
 

Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 67, Issue 2 (2020) 27-39 

27 
 

 

Journal of Advanced Research in Fluid 

Mechanics and Thermal Sciences 

 

Journal homepage: www.akademiabaru.com/arfmts.html 
ISSN: 2289-7879 

 

Convergence Order Prediction of CVFEM Solutions Using the 
Richardson Extrapolation Method on Unstructured Grids  

 

Hasnat Mohammed1,*, Abdellah Belkacem1  

  
1 Laboratory of energy in arid areas (ENERGARID), Faculty of Science and Technology University of Bechar, BP 417, 08000 Bechar, Algeria 
  

ARTICLE INFO ABSTRACT 

Article history: 
Received 11 October 2019 
Received in revised form 11 December 2019 
Accepted 20 January 2020 
Available online 18 March 2020 

In this work, our proposed idea is based on using the Richardson Extrapolation (RE) 
method for predicting convergence the pth order solution on unstructured grids [1]. 
Practically, we want to analyze the variation the convergence order compared the 
solution accuracy numerically of the Control Volume Finite Element Method (CVFEMs) 
[2, 3]. To this effect, the proposed model a two-dimensional solving Navier-Stokes (N-
S) equations coupled with the energy equation, with an irregular domain using six 
cases different unstructured meshes. All the numerical results are presented and 
discussed; they have been obtained from our code FORTRAN program. 
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1. Introduction 
 

The problems of physical phenomena, concerning fluid mechanics, are described by partial 
differential equations. Generally, we are not able to solve them analytically, or with approximate 
numerical solutions. In the most common approaches, the simplest form of the equations described 
is generally used. Thus, to obtain an approximate numerical solution is a function of a discretization 
of the method, it is necessary to approximate these equations with the initial and boundary 
conditions, in the form of algebraic approximation equations. 

This algebraic approximation is the starting point of any numerical method, and the final point is 
the mathematical model. The best known, whose numerical methods are: Finite Control Volume 
method [4,5], Finite Difference method [6-8] and Finite Element method [9-11], etc. All these 
numerical methods mentioned above have disadvantages and advantages in solving convection-
diffusion problems. Among the disadvantages, instability at convergence towards a satisfactory 
digital solution may be difficult to achieve by hard non-linearities under convection terms. In 
addition, with the lack of information, when applied in a complex geometry [12-14] , the sensitive 
variations in fluid properties [12-18], etc., leads to the expensive solution, is sometimes impossible. 
To avoid or minimize these disadvantages, researchers are researching a new idea based on hybrid 
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numerical methods, for example, the approximation of the solution of the diffusion equation by the 
hybrid called the Finite Control Volume Difference method [19]. 

In this study, we focused on a method called (CVFEM) which is a hybrid of two methods, the Finite 
Control Volume method, and the two-dimensional Finite Element method. From the deep point of 
view, the effect of combining convection and diffusion in solving a fluid flow problem by the action 
of external forces can be determined by surface forces such as pressure and body forces by gravity  
[2-22],  sometimes this forces represent by combining the electromagnetic and gravitational  forces 
[17-26]. It is well known that the accuracy of numerical solutions depends on the quality of the 
discretization (the numerical method used). Therefore, each numerical solution contains errors; it is 
important to know how accurate the errors are, how effective the solution is and whether it is 
acceptable in the application concerned [27,28]. 

The Richardson Extrapolation method, first applied by [29]. The basic idea is to combine two 
discrete solutions f1 and f2, for two different fine and coarse discrete grids with spacing h1 and h2, 
respectively. In such a way that, eliminate the leading order error, and get exact solution value with 
great accuracy [30]. From a mesh size perspective, you can apply Richardson Extrapolation in uniform 
and non-uniform grids. It is generally possible, by a second-order process of the Richardson 
Extrapolation method, with three successive grids, to calculate the order convergence in higher order 
terms, and to calculate the exact solution, provided that all three are sufficiently fine [1,30,31]. It is 
therefore interesting to apply this process in this paper.  Although the errors in the solutions are of a 
different order of magnitude [32]. In addition, the solution error is close to the relative error and the 
actual fractional error; with the two latter, the convergence index of the fine grid can be determined. 
The objective is to apply all the above, focusing on the numerical method used in particular on the 
application of Richardson's extrapolation to evaluate the order of convergence on irregular geometry 
with unstructured grids.  
 
