝑗 + 𝛿𝑓𝑗−1) = (𝑟5)𝑗 (43) 

 
(𝑏1)𝑗𝛿ℎ𝑗 + (𝑏2)𝑗𝛿ℎ𝑗−1 + (𝑏3)𝑗(𝛿𝑓𝑗 + 𝛿𝑓𝑗−1) + (𝑏4)𝑗(𝛿𝑔𝑗 + 𝛿𝑔𝑗−1) 

+(𝑏5)𝑗(𝛿𝑣𝑗 + 𝛿𝑣𝑗−1) + (𝑏6)𝑗(𝛿𝑢𝑗 + 𝛿𝑢𝑗−1) = (𝑟6)𝑗 (44) 

 
where,  
 

(𝑎1)𝑗 = 1 −
𝑑𝑗𝑆

2(1+𝑅)
(𝑓𝑗 + 𝑓𝑗−1) (45) 

 
(𝑎2)𝑗 = −2 + (𝑎1)𝑗 (46) 

 

(𝑎3)𝑗 =
𝑅

1+𝑅
 (47) 

 

(𝑎4)𝑗 =
−𝑆𝑑𝑗

2(1+𝑅)
(𝑣𝑗 + 𝑣𝑗−1) (48) 

 

(𝑎5)𝑗 =
𝑆𝑑𝑗

2(1+𝑅)
(𝑢𝑗 + 𝑢𝑗−1) (49) 

 

(𝑎6)𝑗 =
−𝑆𝑑𝑗

2(1+𝑅)
(𝑤𝑗 + 𝑤𝑗−1) (50) 

 

(𝑏1)𝑗 = 1 −
𝑑𝑗  𝐵𝑆

2𝐴
(𝑓𝑗 + 𝑓𝑗−1) (51) 

 
(𝑏2)𝑗 = −2 + (𝑏1)𝑗 (52) 

 

(𝑏3)𝑗 =
−𝐵𝑑𝑗𝑆

2𝐴
(ℎ𝑗 + ℎ𝑗−1) (53) 

 

(𝑏4)𝑗 =
𝐵𝑆𝑑𝑗

2𝐴
(𝑢𝑗 + 𝑢𝑗−1) −

2𝑅𝑑𝑗

𝐴
 (54) 

 

(𝑏5)𝑗 =
𝑑𝑗𝑅

𝐴
 (55) 
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(𝑏6)𝑗 =
𝑑𝑗𝐵𝑆

2𝐴
(𝑔𝑗 + 𝑔𝑗−1) (56) 

 
and  
 
(𝑟1)𝑗 = 𝑑𝑗(𝑢𝑗 + 𝑢𝑗−1) + 𝑓𝑗−1 − 𝑓𝑗  (57) 

 
(𝑟2)𝑗 = 𝑑𝑗(𝑣𝑗 + 𝑣𝑗−1) + 𝑢𝑗−1 − 𝑢𝑗 (58) 

 
(𝑟3)𝑗 = 𝑑𝑗(𝑤𝑗 + 𝑤𝑗−1) + 𝑣𝑗−1 − 𝑣𝑗 (59) 

 
(𝑟4)𝑗 = 𝑑𝑗(ℎ𝑗 + ℎ𝑗−1) + 𝑔𝑗−1 − 𝑔𝑗  (60) 

 

(𝑟5)𝑗 = 𝑤𝑖−1 − 𝑤𝑖 −
𝑅

1 + 𝑅
(ℎ𝑖 − ℎ𝑖−1) −

𝑆𝑑𝑗

2(1 + 𝑅)
[(𝑢𝑖 + 𝑢𝑖−1)(𝑣𝑖 + 𝑣𝑖−1) 

−(𝑓𝑖 + 𝑓𝑖−1)(𝑤𝑖 + 𝑤𝑖−1)] 
  (61) 
 

(𝑟6)𝑗 =
𝐵𝑆𝑑𝑗

2𝐴
[(𝑓𝑖 + 𝑓𝑖−1)(ℎ𝑖 + ℎ𝑖−1) − (𝑢𝑖 + 𝑢𝑖−1)(𝑔𝑖 + 𝑔𝑖−1)] 

+
𝑑𝑗𝑅

𝐴
(𝑣𝑖 + 𝑣𝑖−1) +

𝑑𝑗2𝑅

𝐴
(𝑔𝑖 + 𝑔𝑖−1) + ℎ𝑖−1 − ℎ𝑖  (62) 

 
The boundary conditions takes the form,  
 
𝛿𝑓0 = 0, 𝛿𝑣0 = 0, 𝛿𝑔0 = 0, 𝛿𝑓𝐽 = 0, 𝛿𝑢𝐽 = 0, 𝛿𝑔𝐽 = 0 

 
The linearized system of Eq. (39) to (44) have a block tri-diagonal structure which can be solved 

with the help of block elimination method. In vector -matrix form, Eq. (39) to (44) can be written as, 
 

