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An astronomical increase in vehicular usage has led to the depletion of existing fossil 
fuels and forced researchers to find alternative sources of fuels. Extensive studies are 
utilizing Saccharomyces cerevisiae for bioethanol production. Therefore, in the present 
study, the potential application of Saccharomyces boulardii derived bioethanol from 
fruit wastes was explored. The orange, sweet lime, and banana peels were subjected 
to various pre-treatment procedures and used as substrates for yeast mediated 
fermentation. The cellulosic de-linearization of fruit peels induced by alkaline and 
steam pre-treatments was analysed using Fourier Transform Infrared Spectroscopic 
analysis. The chemical nature of fruit waste-derived bioethanol was compared with 
commercial ethanol using gas chromatographic analysis. Bioethanol used in ratios 0%, 
4%, 8%, 12% by volume as part of fuel blends were subjected to performance testing. 
This testing process was carried out on a single-cylinder, four-stroke spark-ignition 
engine and the effect of bioethanol content (by volume) on the operational parameters 
like total fuel consumption, brake specific fuel consumption, brake thermal efficiency, 
volumetric efficiency, and equivalence ratios were assessed. FTIR spectra showed 
significant changes in the chemical structure of fruit peels due to pretreatments. The 
bioethanol yields increased up to 24 h of fermentation after which there was a steady 
decline. These results were confirmed by an increase in pH of the biomass after 24 h 
up to 72 h. Enzymatic hydrolysis of fruit peels resulted in higher bioethanol yield as 
compared to acid treatment. The fruit derived bioethanol showed ideal 
physicochemical characteristics for use as automobile fuel. The same showed decent 
performance when tested on a four-stroke, spark ignition engine. 
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1. Introduction 
 

Fuel is a major requirement of mankind for a wide range of applications ranging from 
transportation, electricity, domestic gas, nuclear to geothermal energy [1–3]. Fossil fuels, such as 
diesel, petroleum, gasoline, and kerosene have been utilized for centuries as the principal form of 
energy in automotive industries [4]. There is a steady depletion of liquid fuel reserves due to 
unlimited consumption and increasing demand in the transportation sector [5]. Fossil fuels are 
expensive, emit greenhouse gases (GHG), difficult to handle and are less efficient over a longer time 
[6]. Till date, bio-hydrogen, biodiesel, bioethanol, biogas, methanol, butanol, natural gas, liquefied 
petroleum gas (LPG) and fatty acid methyl ester (FAME) have found routine application as 
replacements for conventional fuels [7]. But research focus on the production of biofuels like 
bioethanol and biodiesel has been of prime significance in the current era of depleting fuels. Biofuels 
are mainly classified into four generations- first (feedstocks-animal fats, vegetable oils), second 
(lignocellulosic biomass), third (algae-based) and fourth (solar fuels, synthetic biology, metabolic 
engineering approaches) [8]. Ethanol derived from lignocellulosic biomass have a high octane 
number, generates low carbon emissions and can be blended with gasoline and diesel to improve 
their properties [9]. These also require fewer additives and release reduced aromatic derivatives in 
the process [10]. Lignocellulosic materials are predominately used as starting material for ethanol 
production considering their minimal energy requirement, easy availability, lower cost of 
transportation, and higher fuel yields [11]. There are different methods of bioethanol production- 
fermentation involving common lignocellulosic material containing agricultural wastes like sugarcane 
bagasse, fruit peels [12], in addition to molasses [13] and plant pod husks [14]. There are three basic 
steps for conversion of plant-based substrates to final fuel- i) pretreatment, ii) hydrolysis and iii) 
fermentation [15]. The process of pretreatment is necessary for loosening the tightly bound cellulosic 
matrix (composed of mainly cellulose, hemicellulose, and lignin) by breaking intercalating glycosidic 
bonds which in its native form is not susceptible to enzymatic hydrolysis. Therefore, these fibers are 
subjected to various forms of pre-treatment, i) Physical methods included microwave, ultrasonic 
vibrations, high-temperature pyrolysis, ii) chemical methods primarily focused on acidic, alkali 
treatment, iii) physicochemical methods involved steam, and iv) biological method used enzymatic 
hydrolysis [16]. Hydrolysis breaks down macromolecules into simple sugars such as hexose, mannose 
and are mainly of two types- acidic and enzymatic. This process reduces cellulose crystallinity and 
gives an increased surface area for catalytic reaction. Acidic reaction results in the conversion of 
cellulose into glucose and hemicellulose to xylose components [17]. Therefore, enzymatic hydrolysis 
is a better option for the conversion of lignocellulosic biomass as it is cost-effective, less-corrosive, 
and results in a higher fuel yield [18]. There are two strategies of enzymatic hydrolysis for 
fermentation- i) separate hydrolysis and fermentation (SHF) and ii) Simultaneous saccharification and 
fermentation (SSF). In SHF, commercially procured enzymes like cellulases and hemicellulases break 
down cellulose and hemicellulose in the pre-treated substrate at approximate temperatures of 50 
°C. However, in SSF, the pretreated raw material is incubated along with the inoculated 
microorganism in the fermentation tank predominately at temperatures ranging from 28 to 37 °C 
[19]. Fruit derived wastes are inedible, lead to bad odor and its open disposal leads to environmental 
fallouts. These fruits are rich in complex sugars such as pectin, cellulose, hemicellulose [20] and 
therefore, they can be converted into bio-based fuels through enzymatic fermentation reactions. To 
date, individual fruit peels have been fermented by cellulase/hemicellulases produced by 
Saccharomyces cerevisiae [21] for bioethanol generation. Therefore, in the present study, fruit 
wastes were separately subjected to enzymatic hydrolysis by α-amylase followed by microbial 
fermentation using Saccharomyces boulardii.  
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2. Methodology  
2.1 Production of Bioethanol 
2.1.1 Pretreatment of raw materials 
 

