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A linear stability assessment was performed to study the impact of internal heating 
and variable gravity in an anisotropic porous medium of a ferrofluid layer system on 
the onset of Benard-Marangoni convection. The system is heated from below with 
both the lower and upper limits are considered as completely insulated to the 
disturbance of the temperature. The eigenvalue problem is solved by using regular 
perturbation technique to obtain the critical Marangoni number and also the critical 
thermal Rayleigh number. It is noted that the increase of value anisotropic 
permeability, Darcy number and also magnetic number will enhance the convection of 
the system while the increasing values of anisotropic thermal diffusivity will help to 
stabilize the system.   
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1. Introduction 
 

Ferrofluid or also known as magnetic fluid is a non-electric carrier fluid that includes small 
particles of strong ferromagnetic materials [1]. Kaiser and Miskolczy [2] state that ferrofluid has a 
special feature which is it can maintain it fluid properties in the existence of magnetic field and the 
magnetic properties of ferrofluid can be affected by the composition, distribution and also volume 
concentration. Previously ferrofluid is known in the rocket fuel by NASA and currently ferrofluid been 
used in a various field such as in electric devices, mechanical engineering, medical applications and 
optic. There have been tremendous studies on the convection of ferrofluid. Stiles and Kagan [3] 
examined the instability of ferroconvection in a strong magnetic field. The impact of the vertical 
magnetic field in ferrofluid was researched by Hennenberg et al., [4]. Mokhtar and Arifin [5] had the 
impacts of feedback control in the ferrofluid layer system. Laroze et al., [6] employed chaos study in 
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ferrofluid. Laroze et al., [7] explored the instability of viscoelastic ferrofluid. Recently, the impact of 
magnetic field dependent viscosity in a ferrofluid was proved by Prakash et al., [8]. 

Marangoni convection can be understood as convection that considered surface tension in the 
study. The existence of surface tension cause the fluid flow from the area that has low surface 
tension. Nield [9] propose the idea of combination between surface tension forces and buoyancy 
forces study or usually name as Marangoni-Benard convection. The studied of Marangoni convection 
with a deformable surface had been done by McCaughan and Bedir [10]. In Marangoni-Benard 
convection, Hennenberg et al., [11] recorded a porous medium with Darcy law. Rudraiah and Prasad 
[12] had examined Brinkman’s model in a porous medium. Saghir et al., [13] investigated dual-layer 
studies on the onset of Marangoni convection. Shivakumara et al., [14] employed Brinkman–
Forchheimer–Lapwood extended Darcy model on the onset of Marangoni convection. Feedback 
control effect with a deformable surface in a variable viscosity fluid had been studied by Arifin and 
Abidin [15]. Marangoni convection of porous medium with a Biot number had been studied by Zhao 
et al., [16]. Dual-layer fluid with the impact of internal heating in an upper boundary that is set to be 
deformable on the Marangoni-Benard convection had been demonstrated by Mokhtar et al., [17]. 

The study of convection that involving porous medium had been done widely, most of the porous 
medium studied previously are considering isotropic porous medium. Previously, Mahad et al., [18] 
applied an isotropic model with physical invariant for a heart valve leaflet because the material has 
only one direction toward the fiber direction. Since the formation of anisotropic porous medium can 
be happen naturally thus a lot of materials are considered as an anisotropic porous medium such as 
wood, carbonate rock and also composite. Degan and Vasseurt [19] demonstrated the convection of 
an anisotropic medium that oblique to gravity. Sekar et al., [20] investigated the convection of 
ferrofluid in an anisotropic porous medium. Marangoni-Benard convection problem in the 
anisotropic porous medium had been examined by Shivakumara et al., [21]. The study of anisotropic 
with modified Brinkman Darcy flow model had been employed by Nanjundappa et al., [22] in a 
ferrofluid system. Shivakumara et al., [23] study the impact of internal heating in an anisotropic 
medium in Marangoni-Benard convection. Bhadauria [24] also study the anisotropic porous medium 
with the effect of internal heating on the onset of double-diffusive convection. Capone et al., [25] 
studied an anisotropic and non-homogeneous porous medium in a linear and non-linear stability 
study. Soret-driven convection in an anisotropic porous ferrofluid layer system had been studied by 
Sekar et al., [26]. Recently Sun et al., [27] studied the impacts of an external magnetic field in a 
ferrofluid while Zarifah et al., [28] examined the temperature profile in a binary fluid with anisotropic 
porous medium. 

