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In this paper, we studied the 2D steady laminar boundary layer flow and heat transfer 
of Casson based nanofluid over an exponentially vertical stretching and shrinking sheet 
using one phase model. The thermal radiation and heat source/sink parameters are 
incorporated in the heat transfer equation and the slip parameters for the velocity and 
temperature are considered in the boundary conditions. The similarity variables have 
been used to convert the governing equations as a system of partial differential 
equations to the ordinary differential equations. The transformed equations are then 
solved by applying shooting technique, shootlib in Maple software. The numerical 
solutions for the governing equations indicate that the triple solutions arise when high 
suction is imposed for both stretching/shrinking sheet at certain ranges of the 
pertinent parameters. To examine the stability of the solutions, stability analyses is 
done by using BVP4c in Matlab software. The first solution is found to be a stable 
solution and physical realizable while the remaining solutions are not stable. The 
inclusion of three different nanoparticles shows that Copper – Casson nanofluid has 
the highest heat transfer rate compared to Aluminum-Casson and Graphite Oxide-
Casson nanofluid. 
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1. Introduction 
 

The boundary layer fluid flow and the heat transfer characteristics through different surfaces 
have achieved great attention of the researchers due to numerous applications in industrial and 
engineering fields such as metal spinning, extrusion of the plastic sheets, food stuff wrapping, glass-
fiber production, artificial fibers, petroleum manufacturing goods, drawing of plastic films, paper 
production and hot rolling etc. Originally, Sakiadis [1] defined the concept of the boundary layer 
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theory at the uniformly moving surface. Later, Crane [2] worked on the linear stretching surface 
problems. Afterward the idea given by Crane was extended by many researchers in view of different 
types of stretching surfaces flow problems [3-5]. It was in 1999 when Magyari and Keller [6] started 
to examine the fluid flow on the exponential stretching sheet and then the study of shrinking sheet 
was pioneered by Miklavčič and Wang [7] by considering viscous fluid flow problems with suction 
effect. Later on, many researchers have used stretching/shrinking sheet in the study of the boundary 
layer fluid flow and the heat transfer problems [8-11]. 

The heat transfer has been playing a key role in the many industrial fields where cooling and 
heating processes are involved. The efficiency of heat transfer might be enhanced by rising thermal 
conductivity of common working fluids Kwak and Chongyoup [12]. Generally, heat transfer through 
Newtonian/non-Newtonian fluids possess low thermal transfers compared to thermal transfers of 
the solids. Therefore, the thermal transfers of the fluids may be increased by suspension of the 
smaller solid material particles to the fluids. Feasibility of suspension of the small size of the particles 
of nearly size micrometers or millimeters were examined by many researchers and the major 
advantages were pointed out by Khanafer et al., [13]. The current development in the 
nanotechnology have emphasized the researchers to study the future generation modern heat 
transfer fluids which are named as nanofluids. Choi and Jeffrey [14] were the first to introduce such 
type of the modern class of fluid. The word nanofluid alludes to those sorts of fluids which are made 
up of common fluids (Newtonian/non-Newtonian) due to suspensions of the nano size solid particles 
in it which profoundly increase the thermal properties of common fluids. To understand the flow and 
the heat transfer phenomena in nanofluid from mathematical perspective, two well-known models 
that are the Buongiorno [15] and the Tiwari and Manab [16] models are often used by researchers. 
The model proposed by Buongiorno is a two phase model in which the Brownian motion and the 
thermophoresis play a significant role in enhancement of the thermal properties of nanofluids. On 
the other hand, Tiwari-Das Model is a one phase model, in which volumetric fraction of solid 
nanoparticles possess an importance for enhancing thermal properties of nanofluid. Recent study 
related to nanofluid has been done by Che Sidik et al., [17] and the review on the application of 
nanofluid can be found in Khattak et al., [18]. 

Meanwhile, Casson fluid is a type of non-Newtonian fluid and the model of the Casson fluid was 
first presented by Casson in 1959. This is one of the rheological model that deals the flow of many 
fluids including chocolate, blood, stuffs, soup, slurries, jelly, artificial fibers. Casson fluid model 
reveals a yield stress. Actually, this fluid acts as a solid in case of shear stress is lesser than the yield 
stress. So, it begins to deform as shear stress come to be greater than yield stress. Some current 
study regarding to Casson fluid are found in [19-21]. 

