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Synthetic jet which is also known as pulsed jet is a mechanism that is applied in many 
industries, such as manufacturing, automotive, and electronics. It is used in the 
industries as a cooling device. There have been many products developed and 
experimental data gained in the previous decade from synthetic jet technology. 
Interestingly, the expansion in computational fluid dynamic (CFD) simulation for 
synthetic jet analysis becomes important due to the technical advantages in reducing 
the analysis time and cost of the test rig. Therefore, this paper reviews the parameters 
in the CFD simulation which affects the synthetic jet performance. The parameters 
involved are synthetic configuration, numerical method modelling, and cavity. The 
numerical methods employed are Shear Stress Transport, Reynolds Averaged Navier-
Stokes (RANS), k-ε, and Lattice Boltzmann. The investigation on synthetic jet via CFD 
analysis still needs further enhancement, especially on numerical method selection 
and modification. In certain conditions, the results of CFD simulation perform very 
close to the real experimental data. Therefore, the CFD technology is crucial to 
expedite the synthetic jet product enhancement. 
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1. Introduction 
 

Air cooling is traditionally employed in many devices for cooling purposes. The new challenge in 
electronic devices is the density part that is difficult for air-fan to meet with the cooling requirements. 
Besides, the volume of components that need to be cooled down is increased. The fact is that the fan 
power is proportional to the airflow rate. Therefore, it will increase the fan speed, thus resulting in 
more noise and reduced fan reliability. Besides that, the current electronic devices are becoming 
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smaller and need a better cooling system. It is a big challenge to dissipate away from the heat from 
a small hotspot device [1-2]. The synthetic jet is also called a pulsed jet, and air cooling thermal 
management solution was proposed to significantly replace the air fan cooling technique, especially 
for high-density electronic [1–6] products and other applications, such as in manufacturing [7-8] and 
automotive [9-10].  

The idea of synthetic jet first appeared over a century ago in a renown study. The effect of 
synthetic jet had been explored by Lord Rayleigh. It reported that a tiny pulsed air jet was capable of 
extinguishing a candle [11]. Extensive research had been undertaken to understand in detail the 
sciences and principles of synthetic jet, such as in terms of operating parameters [12-13], vortex rings 
[14-15] thermal management application [5,16], and pulsed air jets [4]. Furthermore, more 
application of the acoustic streaming model on heat transfer and the history of the technology was 
reported as well [9,11,17–19].   

The synthetic jet operation is different as compared to the fan blower. Entrainment flow is the 
main process which is delivered by the external pulse to the air jet actuator. This permits the actuator 
to perform a better flow size than the fan blower. In addition, synthetic jet was reported to be 60 
times better than natural convention in terms of heat transfer characteristics in the electronic 
microchannel cooling system [6]. Synthetic jet delivers pulsed air jet in high velocity, as shown in 
Figure 1. The oscillating changes of volume in the piston or diaphragm produce pulsed air bullets 
from the actuator [20]. There are various techniques to produce oscillating movement, including 
pistons [21], piezoceramic composite diaphragms [22–24], or electrodynamically driven diaphragms 
[25]. Another parameter that needs to be highlighted is the flow field that is created behind the 
nozzle at the outlet fluid flow. This flow field trajectory is shown in Figure 2 [26]. 

 

 
Fig. 1. Synthetic jet flow model [4] 

 
Many investigations have been conducted, namely experimental study exploring the factor 

influence the flow performance, such as boundary layer [27], actuator [3,17,21–25,28],  heat mass 
transfer [17,29–31], and jet mixing [32]. Brakmann et al., [33] reported that heat transfer 
performance using finned target was improved by 135% to 142% as compared to the smooth target. 
The synthetic jet application was performed on a flat plate. On the other hand, experimental and 3D 
numerical analyses on the synthetic jet was conducted to study the effect of the target to the plate 
length and hole arrangement. The report exhibited that the experimental and simulation results 
showed a close agreement with each other [8]. Besides that, a hybrid synthetic jet which is an 
improved variant of the synthetic jet was investigated as well [34]. This variant gives advantages in 
terms of volumetric efficiency, especially in the heat or mass transfer potential applications [34]. 
From this analysis, most of the investigations were conducted in the experimental analysis. 
Simulation analysis in the computational fluid dynamic (CFD) can give a clear understanding regarding 
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the science of flow in this synthetic model. Besides that, the experimental facilities or apparatus can 
be eliminated, thus reducing the cost and analysis time. Therefore, this paper will review on the CFD 
numerical modelling, numerical method, and cavity analysis of synthetic jet technology in order to 
understand the crucial parameter involved in the studies. 
 