The ideas of gravity are well known in the theoretical investigation, a lot of studies related to 
variable gravity had been done before to justify a convection phenomenon in a large scale such as in 
the ocean and mantle. Rionero and Straughan [29] investigated the combined effect of internal 
heating and variable gravity in convection of a porous medium. The effect variable gravity and 
internal heating with additionally inclined temperature gradient in a porous medium had been done 
by Alex et al., [30]. Chand [31] investigated rotating Maxwell of a visco-elastic porous medium with 
the additional effect of variable gravity. Bala and Chand [32] employed Brinkman porous medium 
with variable gravity of ferrofluid. Combination effect of rotating and variable gravity of porous 
nanofluid layer had been reported by Chand et al., [33]. Varshney [34] investigated on the stability 
on the convection of porous medium with the effect of gravity. 

The aim of this paper is to investigate the onset of Marangoni-Benard convection with the impact 
of the variable gravity in an anisotropic porous medium. We assumed that the layer of ferrofluid is 
heated from below and that the conditions of the lower-upper boundary are considered to be a rigid-
free boundary. Using a regular perturbation technique will solve the resulting eigenvalue problem. 
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2. Methodology  
 
We considered a horizontal ferrofluid layer system is heated from below as shown in Figure 1. 

The lower boundary is set to be rigid while the upper boundary is set to be free. Both of the 
boundaries are fixed to be constant but the temperature of the lower bound is higher compared to 
the upper bound. The ferrofluid layer scheme is applied by gravitational force ℎ(0, 0, −ℎ(𝑧)) where 
ℎ(𝑧)  =  (1 +  𝜆)ℎ and 𝜆 are the parameter of variable gravity. 

 

 
Fig. 1. Model of an anisotropic porous medium in ferrofluid layer system 

 
The surface tension, 𝜎 and density of the fluid, 𝜌 are in the form of 

 
𝜎 = 𝜎0 − 𝜎𝑇  (𝑇 − 𝑇0),           (1) 
 
𝜌 = 𝜌0[1 − 𝛼𝑡(𝑇 − 𝑇0)],           (2) 
  
where 𝜎0, 𝜌0  and 𝑇0 are reference value of surface tension, density and temperature respectively 
while 𝜎𝑇 is the rate of change of the surface tension at the temperature 𝑇. The surface tension and 
density are assumed vary linearly with the temperature. By referring to Nanjundappa et al., [22], the 
governing equations are as follows 
 

∇ · 𝑞
→

= 0,             (3) 
 
𝜌0

𝜀
[

𝜕𝑞
→

𝜕𝑡
+ (𝑞

→
· ∇) 𝑞

→
] = −∇𝑝 + 𝜌ℎ + 𝜇0 (𝑀

→

· ∇) 𝐻
→

+ 𝜇𝑘−1𝑞
→

,       (4) 

 

𝜀 [𝜌0𝐶𝑉,𝐻 − 𝜇0𝐻
→

· (
𝜕𝑀

→

𝜕𝑇
)

𝑉,𝐻

] ×
𝐷𝑇

𝐷𝑡
+(1 − 𝜀)(𝜌0𝐶)

𝜕𝑇

𝜕𝑡
+ 𝜇0𝑇 (

𝜕𝑀
→

𝜕𝑇
)

𝑉,𝐻

·
𝐷𝐻

→

𝐷𝑡
= 𝑘1𝛻2𝑇.   (5) 