In this study, we consider a non-Newtonian nanofluid where the base fluid is Casson fluid. Three 
different nanoparticles are considered: Copper (Cu), Aluminum (Al) and Graphite Oxide (GO). The 
main objective of this study is to find the multiple similarity solutions and stability analysis for the 
flow over exponentially vertical stretching/shrinking sheet with velocity and temperature slip effects. 
The study of multiplicity of solutions is important and has successfully conducted by many authors 
[22-26]. However, to our present knowledge, the study of multiple solutions of Casson nanofluid over 
an exponentially vertical stretching/shrinking sheet with the consideration of thermal radiation, heat 
source/sink, and slip parameters has not been performed before. It is hoped that the present study 
will help the researchers/practitioners to understand the behavior of the fluid.  
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2. Mathematical Formulation 
 

We have considered the incompressible two-dimensional steady boundary flow and the heat 
transfer of 𝐶𝑢, 𝐴𝑙 and 𝐺𝑂 −Casson based nanofluid along the exponentially vertical stretching and 
shrinking sheet using one phase model that is presented in Figure 1. 
 

 
Fig. 1. Physical model of flow 

 
It is assumed that the rheological equation of state to isotropic and the incompressible Casson 

fluid flow is written as in Mustafa and Junaid [27]: 
 

𝜏𝑖𝑗 =

{
 

 (𝜇𝐵 + (
𝑃𝑦

√2𝜋
))2𝑒𝑖𝑗, 𝜋 > 𝜋𝑐  

(𝜇𝐵 + (
𝑃𝑦

√2𝜋𝑐
)) 2𝑒𝑖𝑗 , 𝜋 < 𝜋𝑐  

           (1) 

 
where 𝜇𝐵 is plastic dynamics viscosity relative to non-Newtonian fluid, 𝑃𝑦 denotes fluid yield stress, 

𝜋 denotes product of components of rate of deformation to itself, where π = 𝑒𝑖𝑗𝑒𝑖𝑗 is (𝑖, 𝑗)-th 

component of rate of deformation whereas turning point of 𝜋 is denoted by 𝜋𝑐. The sheet is 
exponentially stretched with 𝑥 axis and normal to the y axis. Furthermore, the system of the 
governing equations of present analysis are as follows: 
 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0              (2) 

 

𝑢 
𝜕𝑢

𝜕𝑥
 +  𝑣 

𝜕𝑢

𝜕𝑦
=

𝜇𝑛𝑓

𝜌𝑛𝑓
[(1 +

1

𝛽∗
)
𝜕2𝑢

𝜕𝑦2
+ 𝑔(𝜌𝛽)𝑛𝑓(𝑇 − 𝑇∞)]        (3) 

 

𝑢 
𝜕𝑇

𝜕𝑥
 +  𝑣 

𝜕𝑇

𝜕𝑦
 =

1

(𝜌𝐶𝑝)𝑛𝑓
[𝑘𝑛𝑓 (1 +

16𝑇∞
3 𝜎∗

 3𝑘𝑛𝑓𝑘
∗
𝑓
) 
𝜕2𝑇

𝜕𝑦2
+ 𝑄(𝑇 − 𝑇∞)]       (4) 
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subject to boundary conditions, 
 

𝑣 = 𝑣𝑤;  𝑢 = 𝜆𝑢𝑤(𝑥) + 𝐴
𝜕𝑢

𝜕𝑦
;    𝑇 = 𝑇𝑤 + 𝐷

𝜕𝑇

𝜕𝑦
;      at    𝑦 = 0  

𝑢 → 0;    𝑇 → 𝑇∞;     as  𝑦 → ∞           (5) 
 
where, u and v represent the components related to velocity in x and y directions. The sheet is 

assumed vertically stretched with velocity 𝑢𝑤 = 𝑈𝑤𝑒
𝑥

𝐿, here 𝑈𝑤 is constant of ambient velocity 

whereas 𝐿 is reference length. The surface temperature of sheet is taken as 𝑇𝑤 = 𝑇∞ + 𝑇0𝑒
2𝑥

𝐿  where 
𝑇0 is constants and 𝑇∞ is ambient fluid temperature. 𝜌𝑛𝑓 = (1 − 𝜙)𝜌𝑓 + 𝜙𝜌𝑠 is effective density, 

(𝜌𝛽)𝑛𝑓 = (1 − 𝜙)(𝜌𝛽)𝑓 + 𝜙(𝜌𝛽)𝑠  denotes the effective thermal expansion coefficient of the 

nanofluid, 𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜙)2.5
 is effective dynamic viscosity, (𝜌𝑐𝑝)𝑛𝑓 =

(1 − 𝜙)(𝜌𝑐𝑝)𝑓 + 𝜙(𝜌𝑐𝑝)𝑠 is the 

effective heat capacitance, 𝛼𝑛𝑓 =
𝑘𝑛𝑓

(𝜌𝑐𝑝)𝑛𝑓
 is the thermal diffusivity of nanofluid and 𝑘𝑛𝑓 =

(𝑘𝑠+2𝑘𝑓)−2𝜙(𝑘𝑓−𝑘𝑠)

(𝑘𝑠+2𝑘𝑓)+𝜙(𝑘𝑓−𝑘𝑠)
𝑘𝑓 is thermal conductivity of nanofluid. 𝜆 stands for the stretching and shrinking 

parameter, 𝐴 and 𝐷 are velocity and thermal slip factors, respectively. 
The following similarity transformations are used to obtain similarity solutions of the governing 

equations. 
 