𝐴𝛿 = 𝑟 (63) 
 
where,  
 

𝐴 =

[
 
 
 
 
[𝐴1] [𝐶1]     0 …       0       0       0

[𝐵1] [𝐴2] [𝐶2] …       0       0       0
    ⋮  ⋱ ⋱ ⋱      ⋱      ⋱       ⋮
   0    0     0 … [𝐵𝐽−1] [𝐴𝐽−1] [𝐶𝐽−1]

   0     0     0 …       0 [𝐵𝐽] [𝐴𝐽] ]
 
 
 
 

 (64) 

 

𝛿 = [

[𝛿1]
  ⋮
[𝛿J]

]     𝑟 = [

[𝑟1]
  ⋮
[𝑟J]

] (65) 

 
where in Eq. (64) the elements are defined by, 
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[𝐴𝑗] =

[
 
 
 
 
 
 
−𝑑𝑗 0 0 1 0 0

−1 0 0 0 −𝑑𝑗 0

0 −𝑑𝑗 0 0 1 0

0 0 −𝑑𝑗 0 0 1

(𝑎4)𝑗 (𝑎2)𝑗 −(𝑎3)𝑗 (𝑎6)𝑗 (𝑎5)𝑗 0

(𝑏6)𝑗 0 (𝑏2)𝑗 (𝑏3)𝑗 (𝑏5)𝑗 (𝑏4)𝑗]
 
 
 
 
 
 

,   1 ≤ 𝑗 ≤ 𝐽 − 1    

[𝐴𝐽] =

[
 
 
 
 
 
 
−𝑑𝐽 0 0 0 0 0

−1 0 0 −𝑑𝐽 0 0

0 −𝑑𝐽 0 1 −𝑑𝐽 0

0 0 −𝑑𝐽 0 0 −𝑑𝐽

(𝑎4)𝐽 (𝑎2)𝐽 −(𝑎3)𝐽 (𝑎5)𝐽 (𝑎1)𝐽 (𝑎3)𝐽

(𝑏6)𝐽 0 (𝑏2)𝐽 (𝑏5)𝐽 0 (𝑏1)𝐽 ]
 
 
 
 
 
 

    

 

[𝐵𝑗] =

[
 
 
 
 
 
 
0 0 0 −1 0 0
0 0 0 0 −𝑑𝑗 0

0 0 0 0 1 0
0 0 0 0 0 −1
0 0 0 (𝑎6)𝑗 (𝑎5)𝑗 0

0 0 0 (𝑏3)𝑗 (𝑏5)𝑗 (𝑏4)𝑗]
 
 
 
 
 
 

,   2 ≤ 𝑗 ≤ 𝐽    

 

[𝐶𝑗] =

[
 
 
 
 
 
 
−𝑑𝑗 0 0 0 0 0

1 0 0 0 0 0
0 −𝑑𝑗 0 0 0 0

0 0 −𝑑𝑗 0 0 0

(𝑎4)𝑗 (𝑎1)𝑗 (𝑎3)𝑗 0 0 0

(𝑏6)𝑗 0 (𝑏1)𝑗 0 0 0]
 
 
 
 
 
 

,   1 ≤ 𝑗 ≤ 𝐽 − 1    

 
[𝛿𝑗] = [𝛿𝑢𝑗−1  𝛿𝑤𝑗−1  𝛿ℎ𝑗−1  𝛿𝑓𝑗   𝛿𝑣𝑗  𝛿𝑔𝑗]𝑇,   1 ≤ 𝑗 ≤ 𝐽 − 1  

 
and  

 
[𝛿𝐽] = [𝛿𝑢𝐽−1  𝛿𝑤𝐽−1  𝛿ℎ𝐽−1  𝛿𝑣𝐽  𝛿𝑤𝐽  𝛿ℎ𝐽]𝑇   

 
[𝑟𝑗] = [(𝑟1)𝑗   (𝑟2)𝑗  (𝑟3)𝑗  (𝑟4)𝑗  (𝑟5)𝑗   (𝑟6)𝑗]𝑇,   1 ≤ 𝑗 ≤ 𝐽 

 
Now we write,  
 
𝐴 = 𝐿𝑢 (66) 
 
where, 
 

𝐿 = [

[𝛼1] 0 … 0 0

[𝐵1] [𝛼2] … 0 0
… ⋱ ⋱ … …
0 0 ⋯ [𝐵𝐽] [𝛼𝐽]

] ;   𝑢 =

[
 
 
 
 
[𝐼] [Γ1] 0 … 0 0

0 [𝐼] [Γ2] … 0 0
… … ⋱ ⋱ … …
0 0 0 … [𝐼] [Γ𝐽−1]

0 0 0 … 0 [𝐼] ]
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Here, [𝐼]  is unit matrix and [𝛼𝑖]  and  [Γ𝑖]  are 6 × 6 matrices whose elements are determined by 
the following equations. 
 