Fresh fruit peels of orange (Citrus sinensis), sweet lime (Citrus limetta) and banana (Musa 
acuminata), cultivated in agricultural farms of Udupi were procured locally from a fruit shop in 
Manipal. They were refrigerated for 6 h after which they were shredded to obtain fine-sized particles 
(~75 μm) to increase the available surface area for the pre-treatment reactions. The pilot-scale study 
involved taking the shredded peels (100 g each of the three different fruits) in separate sterile 
beakers and subjecting them to steam and alkaline pretreatments. The steam conditioning involved 
exposure of fruit peels to 160 °C (steam) at 15 psi for 30 min in an autoclave. The pretreatment 
removed value- added product limonene usually present in citrus fruit peels [22]. This limonene 
inhibits the fermentation process due to its antimicrobial activity [23]. For alkaline treatment, 100 
mL of 2 M NaOH (small scale), 500 mL of 2 M NaOH (large scale) were added to the respective beakers 
containing fruit peels. These pretreatments loosen the cellulosic matrix of fruit peels making them 
susceptible to enzymatic hydrolysis. FTIR analysis was used for evaluating the structural changes in 
fruit peels due to steam and alkaline pretreatments. The fruit peels after pretreatments were dried 
in a hot air oven at 70°C for 48 h. The dried peels were ground into fine powder using a laboratory 
blender and stored at 4 °C (Figure 1). 10 mg of individual fruit powder was used in potassium bromide 
discs for sample processing. The sample spectra were analyzed using Jasco FT/IR-6300 (United States) 
in the range from 400 to 4000 cm-1 at a resolution of 0.07 for 100 scans. 
 

 
Fig. 1. Treated fruit peels (a) Orange (b) Sweet lime (c) Banana 

 
2.1.2 Hydrolysis treatment 
 

The acidic hydrolysis treatment involved the addition of 100 mL of distilled water to the pre-
treated samples to maintain the hydration. 50 mL of dilute sulfuric acid (10 % concentration) at pH 2 
was added followed by sterilization at 120 °C, 15 psi for 30 min. At this stage, the pH of peels was in 
the acidic range between 1 to 2. Therefore, the pH of peels was adjusted to 7.0 with 2 M NaOH for 
neutralization. For enzymatic hydrolysis, the acetate buffer was prepared by adding 90 mL of acetic 
acid and 170 mL of sodium acetate to 240 mL of distilled water. 15 mg of the enzyme (α-amylase) 
(procured from Sisco research laboratories, Mumbai, India containing 10-25 units/mg solids) was 
dissolved in 3 mL of distilled water to prepare the final enzymatic solution. 100 mL of acetate buffer 
was added to 15 g of pretreated peels and 15 µL of the enzyme was added to this in three 500 mL 
breakers (banana, orange, and sweet lime) respectively. The sealed beakers were incubated for 24 h 
at 40 °C under shaking at 175 rpm. After overnight incubation, the samples were boiled for 2 min in 
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a heating mantle and centrifuged at 5000 rpm for 10 min at 37 °C. The concentrated samples were 
then transferred to three-necked round bottom flasks and sterilized in an autoclave at 120 °C at 15 
psi for 30 min. 
 