𝜓 = √2𝜗𝑙𝑈𝑤𝑒
𝑥
2𝑙⁄ 𝑓(𝜂);  𝜃(𝜂) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
;    𝜂 = 𝑦√

𝑈𝑤

2𝜗𝑙
 𝑒
𝑥
2𝑙⁄         (6) 

 
In form of the velocity components, the stream function 𝜓 will be written as 
 

𝑢 =
𝜕𝜓

𝜕𝑦
, 𝑣 = −

𝜕𝜓

𝜕𝑥
  

 
with the transformations given in Eq. (6), system of the Eq. (3) and Eq. (4) is written as 
 

(1 +
1

𝛽
) 𝑓′′′  +  (1 − 𝜙)2.5

[
 
 
 {(1 − 𝜙 + 𝜙 (

𝜌𝑠

𝜌𝑓
)) (𝑓𝑓′′ − 2𝑓′

2
)}

+2 𝜉 (1 − 𝜙 + 𝜙
(𝜌𝛽)𝑠 

(𝜌𝛽)𝑓 
) 𝜃

]
 
 
 

= 0      (7) 

 

(1 +
4𝑅

 3
)  𝜃′′ + 𝑃𝑟

𝑘𝑓

𝑘𝑛𝑓 
{(1 − 𝜙 + 𝜙

(𝜌𝑐𝑝)𝑠
(𝜌𝑐𝑝)𝑓

) (𝑓𝜃′ − 4𝑓′𝜃) + 2 𝜒𝜃} = 0      (8) 

 
subjected to boundary conditions 

 

𝑓(0) = 𝑆;  𝑓′(0) = 𝜆 + 𝛿𝑓′′(0);   𝜃(0) = 1 + 𝛿𝑇𝜃′(0) ,   
𝑓′(𝜂) → 0;   𝜃(𝜂) → 0;           𝑎𝑠 𝜂 → ∞          (9) 
 

Moreover, 𝜉 =
𝐺𝑟

𝑅𝑒𝑥
2 is mixed convection parameter where 𝐺𝑟 =

𝐿3𝑔𝛽𝑓𝑇0

𝜗𝑓
2  is Grashof number, 𝑅𝑒 =

𝐿𝑈𝑤

𝜗𝑓
 , 𝑅 =

4𝑇∞
3 𝜎∗

 𝑘𝑛𝑓𝑘
∗
𝑓
 is radiation parameter, 𝑃𝑟 =

𝜗𝑓(𝜌𝑐𝑝)𝑓

𝑘𝑓
 is Prandtl number, 𝜒 =

𝐿𝑄

(𝜌𝑐𝑝)𝑓
𝑢𝑤 

 is heat 
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source/sink parameter and S = − √
2𝑙

𝜗𝑈𝑤
 is suction parameter, 𝜆 is a stretching/shrinking parameter, 

𝛿 = 𝐴√
𝑈𝑤

2𝐿𝜗𝑓
𝑒
𝑥

2𝐿 is velocity slip and 𝛿𝑇 = 𝐷√
𝑈𝑤

2𝐿𝜗
 𝑒

𝑥

2𝐿 thermal slip parameters. 

 
The skin-friction coefficient (𝐶𝑓 ) and local Nusselt number (𝑁𝑢) are written as 

 

𝐶𝑓 =
[2𝜏𝑤]𝑦=0

𝜌𝑈𝑤
2   𝑒

2𝑥
𝑙⁄
,   𝑁𝑢 =

−𝑥[
𝜕𝑇

𝜕𝑦
]
𝑦=0

(𝑇𝑤− 𝑇∞)
  

 

where 𝜏𝑤 is shear stress of wall that is 𝜏𝑤 = 𝜇𝐵 (1 +
1

𝛽
) (

𝜕𝑢

𝜕𝑦
)
𝑦=0

. 

 
Using Eq. (6) in above relations, we get 
 

𝐶𝑓 (
𝑅𝑒

2
)

1

2
= (1 +

1

𝛽∗
) 𝑓′′(0),            𝑁𝑢(𝑅𝑒)

−
1

2 (
2𝑙

𝑥
)

1

2
= −𝜃′(0)                 (10) 

 

where 𝑅𝑒 =
𝐿𝑈𝑤

𝜗𝑓
 is local Reynolds number. 