[𝛼𝑗] = [𝐴1] 

[𝐴1][Γ1] = [𝐶1] 
[𝛼𝑗] = [𝐴𝑗] − [𝐵𝑗][Γ𝑗−1],    𝑗 = 2,3,… , 𝐽 

[𝛼𝑗][Γ𝑗] = [𝐶𝑗],    𝑗 = 2,3,… , 𝐽 − 1 

 
Using Eq. (66) and (63) we have,  
 
𝐿𝑢𝛿 = 𝑟 (67) 

 
Defining 𝑢𝛿 = 𝑤,  we have,  
 
𝐿𝑤 = 𝑟 (68) 

 
where,  
 
𝑤 = [[𝑤1]  [𝑤2]  [𝑤3]  [𝑤4]  [𝑤5]  [𝑤6]  ]

𝑇 (69) 
 

and the [𝑤𝑗] are 6 × 1 column matrices. The elements 𝑤  can be solved from Eq. (68) 

 
[𝛼1][𝑤1] = [𝑟1] 
[𝛼𝑗][𝑤𝑗] = [𝑟𝑗] − [𝐵𝑗][𝑤𝑗−1] 

 
Once the elements of 𝑤  are found, solution for 𝛿 can be obtained using relations 

 
[𝛿𝐽] = [𝑤𝐽] 

[𝛿𝑗] = [𝑤𝑗] − [Γ𝑗][𝛿𝑗+1] 

 
Theses solution for 𝛿 can be used in Eq. (33) to (38) to find (𝑖 + 1)𝑡ℎ iteration. 

 
4.  Results and Discussions 
 

This section examines the influence of velocity slip on microploar fluid through a porous channel. 
Further, the effect of slip coefficient on velocity, pressure gradient, and microrotation for for 
different micropolar parameters and suction Reynolds number. The governing equations are 
rendered dimensionless and are solved by an efficient difference scheme, Keller-box method in 
conjugation with quasi-linearization process. Figure 2 to 9 explain variation of velocity and micro-
rotation for different micropolar parameter and slip coefficient. 

From Figure 2 and 3, it is seen that velocity profiles are flattened as Reynolds number 𝑆 or micro-
rotation parameter 𝑅 increases. However, a general decrease in the magnitude of velocity profiles 
are noticed with an increase in the slip coefficient. 

Figure 4 and 5 shows that micro-rotation profiles 𝜈̅ increases with decrease in 𝑆 upto 𝜂 = 0.6 and 
then decreases towards the wall by approaching to zero as 𝜂 → 1. Also, we note that micro-rotation 
profiles decreases in magnitude with an increase in slip coefficient 𝜙. 
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Fig. 2. Velocity profiles for different values of suction with 𝑋 = 6, for 
𝜙 = 0,0.1 

 

 
Fig. 3. Velocity profiles for different values of slip coefficient with 𝑋 =
7, for 𝑅 = 1,5 

 
Flow lines for various slip coefficient 𝜙 have been plotted in Figure 6 to 8. It is noticed that an 

increase in the value of microrotation parameter 𝑅 results in diminishing the distance of particle 
which are moving parallel to the walls of channel from the entry of flow. It is also evident that the 
same nature can be observed in the stream lines as slip coefficient, parameter 𝐴 and suction Reynolds 
number 𝑆 increases. The above behavior of curves shows that micro-rotation and slip coefficient 
plays a vital role in affecting the fluid flow. 
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Fig. 4. Micro-rotation profiles for different values of suction with 𝑋 = 6, 
for 𝜙 = 0,0.1 

 

 
Fig. 5. Micro-rotation profiles for different values of slip coefficient with 
𝑋 = 7, for 𝑅 = 1,5 

 
Magnitude of the pressure coefficient 𝐶𝑝 for different slip velocity and suction Reynolds number 

𝑆 are shown in Figure 9. From the graph, it is seen that an increase in the value of slip coefficient 𝜙 
decreases the value of 𝐶𝑝. Further, it is also noticed that a large increment in 𝜙 significantly reduces 

the 𝐶𝑝. This trend is connected with diminution in the shear stress at the porous surface. 
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Fig. 6. Flow lines in the upper half of channel when 𝑆 = 2 and 𝜙 = 0 

 

 
Fig. 7. Flow lines in the upper half of channel when 𝑆 = 2 and 𝜙 = 0.3 
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Fig. 8. Effect of slip coefficient on flow lines in the upper half of 
channel for 𝑆 = 2, 𝑅 = 1   

 

   
Fig. 9. Effect of velocity slip on pressure coefficient 𝐶𝑝, for different 𝑆 and 𝜙 
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5. Conclusions 
 

From the above discussion, we conclude that the presence of micro-rotating elements with slip 
conditions at the porous boundary influences characteristics features of the flow. The problem of 
channel flow with micropolar fluid [16] is a special case of the present problem when slip coefficient 
reduces to zero. Also, that when micropolar parameter also reduces to zero, it is Berman [1] channel 
flow solution. The solution is in good agreement even for Newtonian fluid flow between porous 
channel with velocity slip [27].    
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