2.1.3 Fermentation 
 

Lyophilized yeast powder (commercially available as gNorm) containing Saccharomyces boulardii 
was procured locally. 125 g of yeast (S. boulardii), 3 g of dextrose and ammonium sulfate were added 
to the hydrolyzed samples as carbon and nitrogen sources respectively. 4000 mL of sterilized 
lukewarm water was added to it and the solution was incubated for 7 d. The pH of fermentation 
solution was monitored continuously to evaluate the extent of bioethanol production. The final 
bioethanol was separated from the crude biomass after fermentation by using a vacuum distillation 
setup with rotor evaporator (Equitron Evator Rotary Evaporator fitted with a Refrigerated Circulating 
Bath from Medica Instruments, India). The sample solution was poured into the clean round bottom 
flask connected to a condenser with the help of a Keck clamp. The cooling bath was turned on and 
set at 15 °C. The vacuum pump was powered, and the hot bath was filled with enough water to 
accommodate the round bottom flask. The hot bath, as well as the evaporator, were switched on 
and the desired rotation of condenser was set to 100 rpm. The timing of the operation was set 
manually in the evaporator display. The hot water bath was maintained at a maximum temperature 
of 60°C. After the operation, the round bottom flask along with the other components was allowed 
to cool down. The bioethanol obtained was then subjected to physiochemical analysis. The specific 
gravity of the bioethanol was determined. Redwood viscometer was used to determine the absolute 
viscosity. Cleveland Flash and Fire point tester was used to determine the flash and fire points of 
bioethanol. A bomb calorimeter was used to measure the lower heating values of the bioethanol. 
 
2.1.4 Gas Chromatographic (GC) analysis of bioethanol 
 

The chemical nature of obtained liquid was confirmed using a Chemito GC 8610 gas 
chromatograph (Chemito Instruments, India) fitted with flame ionization detector (FID 861) using a 
capillary column (OV-17) for separation and IRIS 32 software for analysis. The carrier nitrogen gas 
was utilized at a flow rate of 2 mL/min. The oven temperature was set at 250°C while the injector 
and detector temperatures were at 180 °C and 300 °C respectively. 
 
2.2 Performance Testing of Synthesized Bioethanol on Spark Ignition Engine 
 

The bioethanol was tested on a four-stroke, single-cylinder, spark-ignition engine setup coupled 
with brake drum dynamometer. The engine parameters have been shown in Table 1. Using pure 
ethanol as the sole fuel was deemed infeasible since the fuel intake system and the engine had to be 
subjected to certain modifications. Hence, bioethanol in low concentrations was blended with 
gasoline for which no modifications of the engine or the fuel system was necessary [24]. Bioethanol 
in 0%, 4%, 8%, 12% by volume (E0, E4, E8, and E12) was blended with gasoline to give the final test 
fuel. The numbers succeeding E represent the percentage amount of bioethanol by volume. The 
engine was started and allowed to reach its optimum operating temperature. The engine speed was 
attuned to 2000 rpm during the performance test. The load on the dynamometer was set to 2.25 kg, 
4.5 kg, 6.75 kg and 9 kg respectively to correspond to engine load fraction of 25%, 50%, 75%, and 
100%. An orifice-meter placed in the air intake line across which a U-tube manometer was connected 
for measuring the rate of the air intake. A burette fitted with a three-way cock was used to measure 
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the time taken for 20 mL of the fuel to get consumed from which the fuel consumption rate was 
obtained. Eq. (1)-(4) were used to compute the brake power, total fuel consumption, specific fuel 
consumption, brake thermal efficiencies respectively at the corresponding engine load fractions. Eq. 
(5)-(10) were used for finding out the volumetric efficiencies. The brake means effective pressures 
were determined using Eq. (11). Eq. (12)-(15) were used to determine the actual air-fuel ratios. The 
stoichiometric air-fuel ratios for the different blend types were determined from combustion 
equations shown in Appendix A. The equivalence ratio was found out from Eq. (16).  
 