 
The boundary value problem (BVPs) consists on Eq. (7) and Eq. (8) subjected to initial and 

boundary conditions given in Eq. (9) are then solved by using shooting technique implemented by 
shootlib function in Maple software [28]. The thermo-physical properties of Casson base fluid and 
applied nano-particles are presented in the Table 1. 
 

Table 1 
Thermo physical properties of the Casson fluid and the nanoparticles [26] 
 𝜌(𝑘𝑔𝑚−3) 𝐶𝑝(𝑘𝑔

−1𝑘−1) 𝑘(𝑊𝑚−1𝑘−1) 𝛽 × 10−5(𝑘−1) 

𝐶6𝐻9𝑁𝑎𝑂7 989 4175 0.6376 23 
𝐴𝑙 2701 902 237 2.31 
Graphite oxide (𝐺𝑂) 1800 717 5000 28.4 
𝐶𝑢 8933 385 400 1.67 

 
3. Stability Analysis  
 

To employ the stability analysis, Eq. (3) and Eq. (4) should be rewritten in unsteady case. Thus, 
we have 
 
𝜕𝑢

𝜕𝑡
+ 𝑢 

𝜕𝑢

𝜕𝑥
 +  𝑣 

𝜕𝑢

𝜕𝑦
=

1

𝜌𝑛𝑓
[𝜇𝑛𝑓 (1 +

1

𝛽∗
)
𝜕2𝑢

𝜕𝑦2
+ 𝑔(𝜌𝛽)𝑛𝑓(𝑇 − 𝑇∞)]                 (11) 

 
𝜕𝑇

𝜕𝑡
+  𝑢 

𝜕𝑇

𝜕𝑥
 +  𝑣 

𝜕𝑇

𝜕𝑦
 =

1

(𝜌𝐶𝑝)𝑛𝑓
[𝑘𝑛𝑓 (1 +

16𝑇∞
3 𝜎∗

 3𝑘𝑛𝑓𝑘
∗
𝑓
) 
𝜕2𝑇

𝜕𝑦2
+ 𝑄(𝑇 − 𝑇∞)]                (12) 

 
here t is time. Now, a new dimensionless variable 𝜏 is introduced, then Eq. (6) can be written as 
follows 
 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 72, Issue 1 (2020) 94-110 

99 
 

𝜓 = √2𝑈𝑤𝜗𝐿𝑒
𝑥

2𝐿𝑓(𝜂, 𝜏);  𝜃(𝜂, 𝜏) =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
;  𝜂 = 𝑦√

𝑈𝑤

2𝐿𝜗
 𝑒

𝑥

2𝐿 and 𝜏 =
𝑈𝑤

2𝑙
𝑒
𝑥
𝐿⁄ 𝑡               (13) 

 

where, 𝑢 = 𝑈𝑤𝑒
𝑥

𝐿𝑓′(𝜂, 𝜏), 𝑣 = −√
𝑈𝑤𝜗𝑓

2𝐿
𝑒
𝑥

2𝐿[𝑓(𝜂, 𝜏) + 𝜂𝑓′(𝜂, 𝜏)]. 

 
By applying Eq. (13) in Eq. (11) and Eq. (12), we obtained: 
 

(1 +
1

𝛽∗
)
𝜕3𝑓(𝜂,𝜏)

𝜕𝜂3
+ (1 − 𝜙)2.5 [((1 − 𝜙) + 𝜙 (

𝜌𝑠
𝜌𝑓⁄ )) {𝑓(𝜂, 𝜏)

𝜕2𝑓(𝜂,𝜏)

𝜕𝜂2
− 2(

𝜕𝑓(𝜂,𝜏)

𝜕𝜂
)
2

−

2𝜏
𝜕2𝑓(𝜂,𝜏)

𝜕𝜂𝜕𝜏

𝜕𝑓(𝜂,𝜏)

𝜕𝜂
−
𝜕2𝑓(𝜂,𝜏)

𝜕𝜂𝜕𝜏
} + 2 𝜉 (1 − 𝜙 + 𝜙

(𝜌𝛽)𝑠 

(𝜌𝛽)𝑓 
)  𝜃(𝜂, 𝜏)] = 0                 (14) 

 

1

𝑃𝑟

𝑘𝑛𝑓

𝑘𝑓 
(1 +

4𝑅

 3
)
𝜕2𝜃(𝜂,𝜏)