2. Governing Equations 
 

In this present research, the fluid is assumed to be steady-state, two-dimensional, laminar, 
Incompressible Newtonian fluid. The equations that govern a dependent variable   will be written 

into the according to the compact [33].  
 

.  = J S               (1)  

 

Where S the source term, and J is the overall flow consisting of the diffusion and convection flow. 

So, J  writing in this form.       
               

   J V                   (2) 

 

Where  and V representing the density and velocity of the fluid, respectively.  equals the thermal 

diffusivity in the energy equation, on the other hand, in momentum equations is the dynamic 

viscosity. J  can be expressed as 
 

x yJ J i J j                                                                                                                    (3) 
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Eq. (3) is represented the overall flow in the Cartesian components compared the i and j the unit 

vector. 
In this context, we present the Control-Volume Finite-Element Method (CVFEM), by the 

formulation adopted; for that, Eq. (1) permitted the departure.  
 

 
yx

JJ
S

x y



 

 
             (4)    

 

When projecting the velocity using the two components, in the x, y directions, respectively. So, xJ

and 
yJ is given by  

 

 ,          x yJ u J v
x y

 
   

 
   

 
          (5) 

 

If integrated the Eq. (5) to Eq. (4), with taking it as a consideration  ,u v  , add on the right side of 

Eq. (4) the gradient of pressure  ,p P x P y      , this gives the Stokes equations for 

Incompressible flow, All terms in Eq. (4) are written according to the unknowns related to the 
dependent variables and in the of partial derivatives form; more of that, Eq. (4) is presented in a 
highly conservative in the two-direction x, y. But with existed source terms push in the weak 
direction. 

 
3. Discretization of Numerical Method 
 

As part of discretization Eq. (4) by the method concerned, call the Volume Finite Element Method 
(CVFEMs). Of point seen numerical, we used the process co-located, equal-order [2-20], that means 
that all interesting values for the dependent variables are stockpile at nodes interested. For the mesh 
of the domain are realized by a mesh with three-node triangles non-uniform and with integrating Eq. 
(4) on over control volume associated at each node [34] allows giving. The final algebraic 
approximation to the total flux in aoc of the element internal ijk as follows. 

 

. . ji k

o c

i k i i j j k k
iaoc

a o

J n ds J n ds S dV C C C D
  

                 (6a) 

 
Likewise, can have the algebraic approximation for the boundary node l for element l l-1K 
 

1

1

1

1 1 1 1
1

. . .
l

l l k

l

oa c

l K K l l l l k k
lal c

l a o

J n ds J n ds J n ds S dV C C C D
   

   






   


                            (6b)                           
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Fig. 1. Schematic representation of notation used: (a) for each node inside; 
(b) node the boundary conditions 

 

 All calculations with reference to Figure 1, and after summing up all cell face fluxes and sources 
for both boundary nodes and internal nodes in Eq. (6a) and Eq. (6b), the discretized is given by 
Acharya et al., [35] the following general form. 
 

, ,

,

i i nb i nb i i

nb i

a a D                 (7) 

 

The coefficient 
ia are determined by the neighbor coefficients ,nb ia . So, if we using the process 

defined by Eq. (7) into obtained the velocity components for the momentum conservation equations. 
By following, to the estimation and calculation of convective terms with a procedure called "Mass-
Weighted Upwind" scheme, the advantage this scheme tailoring of the positive coefficients in the 
algebraic discretization equation [19-36]. With the same idea, of Eq. (6a) and Eq. (6b) is applicated 

and used the mass flux vector J equal V , we get the discretized equation of pressure, the detail in 

the reference [19] see Table 1. 
 