 

Here 𝑞
→

 = (𝑢, 𝑣, 𝑤)is the velocity vector,  𝜇 is the dynamic viscosity, 𝜇0 is the magnetic permeability 
of vacuum, 𝑝 is the pressure,  𝑄 is the uniformly distributed heat generation in ferrofluid layer system, 
𝐶𝑉,𝐻 is the specific of heat capacity at constant volume and magnetic field per unit mass, 𝜀 is the 
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porosity, 𝑘 is the permeability tensor, 𝑘1 is the thermal conductivity and ∇2=
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2 is the 

Laplacian operator. 
       Based on Finlayson [35] the Maxwell's equation is given as 
 

∇ · 𝐵
→

= 0,    ∇ × 𝐻
→

= 0 or 𝐻
→

= ∇𝜑,             (6(a, b)) 
 

𝐵
→

= 𝜇0 (𝑀
→

+ 𝐻
→

),            (7) 

 

where 𝐵
→

 is the magnetic induction, 𝐻
→

 is the magnetic field density, 𝑀
→

is the magnetization and 𝜑 is 
the magnetic potential. Finlayson [35] also state the linearization of magnetic as follows 
 

𝑀
→

=
𝐻
→

𝐻
(𝑀0 + 𝜒(𝐻 − 𝐻0) − 𝐾(𝑇 − 𝑇0)),          (8) 

 

where 𝜒 = (
𝜕𝑀

𝜕𝐻
)

𝐻0,𝑇0

 is the magnetic susceptibility, 𝐾 = (
𝜕𝑀

𝜕𝐻
)

𝐻0,𝑇0

 is the pyromagnetic co-efficient, 

𝑀0 = 𝑀(𝐻0, 𝑇0), 𝐻 = |𝐻
→

| and 𝑀 = |𝑀
→

|. 
The solutions for the quiescent basic state are as follows 
 

𝑞
→

𝑏 = 0,                 (9) 
 
𝑝𝑏(𝑧) = 𝑝0 − 𝜌0ℎ𝑧 − 𝜌0𝛼𝑡ℎ                      (10) 
 
𝑇𝑏(𝑧) = −𝛽𝑧 + 𝑇0                       (11) 
 

𝐻
→

𝑏(𝑧) = [𝐻0 −
𝐾𝛽𝑧

1+𝜒
] 𝑘

^

,                      (12) 

 

𝑀
→

𝑏(𝑧) = [𝑀0 +
𝐾𝛽𝑧

1+𝜒
] 𝑘

^

                      (13) 

 
In order to study the stability of the system, the basic state is perturbed in the following form  

 

𝑞
→

= 𝑞
→

′,    𝑝 = 𝑝𝑏(𝑧) + 𝑝′,    𝑇 + 𝑇𝑏(𝑧) + 𝑇′,    𝐻
→

= 𝐻
→

𝑏(𝑧) + 𝐻
→

′,    𝑀
→

= 𝑀
→

𝑏(𝑧) + 𝑀
→

′               (14) 
 

Substituting Eq. (14) into Eq. (7) and by using equation the basic state, yields 
 

𝐻𝑥 + 𝑀𝑥 = (1 +
𝑀0

𝐻0
) 𝐻𝑥  

 

𝐻𝑦 + 𝑀𝑦 = (1 +
𝑀0

𝐻0
) 𝐻𝑦  

 
𝐻𝑧 + 𝑀𝑧 = (1 + 𝜒)𝐻𝑧 − 𝐾𝑇                      (15) 
 

The normal mode expansion is assumed in the form: 
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{𝑤, 𝑇, 𝜑} = {𝑊(𝑧), 𝜃(𝑧), 𝜙(𝑧)}𝑒𝑖(𝑙𝑥+𝑚𝑦),                    (16) 
 
where 𝑙 and 𝑚 are the wave number in 𝑥 and 𝑦 direction. Substituted Eq. (14) into momentum 
equation, energy equation and also Maxwell equation. After that we performing the linearization and 
eliminate the pressure term by operating the curl twice for the momentum Eq. (4). Followed by the 
using of Eq. (15) and (16) and non-dimensionalizing the variable by the following setting  
 