𝜕𝜂2
+ (1 − 𝜙 + 𝜙

(𝜌𝑐𝑝)𝑠
(𝜌𝑐𝑝)𝑓

) [𝑓(𝜂, 𝜏)
𝜕𝜃(𝜂,𝜏)

𝜕𝜂
− 4

𝜕𝑓(𝜂,𝜏)

𝜕𝜂
𝜃(𝜂, 𝜏) −

 2𝜏𝑓′(𝜂, 𝜏)
𝜕𝜃(𝜂,𝜏)

𝜕𝜏
−
𝜕𝜃(𝜂,𝜏)

𝜕𝜏
] − 2 𝜒𝜃(𝜂, 𝜏)  = 0                   (15) 

 
the boundary conditions become 
 

𝑓(0, 𝜏) = 𝑆; 
𝜕𝑓(0,𝜏)

𝜕𝜂
= 𝜆 + 𝛿

𝜕2𝑓(0,𝜏)

𝜕𝜂2
;    𝜃(0, 𝜏) = 1 + 𝛿𝑇

𝜕 𝜃(0,𝜏)

𝜕𝜂
;  

𝜕𝑓(𝜂,𝜏)

𝜕𝜂
→ 0;  𝜃(𝜂, 𝜏) → 0;       𝑎𝑠 𝜂 → ∞                    (16) 

 
In order to test the stability of solutions of 𝑓(𝜂) = 𝑓0(𝜂) and 𝜃(𝜂) = 𝜃0(𝜂), that satisfy boundary 

value problems Eq. (7)-(9) we have 
 
𝑓(𝜂, 𝜏) = 𝑓0(𝜂) + 𝑒

−𝜀𝜏𝐹(𝜂, 𝜏)  
 
𝜃(𝜂, 𝜏) = 𝜃0(𝜂) + 𝑒

−𝜀𝜏𝐺(𝜂, 𝜏)                     (17) 
 
where both 𝐹(𝜂, 𝜏) and 𝐺(𝜂, 𝜏) are small relative to 𝑓0(𝜂) 𝑎𝑛𝑑 𝜃0(𝜂), respectively, 𝜀 is the unknown 
eigenvalue that provides an infinite set of the eigenvalues 𝜀 < 𝜀1 < 𝜀2 < 𝜀3. . .. The stability of 
solution depends upon sign of smallest eigenvalue 𝜀. If value of 𝜀1 is positive that show the flow is a 
stable and there is the initial decay. Conversely, if value of 𝜀 is negative that shows the flow is the 
unstable and illustrate an initial growth of disturbance. By substituting Eq. (17) in Eq. (14)-(16), we 
obtained 
 

(1 +
1

𝛽∗
)𝐹0

′′′ +  (1 − 𝜙)2.5 [(1 − 𝜙 + 𝜙 (
𝜌𝑠

𝜌𝑓
)) (𝑓0𝐹0

′′ + 𝐹0𝑓0
′′ + 2𝜏𝜀𝑓0

′𝐹0
′ − 4𝑓0

′𝐹0
′ + 𝜀𝐹0

′) +

2 𝜉 (1 − 𝜙 + 𝜙
(𝜌𝛽)𝑠 

(𝜌𝛽)𝑓 
)𝐺] = 0                     (18) 

 

(1 +
4𝑅

 3
)𝐺0

′′ + 𝑃𝑟
𝑘𝑓

𝑘𝑛𝑓 
[(1 − 𝜙 + 𝜙

(𝜌𝑐𝑝)𝑠
(𝜌𝑐𝑝)𝑓

) {𝑓0𝐺0
′ + 𝐹0𝜃0

′ + 2𝜏𝜀𝑓′0𝐺 − 4𝑓′0𝐺0 − 4𝐹′𝜃0 + 𝜀𝐺0} −

2 𝜒𝐺0] = 0                        (19) 
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To obtain the steady state solution and taking 𝜏 = 0, 
 

(1 +
1

𝛽∗
)𝐹0

′′′ +   (1 − 𝜙)2.5 [(1 − 𝜙 + 𝜙 (
𝜌𝑠

𝜌𝑓
)) (𝑓0𝐹0

′′ + 𝐹0𝑓0
′′ − 4𝑓0

′𝐹0
′ + 𝜀𝐹0

′) + 2 𝜉 (1 − 𝜙 +

𝜙
(𝜌𝛽)𝑠 

(𝜌𝛽)𝑓 
)𝐺] = 0                       (20) 

 

(1 +
4𝑅

 3
)𝐺0

′′ + 𝑃𝑟
𝑘𝑓

𝑘𝑛𝑓 
[(1 − 𝜙 + 𝜙

(𝜌𝑐𝑝)𝑠
(𝜌𝑐𝑝)𝑓

) {𝑓0𝐺0
′ + 𝐹0𝜃0

′ − 4𝑓′
0
𝐺0 − 4𝐹

′𝜃0 + 𝜀𝐺0} − 2 𝜒𝐺0] 