Table 1 
Representation of the velocity components 
and pressure 

i  ,nb i  
ia

 
,nb ia

 iD  

iu  ,nb iu  u

ia  
,

u

nb ia   
i

u

i i
V

b P x V    

iv  ,nb iv  v

ia  
,

v

nb ia   
i

v

i i
V

b P y V    

ip  ,nb ip  p

ia  
,

p

nb ia  
p

iD  

 

In Table 1, the terms  
iV

P x  and  
iV

P y   are the pressure gradients associated with the 

volume-averaged values the total volume iV . Of more, the terms u

ib  and v

ib  are the volumetric 

integral of all body forces. For p

iD  in pressure are the function of the pseudo-velocity fields. 
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4. Richardson Extrapolation Method 
 
We can determine the error estimation discretization on grid size level k by the difference enters 

the exact solution and the discrete solution; the error kEr , is given by: 

 

 =   k exact kEr                 (8) 

 

where exact is the exact solution and k is a discrete solution value on grid size level k. You can use 

Eq. (8) point-by-point basis locally if your domain has of the global quantities. Other writing, using 
the Richardson Extrapolation (RE) method [1-38], basic on the Taylor expansion in the discretization 
space with the order of the truncation error term; as follows. 
 

 1=  + O      1,2,3,.....p p

exact k p k kh h k etc               (9) 

 

The term p

p kh must dominate the discretization error, and  1O p

kh  are the higher-order terms. For 

p is the order of the truncation error and expressed the convergence order of the numerical method 

used. Can be replacing exact by the solution extrapolated ext when kh is small. 

In this case, select three significantly different set of grids size as 1   1,2k kh h k   (coarse > fine), 

also be verified in the asymptotic grid convergence range. As can defining the difference between a 
solution variable on mesh k+1 and mesh k levels as 

 

1, 1k k k k           1, 2k                         (10) 

 
It is desirable that the grid refinement factor are, 

,f c coarse finer h h , and the variable  critical of the 

simulation numerical being reported. The pth order of the convergence the scheme can be expressed 
as  
 

   21
32

32

log log   P r F p




 
  
 

                     (11a)  

 
Where the term  F p  equal 

 

       21 32 32 = log 1 1 logp pF p r r r                     (11b) 

 
If the higher-order terms are neglected, and then solving the coefficient 

p . In the end, the exact 

solution exact  results in  

 

   1 1 1,  1p

exact k k k k kr     
   
 

   1, 2k                       (12) 

 
The Richardson extrapolation (RE) method based on the results in computing the numerical solutions 

of our method (1 3)k k    which continuous of the initial and boundary values, on kh   different 

nested uniform or non-uniform mesh or grids of size [1-39]. In that case with we have 1h  and 3h  are 

the coarsest grid the finest one, respectively. Can be given by 
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 
1/2

1

1 N

k i

i

h V
N 

 
  
 
   k = 1,2,3                      (13)   

 

In the above expression, iV  the total of the sub-control volume surrounding at node i, for N is the 

total number of control volume used for the simulation.  
To give a quick and easy way of comparing the result values by this method and using the 

Richardson Extrapolation (RE) method for each quantity presented in this paper, we have added 
computed the Grid Convergence Index the fine grid. 
 

4.1 Grid Convergence Index the Fine Grid   
 

In general, the measurement of error of the fine grid solution is an approximate relative error 
for any two grids is defined as 

 

  a f c fEr                             (14) 

 

Where c and 
f are the solutions computed with the coarse and the fine grids, respectively. As can 

be defined, the Actual fractional error or Extrapolated relative error f

extA for the fine grid solution.   

 
                       (15)  

 
The computation of the Convergence Index the fine grid,

fGCI is suggested by the first author [1-30], 

he has determined their expression with by the relative error aEr is equal to 

 

 ,3 1a p

f a f cGCI Er r                       (16a)  

 
If we use Eq. (12) in Eq. (15) and with the principle the Convergence Index the fine grid [1-30], so the 

Grid Convergence Index extrapolated ext

fGCI is 

 

   , ,3 1ext f p p

f ext f c c f f cGCI A r r    
 

                  (16b) 

 
Thus, the results the Richardson's extrapolation (RE) method can be used to compute an approximate 
relative error obtained on successively refined coarse grids Eq. (14). As a consequence, the 
Richardson extrapolation (RE) method can determine grid convergence index for the Fine Grid 
Solution (GCI)f depending on relative and Actual fractional error, based on the grid refinement factor 
with P order accurate solution of the fine grid Eq. (16a) and Eq. (16b). 
 