(𝑥∗, 𝑦∗, 𝑧∗) = (
𝑥

𝑑
,

𝑦

𝑑
,

𝑧

𝑑
) ,    𝑊∗ =

𝑑

𝜈
𝑊,   𝜃∗ =

𝜅

𝛽𝜈𝑑
𝜃,    𝜙∗ =

(1+𝜒)𝜅

𝐾𝛽𝜈𝑑2 𝜙,                 (17) 

 
where 𝜈 = 𝜇/𝜌0 is the kinematic viscosity and 𝜅 = 𝜅1/𝜌0𝑐0 is the thermal diffusivity. After dropping 
the asterisk, we will get as follows 
 

[(𝐷2 − 𝑎2)2 − 𝐷𝑎−1 (
1

𝜉
𝐷2 − 𝑎2)] 𝑊 − 𝑎2𝑅𝑚(1 + 𝜆)(𝐷𝜙 − 𝜃) − 𝑎2𝑅𝑡(1 + 𝜆)𝜃 = 0,              (18) 

 
𝐷2𝜃 − 𝜂𝑎2𝜃 − (1 − 𝑀2)𝑊 = 0                     (19) 
 
𝐷2𝜙 − 𝑎2𝑀3𝜙 − 𝐷𝜃 = 0,                      (20) 
 

with the boundary condition 
 

𝑊 = 𝐷𝑊 = 𝐷𝜃 = 𝜙 = 0                                 at 𝑧 = 0                  (21) 
 
𝑊 = 𝐷𝜃 = 𝐷𝜙 = 𝐷2𝑊 + 𝑀𝑎 𝑎2𝜃 = 0       at 𝑧 = 1,                  (22) 
 
where 

𝐷 =
𝑑

𝑑𝑧
  

𝜆 is the gravity parameter, 
𝑎2 is the wave number, 

𝐷𝑎 =
𝑘ℎ

𝑑2 is the Darcy number, 

𝜉 =
𝑘ℎ

𝑘𝑣
 is an anisotropic permeability, 

𝑅𝑚 = 𝑅𝑡 · 𝑀1 =
𝜇0𝐾1

2𝛽

(1+𝜒)𝛼𝑡𝜌0𝑔
 is the magnetic Rayleigh number, 

𝑅𝑡 =
𝛼𝑡𝑔𝛽𝑑4

𝜈𝜅𝐴
 is the thermal Rayleigh number, 

𝜂 =
𝜅ℎ

𝜅𝑣
 is an anisotropic effective thermal diffusivity, 

𝑀2 =
𝜇0𝑇0𝐾1

2

1+𝜒
 is the magnetic parameter, 

𝑀3 =
1+

𝑀0
𝐻0

1+𝜒
 is the nonlinearity of the ferrofluid, 

𝑀𝑎 =
𝜎𝑇𝛥𝑇𝑑

𝜇𝜅
 is the Marangoni number 

 
By referring to Finlayson [35], 𝑀2 will not affect the Benard-Marangoni convection since the value 

of it will be approximated to zero because the value too small which is 10−6. To solve Eq. (18) till (20) 
with the boundary conditions in Eq. (21) and (22), regular perturbation method will be used. The 
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variables are in following the form 
 

(𝑊, 𝜃, 𝜙) = (𝑊0, 𝜃0, 𝜙0) + 𝑎2(𝑊1, 𝜃1, 𝜙1) +···                   (23) 
 

By substituting Eq. (23) into (18) till (22) we will get the zeroth equation as follows 
 

𝐷4𝑊0 − (
1

𝐷𝑎 𝜉
𝐷2𝑊0) = 0                      (24) 