 = 0                        (21) 
 
subjecting to boundary conditions, 
 
𝐹0(0) = 0,    𝐹0

′(0) = 𝛿𝐹0
′′(0),    𝐺0(0) = 𝛿𝑇𝐺0

′(0),  
𝐹0
′     (𝜂) → 0,   𝐺0(𝜂) → 0,         𝑎𝑠  𝜂 → ∞                    (22) 

 
To obtain stability analysis of the solutions, Eq. (20) and Eq. (21) of linear eigenvalue problem 

along the boundary conditions in Eq. (22) have been solved by collocation method using bvcp4c solver 
functions in the Matlab software and obtained the smallest eigenvalue 𝜀. To obtain smallest 
eigenvalues, there is a need to relax one of the boundary conditions in form of the initial condition 
as in Haris et al., [29]. In this problem, 𝐹0′(𝜂) → 0 as 𝜂 → ∞ has been relaxed in the initial form as 
𝐹′0
′ (0) = 1. It should be noted that the negative smallest eigenvalues point out initial development 

of the disturbance and the solution of the flow is unstable. On other hand, when the smallest related 
eigenvalue value is positive that shows the fluid flow is stable and physical realizable.  
 
3. Results and Discussion 
 

Numerical solutions for the governing Eq. (7) and Eq. (8) subject to boundary conditions given in 
Eq. (9) are found by shooting technique with the help of Maple software. Triple solutions are found 
at various initial guesses of missing values of the skin friction coefficient 𝑓′′(0) and local Nusselt 
number−𝜃′(0) where the profiles satisfy the boundary conditions in Eq. (9) asymptotically. 

To validate the accuracy of the present numerical results, we compare the present results with 
the results previously obtained by Jat and Gopi [30] in Table 2. As can be seen from Table 2, the 
current results show a good resemblance with those obtained by Jat and Gopi [30] and henceforth 
we believe that other obtained new solutions in our study are also correct. 

 
Table 2 
Comparative results of the first solution for skin friction coefficient 𝑓′′(0) 
and local Nusselt number 𝜃′(0) for different values of 𝑃𝑟 at 𝜆 = 1, 𝛽∗ → ∞ 
and 𝜙 = 𝑆 = 𝜉 = 𝜒 = 𝛿 = 𝛿𝑇 = 0 
  Jat and Gopi [30]  Present  
𝑃𝑟 𝑅𝑑 𝑓′′(0) 𝜃′(0) 𝑓′′(0)  𝜃′(0) 
1 0 -1.290377 -0.977550 -1.290377 -0.977543 
1 0.5 -1.290377 -0.741726 -1.290377 -0.741738 
1 1 -1.290377 -0.632116 -1.290377 -0.632118 

 
Furthermore, numerical computations are performed to elaborate the skin friction, heat transfer, 

velocity and temperature profiles. The features are shown in Figure 2 to Figure 16. Figure 2 to Figure 
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7, indicate the effect of suction parameter (𝑆) on skin friction coefficient 𝑓′′(0) and the local Nusselt 
number −𝜃′(0) of 𝐶𝑢, 𝐴𝑙 and 𝐺𝑂-Casson base nanofluid due to variation of stretching and shrinking 
parameter (𝜆), keeping values of other parameters fixed. It is seen that there exist three solutions 
for the case of 𝜆 > 𝜆𝑐, whereas second and the third solutions join together at critical points 𝜆𝑐, while 
first solution remains continuous to exist for both stretching and shrinking cases of 𝜆. Moreover, 
Figure 2 to Figure 4 indicate the variations in skin friction coefficients 𝑓′′(0) regarding to stretching 
and shrinking parameter (𝜆) for the different values of the suction parameter 𝑆. From these figures, 
it is observed that the magnitude of 𝑓′′(0) decrease in case of the stretching sheet (𝜆 > 0) whereas 
opposite trend of the result is seen for shrinking sheet (𝜆 < 0) in the first solution for selected three 
cases of the nanofluid due to increase in rate of suction. In second and third solutions, the magnitude 
of 𝑓′′(0) decreases in both solutions due to increment in 𝑆.  
 