 
Fig. 2. Trajectory flow in synthetic jet [4,26] 

 
2. Numerical Method Analysis 
 

The attempt to investigate the synthetic jet effect via numerical simulation analysis had been 
conducted earlier. The biggest challenge is to predict and simulate the synthetic jet effect in turbulent 
flow. Interestingly, the cooling performance of synthetic jet in the turbulent flow is better than the 
laminar flow. This is due to the transient vortices movement that expelled the heat rapidly from the 
hot surface [35]. Three common modelling techniques are employed in turbulent conditions, which 
are Large Eddy Simulation (LES), Reynolds Average Numerical Simulation, and Direct Numerical 
Simulation (DNS) [35]. In history, Kral had initiated the investigation of synthetic jets via 
computational fluid dynamics analysis [36] whereby 2D Reynolds Averaged Navier-Stokes (RANS) 
simulations were conducted without cavity computational model in the early attempts. Then the 
enhancement via 3D DNS was employed by Rizzetta et al., [37]. Besides that, a comparison between 
two open-source CFD software packages (Nek5000 and OpenFOAM) were performed via DNS 
modelling system to investigate the synthetic jet flow effect in turbulent conditions [38]. In addition, 
the combination of the LES model and the equation of vorticity stream function (in the turbulent 
equation) were solved by using the Lattice Boltzmann numerical method [35]. The Lattice Boltzmann 
model successfully improved the accuracy of the simulation and overcame the problem in a small 
Mach number. Fischer and Sharma [39] reported that the Scale Adaptive Simulation-Shear Stress 
Transport (SAS-SST) is a potential turbulence model as compared to the k-ε and the Shear Stress 
Transport (SST). It shows a close result in the experimental analysis. On top of that, NASA Langley 
Research Centre continued the effort to clarify the optimisation on the CFD method and modelling 
issues [38]. Table 1 shows the summary of the synthetic jets’ computational studies. The numerical 
methods employed in each study are reported in Table 1 as well. 

The enhancement in CFD analysis has moved rapidly. It gives a reliable result and is close to the 
real experimental data. These reviews show the various modelling system and the numerical method 
involved to simulate the synthetic jet turbulent flow. It will help the future researcher to optimise 
the best method for their analysis.  

Table 2 presents an analysis of numerical studies on single synthetic jet evaluation. The 
configuration, Re and the method used for simulation were compared and assessed. The 
understanding of these characteristics are very important, especially during the parameter selection 
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in order to obtain accurate and precise results. Besides that, Table 2 shows that the dynamic mesh 
method is employed only by a few researchers. Most of the researchers utilised inlet boundary 
conditions (IBC) method as compared to dynamic mesh. 
 
Table 1 
Synthetic jet CFD studies in a quiescent environment 
Modeling Numerical method Re References 

LES Lattice Boltzmann (2D) 400-20000 [35] 
RANS Third-order flux-difference splitting (2D) 2000 [36] 
DNS High-order compact finite-difference (3D) 1500 [37] 
DNS second-order Crank–Nicolson method 

high-order splitting method (2D) 
1150 [38] 

DNS k-ε and the SST model, and the hybrid Unsteady RANS turbulence model 
–SAS-SST (2D) 

18 000 [39] 

LES Lattice Boltzmann (3D) 830 [40] 

 
Timchenko et al., [41], Hong Mun Hoh et al., [42] and Paul Ziadé et al., [43] had employed a 

dynamic mesh method to analyse the flow of the synthetic jet. The dynamic mesh method allowed 
the researchers to view and analyse the evolution from the initial condition of quiescence. Hong Mun 
Hoh et al., [42] reported that spatial resolution of visualisation in grid independence study improves 
with the higher mesh density.  Wang et al., [29] and Ozawa et al., [43] had employed the LES 
turbulence modelling scheme to employ the simulations. Jain et al., [44], Timchenko et al., [41], Silva 
and Ortega [45], Hong Mun Hoh et al., [42], Xia et al., [46], and L. Silva-Llanca et al., [13] had employed 
a laminar flow model on the synthetic jet flow investigation. Besides that, several researchers 
employed a sinusoidal wave operation to imitate the vibration in the cavity  [29,45,47-48], thus 
reducing the model complexity and the simulation time. Most of the Re number conducted in the 
literature review was performed below 1000. A small Re number was employed to fit in tiny 
electronic devices. Therefore, the optimum Re number and numerical modelling are crucial because 
they give a big influence on the vortex ring stability.  
 