  
𝐷2𝜃0 −  𝑊0 = 0                       (25) 
 
𝐷2𝜙0 − 𝐷𝜃0 = 0                       (26) 
 

with the boundary conditions 
 

𝑊0 = 𝐷𝑊0 = 𝜃0 = 𝜙0 = 0                at 𝑧 = 0,                   (27) 
 
𝑊0 = 𝐷2𝑊0 = 𝐷𝜙0 = 𝐷𝜃0 = 0          at 𝑧 = 1                   (28) 
    

The solution to the zeroth order Eq. (24) till (26) by using boundary conditions in Eq. (27) and (28) 
are as follow: 
 
𝑊0 = 0, 𝜃0 = 1, 𝜙0 = 0.                      (29) 
 

By substituting Eq. (29) we will get the first order equations as follow 
 

𝐷4𝑊1 − (
1

𝐷𝑎 𝜉
𝐷2𝑊1) + 𝑅𝑚 (1 + 𝜆) − 𝑅𝑡(1 + 𝜆) = 0,                  (30) 

 
𝐷2𝜃1 − 𝜂 − 𝑊1 = 0                       (31) 
 
𝐷2𝜙1 − 𝐷𝜃1 = 0                       (32) 
 

with the boundary conditions 
 
𝑊1 = 𝐷𝑊1 = 𝐷𝜃1 = 𝜙1 = 0                   at 𝑧 = 0,                   (33) 
 
𝑊1 = 𝜙1 = 𝐷𝜃1 = 𝐷2𝑊1 + 𝑀𝑎 = 0       at 𝑧 = 1.                   (34) 
 

The Eq. (30) to (34) will be solved by using MAPLE. The equation of 𝑀𝑎𝑐 will be generate in term 
of 𝑀1, 𝑅𝑡, 𝜂, 𝜆, 𝜉 and 𝐷𝑎. 
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3. Results  
 

In this document, with the presence of variable gravity, the resulting eigenvalue problem of 
Marangoni-Benard convection in an anisotropic ferrofluid layer was analytically solved using regular 
perturbation technique. The boundaries are regarded rigid-free and insulating with a linear stability 
assessment. The selected values for the gravity parameter suggested by Bala and Chand [32]. The 
outcomes collected are described graphically in Figure 2-8 to show the effect of different parameters 
on the critical number of Marangoni, 𝑀𝑎𝑐 and thermal Rayleigh, 𝑅𝑡𝑐. From the study, it revealed that 
𝑀3 has a no significant contribution toward the convection of the system and this finding coincides 
with a previous study from Nanjundappa et al., [36]. 

Figure 2 demonstrated the impact of various gravity parameter on the onset of Benard-
Marangoni convection with 𝑅𝑡 = 1000,  𝑀1 = 1, 𝜂 = 1, 𝜉 = 0.1 and 𝐷𝑎 = 0.001. The figure clearly 
shows that the decreasing gravity parameter which is 𝜆 = 𝑧2 − 2𝑧, 𝜆 = −𝑧 and 𝜆 = −𝑧2 have 
stabilizing effect. It contrasts with increasing gravity parameter 𝜆 = 𝑧 that promotes the onset of 
Marangoni convection. The result obtained is in good agreement with the previous study from Bala 
and Chand [32]. 

The impact of  𝑀1 on variable gravity on the onset of Marangoni-Benard convection was noted 
in Figure 3 The increment of  𝑀1 will drop the values of 𝑀𝑎𝑐 and destabilize the system. This situation 
happens because the increasing of  𝑀1 will lead to increment of destabilize magnetic force in the 
system Nanjundappa et al., [36]. The combination of variable gravity parameter 𝜆 = −𝑧 and  𝑀1 is 
found to delay the convection while the combination of 𝜆 = 𝑧 and  𝑀1 will enhance the onset of 
Marangoni-Benard convection. 