5. Convergence Analysis in Two-Dimensional 

 
In this study, we consider the flow state and the fluid-property cited before in the second section 

for applied in a cavity with a vertical complex wavy wall of height L, with  the fundamental 
wavelength associated with the wavy surface, and a the amplitude of the complex wavy surface, 

  f

ext ext f extA    
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average width W as shown in Figure 2. In the Table 2 below, the following nondimensionalization was 
employed: 

 
* 2

2

-    
 ,  ,  ,  ,  , CT Tx y u v P

X Y U V P
W W T

  


  
     


,  = ,   = 

a
Ar

W W


 ,  =  

L
A

W
 

 

Where Ar , and  A are surface wavelength waviness, surface amplitude waviness and the 

geometric quantity aspect ratio, respectively. The physical magnitudes nondimensionalization: 

pK C  , the thermal diffusivity, Pr =  , the Prandtl number, and 3 , Ra g T    the 

Rayleigh number. The flux and the source term are written in dimensionless form see Table 2.  
 

Table 2 
Summarize the system of the equations the fluid flow and 
heat transfer 

 xJ  yJ
                             

 S  
Continuity U  V  0 

X-momentum Pr .
U

UU Ar
X




  
Pr .

U
VU Ar

Y




                 
P

X



  

Y-momentum                        Pr .
V

UV Ar
X




  
Pr .

V
VV Ar

Y




             

PrP Ra

Y Ar



 
  

Energy U Ar
X







  
V Ar

Y







                     

0 

 

The associated, the velocity and temperature boundary conditions take the following form: 
 

0       1 sin 2   

0,   = 1 

Y
Y A X

Ar

U V

 



  
      

  

 

                                (17a) 

 

 0  , 1 1 sin 2   

0,  =0    

Y
Y A X

Ar

U V

  



  
        

  

 

                  (17b) 

 

 0 , 1 sin 2  1 1 sin 2   

0,  =0        

Y Y
Y X

Ar Ar

U V
Y

    



      
            

      


 



                          (17c) 

 

       1 sin 2  1 1 sin 2  

 0,   

Y Y
Y A X

Ar Ar

U V
Y

    



      
            

      


 



                 (17d) 
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Fig. 2. Physical model of vertical wavy enclosure 

 

The numerical results are presented with the fix of all the parameters geometrical as following  
 = 0.1, A =1, Ar = 0.3125 of the wavy surfaces. The procedure used in the solution of the nonlinear 

in coupled the equations see Table 2 the Sequential Iterative Variable Adjustment (SIVA) [20]. In 
every iteration cycle, the underrelaxation scheme is used in this method, in equations velocity equals 
0.6, for pressure in equation continuity no underrelaxation. Results accepted by convergence when 
the residuals the continuity equation and the momentum equations, were all less than 10-5 in all 
cases, the majority a simulations convergence between 150-1500 iterations and time 10 sec - 2h. The 
coding is done in FORTRAN Modular programming a maximum field length of 150 (octal) words, it 
runs on a computer Pentium Dual-Core CPU E5700 and 4,00 Go RAM 3.00 GHz. The control parameter 
is the average number convergence of Nusselt in the hot wall is calculated by the following 
expression. 
 

,

0

1
 = 

A

cg l cgNu Nu dl
A 

                        (18) 

 
where 

,l cgNu the convergence local Nusselt number at the curve length l. 

 
Solutions of the average Nusselt number were obtained for six case different grid size. Table 3 

illustrates the calculation procedure the Average Nusselt number Eq. (18) and the meshes used at 

the Rayleigh number of 3 4 510 ,10 ,10Ra  and 610 , and Pr  = 0.71. 
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Table 3 
Comparison of convergence average Nusselt number on wavy hot wall for 

