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A new meshless-based solver has been used to study the deformation of flexible 
structure due to water dam break. This meshless Fluid Structural Interaction (FSI) 
solver couples the Smoothed Particle Hydrodynamics (SPH) and Lattice-Spring Model 
(LSM). SPH and LSM are used to model the motions of fluid and solid particles, 
respectively. As both are essentially particle-based methods, the force coupling at the 
interface is straightforward. The numerical results have been compared with the 
benchmark numerical solutions of dam break problem and good agreement has been 
found. 
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1. Introduction 
 

The numerical method for simulating fluid flow can be broadly classified into two categories. The 
first category refers to those methods that require discretization of the entire flow domain using 
polygons (or meshes), or more-specifically known as the mesh-based methods. One of the common 
mesh-based methods is the Finite Volume Method [1-12], which is very popular amongst the CFD 
users. The second category does not require the use of polygons (mesh); however, computation is 
performed using zero-dimensional points (mesh-less method). Some examples are Moving Particle 
Semi-implicit (MPS) method [13-15], hybrid particle-mesh methods [16-19], Dissipative Particle 
Dynamics (DPD) [20, 21] and Smoothed Particle Hydrodynamics (SPH) [22-24], to name a few. SPH is 
one of the oldest meshless methods that has been gaining popularity in CFD nowadays. 
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Likewise, the methods available in simulating solid mechanics can be broadly classified into mesh-
based and mesh-less methods. Undoubtedly, Finite Element Method (FEM) can be regarded as the 
popular mesh-based method in studying solid deformation. Recently, the use of meshless method 
such as Lattice Spring Model (LSM) has been gaining popularity as well [25]. The accuracy of LSM has 
been proven to be at par with that of FEM [26,27]. 

In the current work, we intend to use the coupled SPH-LSM meshless method in simulating Fluid 
Structure Interaction (FSI) problem. Specifically, we intend to study the accuracy of SPH-LSM method 
in solving the dam-break flow involving a flexible gate. 
 
2. Methodology  
 

In the current work, the continuity and momentum equations are discretized using SPH: 
 
𝑑𝜌𝑖

𝑑𝑡
= 𝜌𝑖 ∑ 𝑉𝑗(𝐯𝑖 − 𝐯𝑗)𝑗 ⋅ ∇𝑖𝑊𝑖𝑗           (1) 
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where V is the fluid volume, m is the fluid mass, v is the fluid velocity vector, ρ is the fluid density, P 
is the fluid pressure, rij denotes ri–rj, g is the gravitational vector and μ is the fluid viscosity. The 
quintic spline kernel function [28] was used to represent W. 

In order to model the solid motion, each solid particle is connected with its neighbouring solid 
particles via springs as shown in Figure 1. Here, the spring stiffness for horizontal and vertical springs 
are denoted as kL and the spring stiffness for diagonal spring is denoted as kD. Following the LSM 
method [26] for 2D plane strain problem, the following spring stiffness values can be obtained: 
 

𝑘𝐿 =
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Here, the stiffness T is introduced to simulate the elastic behaviour at arbitrary Poisson ratio. 

These stiffness values are dependent on Young’s modulus E and Poisson ratio ν. The elastic force 
acting on the solid particle 𝐼 (see Figure 1) can then be computed as: 
 

𝐅𝑆,𝐼 = ∑ −
𝜕𝑈𝑐𝑒𝑙𝑙
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where �̂�𝐼𝐽 = (𝐫𝐼 − 𝐫𝐽)/‖𝐫𝐼 − 𝐫𝐽‖ is the displacement vector connecting solid particles 𝐼 and 𝐽. The 

term −
𝜕𝑈𝑐𝑒𝑙𝑙

𝜕𝛿𝑙𝐼𝐽
 is defined in the following manner [26]: 
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where 𝛿𝑙𝐼𝐽 is the change of length of the half spring. In order to couple the SPH and LSM methods, 

the solid particles in the vicinity of the solid-fluid interface are treated as dummy particles in the 
SPH solver. Depending on the wall boundary conditions, the velocities of these dummy particles can 
be calculated accordingly [29]. 
 

 
Fig. 1. Spring network in the solid body 

 

3. Results and Discussion 
 
The SPH-LSM solver has been developed and it was applied to solve the dam break flow involving 

a flexible structure. This test case is attractive as the experimental data of the gate displacement is 
available [30]. Also, previous researchers [31] have done validations on their SPH-FEM FSI solver using 
this test case as well. Figure 2 shows the size of the water column before collapsing, whereby its 
width (W) and height (H) were fixed at 0.1 m and 0.14 m, respectively. The following fluid properties 
were employed: μ = 0.001 Pa.s and ρ = 1000 kgm-3. There is a hinge at the top of the flexible gate. In 
order to model the hinge, the top elastic gate particles were connected with the neighbouring 
stationary dummy particles as shown in Figure 2. The thickness and the height of the flexible gate 
were fixed at 0.005 m and 0.079 m, respectively. The material properties of the flexible gate were 
fixed as: E = 12 MPa, ν = 0.40 and ρ = 1100 kgm-3. A uniform particle spacing of 1.0 mm was used. A 
monitor point was placed at the free end of the flexible gate. Its displacement with respect to time 
was then monitored as time progresses. The flow computation was executed until t = 0.4 s. 

Figure 3 compares the simulated displacement values against those obtained from the SPH-FEM 
solution [31]. Overall, the agreement is very encouraging. While the agreement between SPH-LSM 
and experimental data is good at t < 0.08 s, our numerical results are somewhat lower than those 
measured at t > 0.08 s. This could be due to the 2D plane-strain assumption made in our current 
model. In addition, we anticipate that the model can be further improved if the flexible gate is 
modelled using the hyperelasticity model, as Yang and his co-workers [31] have shown that the 
hyperelasticity model could give better accuracy.  
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Fig. 2. Initial positions of particles (red: flexible gate; blue: fixed wall; green: water) 

 

 
(a) 
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(b) 

Fig. 3. x- (a) and y- (b) displacements at the free end of the flexible gate 
 
4. Conclusions 
 

The Smoothed Particle Hydrodynamics (SPH) method has been coupled with the Lattice Spring 
Model (LSM) method to model Fluid Structural Interaction (FSI) problem. The coupled method has 
been used to simulate dam break flow through a flexible gate. The numerical results have been 
compared against those obtained from the SPH-Finite Element Method (SPH-FEM) and good 
agreement has been found.  
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