 

 
Fig. 2. Stability curve for different value of gravity 
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Fig. 3. Stability curve for different value of gravity and 𝑀1 

 
The impact of two important parameters in anisotropic which is 𝜉 and 𝜂 are depicted in Figure 4 

and 5 respectively. For both figures the value of other parameters are 𝑅𝑡 = 1000, 𝑀1 = 1 and 𝐷𝑎 =
0.001. In Figure 4, the 𝑀𝑎𝑐 values fall as the 𝜉 parameter increases and thus encourages the 
convection rate in the ferrofluid layer system of an anisotropic porous medium. The reason behind 
this situation is the increasing of 𝜉 will encouraged the fluid movement in the horizontal direction 
due to the large horizontal permeability. As an outcome the convection process in an anisotropic 
medium become unstable (Shivakumara et al., [21]). It is contrast with the effect of 𝜂 in Figure 5, the 
increasing of  𝜂 lead to elevate the critical Marangoni number and delay the convection.  
 

 
Fig. 4. Stability curve for different value of 𝜉 
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Fig. 5. Stability curve for different value of 𝜂 

 
The combination effects of 𝑀1 and 𝜉 are illustrated in Figure 6 when 𝑅𝑡 = 1000, 𝐷𝑎 =

0.001, 𝜆 = 0 and 𝜂 = 1. From the graph, it can be seen that boost of both parameters 𝑀1 and 𝜉 cause 
a deterioration of the 𝑀𝑎𝑐 values. This indicates the simultaneous effects of 𝑀1 and 𝜉 will promotes 
the convection of Marangoni-Benard in a ferrofluid layer system. 
 

 
Fig. 6.  Impact of 𝑀1 on 𝑀𝑎𝑐  against 𝜉 

 
The impact of 𝑀1 on 𝐷𝑎 is demonstrate in Figure 7. Other parameters are set 𝑅𝑡 = 1000, 𝜆 =

0, 𝜂 = 1 and 𝜉 = 0.1. As reported previously in Figure 3, the escalation of 𝑀1 will destabilize the 
system. This figure also shows the behaviour of 𝐷𝑎 on 𝑀𝑎𝑐.  It can be seen clearly that the increasing 
of 𝐷𝑎 cause the decline of 𝑀𝑎𝑐 values. It indicates that the increasing of 𝐷𝑎 will promotes the 
convection. The same result also reported in Nanjundappa and Vijay Kumar [37]. 
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Fig. 7.  Impact of 𝑀1 on 𝑀𝑎𝑐  against 𝐷𝑎 

 
Figure 8 shows the response of 𝑀1 on 𝑅𝑡𝑐 against 𝑀𝑎𝑐 for different value of 𝜆 at 𝑀1 = 1, 𝜂 =

1, 𝜉 = 0.1 and 𝐷𝑎 = 0.00 1. From the graph, it can be seen clearly that the increasing of 𝑀1 and 𝑀𝑎𝑐 
will lead to compress of 𝑅𝑡𝑐. 𝑀1 value will be merged into a fixed value of 𝑀𝑎 which is in this study 
the value is recorded at 𝑀𝑎𝑐 = 20606.3854. This situation happens to all 𝑀1 considered and when 
𝑅𝑡 = 0 shows that the 𝑅𝑡 did not affect the convection process Nanjundappa et al., [36]. 

 

 
Fig. 8. Impact of 𝑀1 on 𝑅𝑡𝑐 against 𝑀𝑎𝑐 
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4. Conclusions 
 

The theoretical investigation into the effects of variable gravity on the onset of Marangoni-
Benard convection in an anisotropic ferrofluid layer system was conducted. We can conclude that 
the increasing values of 𝑀1, 𝐷𝑎 and 𝜉 will enhance the convection of a ferrofluid layer system while 
the increasing of 𝜂 will help to stabilize the system. For the variable gravity, decreasing gravity 
parameter are found to help in delaying the convection contrast with increasing gravity parameter 
that promotes the convection. 
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