= 0.1, A = 1, Ar = 0.3125 the coarse to fine grids of size 

Ra  Case 
 

1

N

i

i

V


  kh  cgNu  Case 
 

1

N

i

i

V


  kh  cgNu  

103  1 0.01469 0,0135 1.217 4 0,00768 0,0070 1.295 
104    2.368    2.532 
105    4.659    5.039 
106    9.085    10.312 
103 2 0.01174 0,0108 1.248  5 0,00624 0,0056 1.312 
104    2.438    2.565 
105    4.837    5.11 
106    9.67    10.566 
103  3                        0.00927 0,0085       1.274  6                        0,00508   0,0045     1.327 
104    2.493    2.591 
105    4.962    5.152 
106    10.063    10.649 

 
6. Results and Discussion 
 

Application of the Richardson extrapolation uses various grids (coarse to fine) for giving the 
convergence order and extrapolated values the integral quantities. 

 
6.1 Influence on the Richardson Extrapolation Convergence Order 

 
In this section, we are interested to see the influence the extrapolated average Nusselt number 

values using Table 4 compared with the convergence orders. The general conclusion from Table 4, 
increase convergence orders parallel the values calculated by the Richardson Extrapolation method 
of the Average Nusselt number. As a consequence, when the convergence orders approximated to 
2.060 for cases (1,2,3) at Ra = 106 likewise for cases (4,5,6) is 2.431 at Ra = 105 corresponded stability 
of this number. Other by, for the values more than 2 e.g. cases (4,5,6) at  Ra = 106 we have a 1/100 
influence.  

 
Table 4 
Richardson extrapolation applied to average Nusselt number 

for  = 0.1 , A =1, Ar = 0.3125 

Ra  Cases used P            extNu  Cases used P          extNu  

103 1,2,3 1.136          1.356     4,5,6 0.562         1.444 
104  1.407          2.629              1.091         2.689 
105  1.875          5.181  2.431         5.213 
106  2 .060         10.676  5.205        10.689 
103 2,3,4 0.074          2.661            1,3,5 0.614          1.441 
104  0.709          2.781                0.962          2.709 
105  1.396          5.271          1.355          5.303 
106  1.260         11.157  1.232         11.308 
103 3,4,5                   1.252           1.367                2,4,6 0.763          1.409 
104  1.046           2.695                 0.953          2.707 
105  0.646           5.586    1.221          5.316 
106  0.176         17.150        1.370         11.070 
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6.2   Richardson Extrapolation of Uncertainty Estimates 
 
It is important to calculate various uncertainty estimates, who are in function of convergence 

order of this the numerical method used. The values calculated are of the estimations in the form of 
relative error and Extrapolated error of the fine grid solution, in order to establish the Convergence 
Index for Fine Grid Solution (GCI). The figure below represents all these variations for different 
combined grid size. 
 

 
 

(a) (b) 

 
 

(c) (d) 

  
(e) (f) 

Fig. 3. Variation of various uncertainty estimates with pth order of Convergence  = 0.1, A = 1, Ar = 

0.3125 
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It is shown in Figure 3 the Extrapolated errors are always superior to relative errors, therefore, 
the gap decreases with increasing the order of convergence. The same conclusion for the Grid 
Convergence Index relative errors compared with the Grid Convergence Index extrapolated. In 
Figures 3(c) and 3(d) the order of convergence less than 0.5 the Grid Convergence Index are more 
than 70% relative or extrapolated and the Actual fractional errors are more than 45%.  

 
7.  Conclusions 
 

In this paper, we use Richardson's theory of generalized extrapolation, which is based on the 
calculation, convergence order and refinement error estimator of the grid. In this latter the errors 
are integrated into the Grid Convergence Index the fine grid of Eq. (19a) or Eq. (19b) is presented in 
details. The three important findings are summarized below. 

For that, it has been proposed in the results the average Nusselt number at Ra=103-106, Pr =0.71 
the problem two-dimensional steady-state of fluid flow and heat transfer with the geometrical, the 
parameters wavy walls is  = 0.1, A=1, Ar= 0.3125.  

i. We encountered stability in computation, so these results are simultaneously good.  
ii. This method is second-order Convergence (the Mass-Weighted Upwind scheme has not 

influenced more than 2 an order convergence) in this computation problem. 
iii. The Grid Convergence Index will often be less optimistic when the convergence order 

confined (0.5 - 2). 
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