Table 2  
Configuration and method review in numerical analysis of synthetic jets 
No Configuration Re  Method References 

1 Synthetic Jet into quiescent air  2400 IBC, URANS [50] 
2 Synthetic Jet based active cooling 

substrates 
600 IBC, LES [29] 

3 Synthetic Jet in crossflow –  IBC, URANS [51] 
4 Synthetic Jet in micro-channels 103 Dynamic Mesh laminar model [41] 
5 Synthetic Jet for active flow control 500 IBC, LES [44] 
6 Axisymmetric Synthetic Jet 167 – 1544  IBC & Dynamic Mesh laminar model [45] 
7 Impinging Synthetic Jet 1421 – 2843  IBC, SST [49] 
8 Impinging Synthetic Jet 508 IBC, laminar model [46] 
9 Impinging Synthetic Jet 2210 IBC [48] 
10 Synthetic Jet at low Re 14.8 – 553  IBC laminar model [47] 
11 Synthetic Jet at different shape 212-276 Dynamic Mesh, OpenFOAM [43] 
12 Adjacent Synthetic Jet effect  300 IBC, SST, Comparison between CFD & PIV [52] 

13 Effect of actuator parameters and 
excitation frequencies on SJ 

- IBC, URANS [53] 

14 Synthetic Jet at low and 
intermediate Re and f(Hz) 

305-1000 IBC, laminar model [13] 

15 Synthetic-jet-assisted fluid mixer 83 Dynamic mesh, viscous laminar model [42] 

16 Jet impingement heat transfer 400- 20 000 Lattice Boltzmann Model [35] 
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3. Cavity Analysis 
 

The effect of cavity shape may give a significant influence on performances, such as velocity and 
flow regime in the synthetic jet system. Paul Ziadé et al., [42] reported that three different shapes of 
cavities were investigated. The cavity S1 had performed the highest momentum at the exit flow [42]. 
S1 is the sharpest nozzle-to-cavity transition as compared to the other types. Figure 3 shows the three 
types of cavity shape.  

Besides that, Alimohammadi et al., [52] presented that the formation of the jet is influenced by 
its stroke length (L0) and Re. On the other hand, this finding supports the above report regarding the 
effect of cavity geometry. Figure 4 shows the single jet flow diagram conducted by Alimohammadi 
[52].  
 

 
Fig. 3. Cross-section of synthetic jet cavity [18] 

 

 
Fig. 4. Single jet flow diagram [52] 

 
Furthermore, L. Yuan-wei et al., [52] investigated the effect of cavity depth and diameter. Figure 

5 shows the cavity analysis for synthetic jet flow. The results reported that the important factors 
influencing the performance of synthetic jet include the cavity depth, cavity diameter, orifice 
thickness, and orifice diameter. Besides, L. Silva-Llanca et al., [13] had investigated the low 
performance of synthetic jets and intermediate Re and f(Hz). The analysis showed a significant 
understanding of the cooling management via synthetic jet mechanism operation in various 
applications. Figure 6 shows the heat flow analysis in computers that reported the possibilities and 
reliability of the results in synthetic jet application [4]. It studies the possibilities of synthetic jet 
mechanism to operate in compact electronic devices. The results showed an improvement up to 40% 
as compared to the existing fan blower cooling. The electronic cooling system has gained serious 
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attention in today’s studies. Therefore, it is worth the effort to focus on this application in the near 
future. 
 

 
Fig. 5. Cavity analysis for synthetic jet flow [53] 

 

 
Fig. 6. Heat flow contour in the computer processor unit [4] 

 
Besides that, Jain et al., [44] reported that the pressure inside the cavity was reduced at a high 

cavity radius. It was due to the flow that failed to reach the orifice when the diaphragm was starting 
a new oscillation. Therefore, the mass flow rate was reduced as well, thus disrupting the heat transfer 
process. It showed that the performance of synthetic jet is influenced by the cavity size, shape, and 
orifice length to the surface [44,53-54]. Besides that, the diaphragm oscillation frequency exhibited 
a big influence as well. Firdaus et al., [55] demonstrated that the excitation frequency and diaphragm 
amplitude had affected the heat transfer performance. 
 
4. Conclusions 

 
The numerical model selection and the cavity analysis were reported in this paper. The main 

target was to give a clear insight to the researcher about the trend of numerical and CFD analyses in 
synthetic jet application. Synthetic jet has the potential in electronic device application. However, 
there is still a gap to be explored on the heat transfer of microchannel conditions in electronic 
devices. The focus was on the flow field nature and the micro heat transfer characteristics. 
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A proper selection of Re number and numerical modelling is crucial as it has a big influence on 
the synthetic jet cooling performance analysis. Furthermore, the cavity size, shape, and orifice length 
of surface greatly affect the heat transfer performance. As a conclusion, more work is supposed to 
be done to improve the durability of electronic devices. 
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