 
Fig. 2. Skin friction coefficient of 𝐶𝑢 with variation of the 𝜆 for 
different values of 𝑆 

 

 
Fig. 3. Skin friction coefficient of 𝐴𝑙 with variation of 𝜆 for 
different values of 𝑆 
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Fig. 4. Skin friction coefficient of 𝐺𝑂 with variation of 𝜆 for different 
values of 𝑆 

 
Figure 5 to Figure 7, illustrates variation of local Nusselt number −𝜃′(0) with 𝜆 for different values 

of the suction parameter 𝑆 for 𝐶𝑢, 𝐴𝑙 and 𝐺𝑂-Casson base nanofluids. From these figures, it can be 
seen that an increase in the parameter 𝑆 causes the increament in magnitude of the −𝜃′(0) in first 
solutions, whereas in second solutions a very small increments are observed at start but after a point 
magnitude of the Nusselt number decreases by enlarging range of the critical point. In third solution, 
the rate of the heat transfer increases throughout flow due to increment in 𝑆. It also can be seen 
from Figure 2 to Figure 7 that copper has the highest skin friction and heat transfer rate, followed by 
aluminium and graphite oxide.  

 

 
Fig. 5. Local Nusselt number of 𝐶𝑢 with variation of 𝜆 for different 
values of 𝑆 
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Fig. 6. Local Nusselt number of 𝐴𝑙 with variation of 𝜆 for different 
values of 𝑆 

 

 
Fig. 7. Local Nusselt number of 𝐺𝑂 with variation of 𝜆 for different 
values of 𝑆 

 
A comparative result of variations of the skin friction coefficient 𝑓′′(0) and the local Nusselt 

number −𝜃′(0) along variation of volume fraction 𝜙 for the copper (𝐶𝑢), Aluminum (𝐴𝑙) and 
Graphite Oxide (𝐺𝑂) nanoparticles are presented in Figure 8 and Figure 9. Figure 8 shows that the 
suspension of Graphite Oxide nanoparticles in Casson fluid provides more drag force compared to 
copper and aluminum nanoparticles. Also, aluminum nanoparticle shows more drag force when 
compared to copper nanoparticle. In opposite, copper nanoparticles in Casson fluid provides more 
rate of the heat transfer enhancement compared to aluminum and graphite oxide nanoparticles that 
is shown in Figure 9. Figure 9 also show the more rate of the heat transfer enhancement of Aluminum 
nanoparticles compared to Graphite Oxide.  
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Fig. 8. The effects of the different nanoparticles on the skin friction 
coefficient 𝑓’’(0) 

 

 
Fig. 9. The differentiation in influence between different 
nanoparticles on the local Nusselt number −𝜃’(0) 

 
Figure 10 demonstrates that the increasing value of Casson parameter 𝛽∗ decreases the velocity 

profile 𝑓′(𝜂) and also the boundary layer thickness of 𝐶𝑢 −Casson base nanofluid throughout the 
flow in first solution which is declared a feasible solution of the present study. Whereas in second 
and third solutions, velocity decreases initially but after a while it increases in both solutions. Actually, 
an increment in value of the parameter 𝛽∗ rises the effective dynamic viscosity. Therefore, increase 
in the resistance of the viscosity leads to declines the yield stress of fluid which drags to fluid flow to 
the stretching sheet. In result, velocity and thickness of its boundary layer decline due to increase in 
parameter 𝛽∗. 
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Fig. 10. The velocity profile 𝑓′(𝜂) for different values of 𝛽∗ 

 
Figure 11 shows the increasing value of the velocity slip parameter 𝛿 decreases the velocity of 

Copper Casson based nanofluid in the first solution. Originally, increasing 𝛿 allows an extra fluid 
particle slipping on the sheet and the fluid flow decelerates close to the sheet. While in second and 
the third solutions any increment in values of parameter 𝛿 initially decreases the nanofluid velocity 
but after a point it begins to rise. 
 

 
Fig. 11. The velocity profile 𝑓′(𝜂) for different values of 𝛿 

 
The effect of Copper nanoparticles volumetric fraction 𝜙 on the velocity profile 𝑓′(𝜂) is depicted 

in Figure 12. From this figure, it is seen that the increasing quantity of Copper nanoparticles in Casson 
fluid decreases velocity profile and its boundary layer thickness in first solution. Fluctuation is 
observed in the second and third solutions where initially velocity profile decrease but after a point 
it starts increasing all over the flow. The effect of Copper nanoparticles volumetric fraction (𝜙) on 
temperature profile 𝜃(𝜂) is shown in the Figure 13. This figure demonstrates that the increasing 
quantity of the Copper nanoparticles increases the temperature profile of Casson fluid and its 
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boundary layer thickness in first solution throughout the flow. In general, an increase in quantity of 
solid nanoparticles increases the thermal conductivity of the fluids that in result enhance the 
temperature profiles and its boundary layer thickness in general, while in second and third solutions 
the behavior is initially similar to the first solution but eventually changes in opposite way. 
  

 
Fig. 12. The velocity profile 𝑓′(𝜂) for different values of 𝜙 

 

 
Fig. 13. The temperature profile 𝜃(𝜂) for different values of 𝜙 

 
The effect of thermal radiation parameter (𝑅) on the temperature profile 𝜃(𝜂) is presented in 

Figure 14. It can be examined from this figure, an increase in the value of thermal radiation parameter 
(𝑅), the temperature profile and its boundary layer thickness are increasing in the first solution 
clearly. While in the second and third solution partially, at start it increase but after a point it 
decreases in both unstable solutions. 

Figure 15 shows the effect of thermal slip parameter (𝛿𝑇) on the temperature profile 𝜃(𝜂). This 
figure implies that the temperature and its boundary layer thickness reduce due to increase in 
thermal slip parameter 𝛿𝑇 in all three solutions. Originally, because of rise in the parameter 𝛿𝑇 , a 
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small amount of the heat energy is transported to the nanofluids. Therefore, in result temperature 
of the nanofluid decrease. 
 

 
Fig. 14. The temperature profile 𝜃(𝜂) for different values of 𝑅 

 

 
Fig. 15. The temperature profile 𝜃(𝜂) for differet values of 𝛿𝑇  

 
Figure 16 illustrates that an increment in the heat source parameter (𝜒), the temperature profile 

𝜃(𝜂) and its boundary thickness increase in first solution throughout the flow whereas in second 
solution opposite to it decrease and in third solution at start it increases but after a while it decreases. 

For the stability analysis, collocation method involving three stage Lobatto IIIa formula has been 
used in BVP4c in Matlab software. The obtained smallest eigenvalues are presented in the Table 3, 
in which it is declared the first solution is the stable and the physically feasible because of the 
obtained smallest eigenvalues are positive, while second and third solutions are seen unstable 
because of possessing negative eigenvalues. 
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Fig. 16. The temperature profile 𝜃(𝜂) for differet values of 𝜒 

 
Table 3 
The smallest eigenvalues for different values of parameters 𝛽∗, 𝜆 and 𝑆 
   𝜀-𝐴𝑙 𝜀-𝐶𝑢 𝜀-𝐺𝑂 
𝛽∗ 𝜆 𝑆 1st 

solution 
2nd 
solution 

3rd 
solution 

1st 
solution 

2nd 
solution 

3rd 
solution 

1st 
solution 

2nd 
solution 

3rd 
solution 

1.5 1.2 6 7.2606 -
7.00075 

-
5.55535 

7.5221 -7.0127 -5.5531 7.352 -7.2341 -5.2522 

2 1.2 6 7.2722 -7.0028 -5.5664 7.6224 -7.0325 -5.5513 7.5231 -7.1235 -5.3121 
2.5 0.5 6 7.5017 -7.0046 -5.5660 7.51353 -7.0326 -5.5406 7.2313 -7.3315 -5.3216 
2.5 1 6 7.5035 -7.0009 -5.5669 7.52843 -7.0326 -5.325 7.4178 -7.3123 -5.031 
2.5 1.2 5.5 7.26105 -7.0078 -

5.55635 
7.52843 -7.3481 -5.5403 7.3124 -7.2325 -5.2612 

2.5 1.2 6.5 7.2612 -7.0078 -
5.55635 

7.4378 -7.4468 -5.5306 7.1378 -7.3144 -5.3071 

 
4. Conclusions 
 

Numerical study is performed to study the boundary layer flow and the heat transfer of Copper, 
Aluminum and Graphite Oxide Casson based nanofluid along an exponential vertically 
stretching/shrinking sheet with heat source/sink, thermal radiation and slip parameters. A single-
phase fluid model presented by the Tiwari and Manab [16] is used to modify the present equations. 
The similarity solutions of the equations are obtained. Then the resulting equations are solved by 
applying shooting technique in Maple software. Triple solutions are observed for different ranges of 
the pertinent parameters at high rate of suction. The stability analysis is done and first solution is 
found as a stable solution. Based on numerical observations, following conclusions can be made. 

i. Triple solutions are observed to occur for the certain ranges of suction parameter 𝑆 and 
stretching/shrinking parameter 𝜆. High suction is one of the main reasons behind the 
occurrence of the triple solutions in present problem. 

ii. The suspension of Graphite Oxide nanoparticles in Casson fluid provides more drag force 
compared to copper and Aluminum nanoparticles. 

iii. The copper nanoparticles in Casson fluid provides more rate of the heat transfer 
enhancement compared to Aluminum and Graphite nanoparticles. 
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iv. An increase in velocity slip and Casson parameters decline velocity profiles and their boundary 
layer thicknesses.  
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