𝐵𝑃 =
2𝜋×2800×0.1×𝑊

60000
             (1) 

 

𝑇𝐹𝐶 =
3600×𝑉×𝜌

1000×𝑡
             (2) 

 

𝐵𝑆𝐹𝐶 =
𝑇𝐹𝐶

𝐵𝑃
              (3) 

 

𝜂𝑏,𝑡ℎ =
3600×𝐵𝑃

𝑇𝐹𝐶×𝑄𝐶𝑉
× 100            (4) 

 

𝜌𝑎 =
𝑃
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              (5) 
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𝜌𝑎
              (6) 

 

𝑄𝑟 = 60 × 𝐶𝑑 × 𝐴0 × √2𝑔ℎ𝑎           (7) 
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𝑇𝑟
              (8) 
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2
              (9) 
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Table 1 
Engine Specifications 
Parameter Specification 

Bore (mm) 70 
Stroke (mm) 66.7 
Brake Drum Radius (mm) 100 
Compression Ratio 9:1 
Fuel System Carbureted 
Rated Maximum Speed (rpm) 2800 
Rate Brake Power (kW) 2.5 

 
3. Results  
3.1 Characterization of Lignocellulosic Biomass 
 

FTIR spectra showed variable compositional changes in the cellulosic content of fruit peels before 
and after steam, alkali pretreatments (Figure 2(a), Figure 2(b) and Figure 2(c)). The standard spectrum 
for untreated cellulose, hemicellulose, and lignin are well established in the latest research [25]. The 
untreated banana peels resulted in peaks approximately closer to 1233 cm-1-C-O stretch in lignin [26], 
1490 cm-1- C=C and C-C stretching in bonds of lignin aromatic ring [27], 1740 cm-1- C=O stretch of 
hemicellulose, 1745 cm-1- C=O stretch in cellulose, lignin [28], 2266 cm-1- O-H, C-O bonds in cellulose, 
2332 cm-1- C-H bond in cellulose [16,29] and 2923 cm-1-C-H, C-H2 stretch in cellulose [30]. Steam and 
alkali pretreatments brought about effective cellulosic delinearization as the obtained bands showed 
reduced intensities compared to the untreated samples. There were slight changes in band positions 
(from 1233 cm-1 to 1231 cm-1 for steam and 1230 cm-1 for sodium hydroxide. Untreated sweet lime 
fibers showed band peaks at 1205 cm-1-O-H, C-O-C bond in cellulose [25], 1508 cm-1-C=C stretch in 
lignin, 1740 cm-1- C–O and C–H bond in hemicellulose [31], 1910 cm-1- O-H stretch in cellulose, 
hemicellulose, and 2332 cm-1- C-H bond in cellulose [29] and 2910 cm-1-C-H bond stretch in cellulose, 
hemicellulose [32]. 
 

   
(a) (b) (c) 

Fig. 2. FTIR Spectra of (a) orange peels (b) sweet lime peels (c) banana peels 

 
The pretreated fibers resulted in the reduction of weaker bands and shift from their initial 

positions: (from 1205 cm-1 to 1209 cm-1 for steam and sodium hydroxide. The absence of a peak at 
1740 cm-1 after alkali treatment could be due to irreversible structural modification to the existing 
C–O and C–H linking. The untreated orange fibers yielded the closest corresponding peaks: 1200 cm-

1-O-H, C-O-C bond stretch in cellulose [25], 1508 cm-1-C=C vibrations in lignin [33], 1633 cm-1- C=C 
bond in lignin [34] and 2970 cm-1- C–H stretch in cellulose [25]. 
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3.2 Characterization of Bioethanol 
3.2.1 pH analysis 
 

Saccharomyces boulardii used in this study successfully converted cellulosic content in fruit peels 
to ethanol. There was a steady increase in pH of biomass during fermentation involving both acidic 
and enzymatic hydrolysis of fruit peels as seen in (Table 2). The individual peels showed a periodic 
increase in pH of biomass (after acid hydrolysis): (3.11 to 5.12 for orange), (3.38 to 5.20 for sweet 
lime) and (3.25 to 5.06 for banana) after 120 h of fermentation. As a result of enzymatic hydrolysis, 
the pH changed from (4.51 to 5.58), (4.81 to 5.82) and (3.98 to 5.44) for orange, sweet lime, and 
banana respectively. It is well known that the decrease in pH is indicative of a gradual increase in 
bioethanol production. This is due to the production of organic acids during yeast-based anaerobic 
fermentation which reduces the overall pH of medium. Therefore, a lower pH during fermentation 
suggests ethanol as one of the accumulated final products [35]. This was seen also in the case of 
bioethanol produced from fruit (orange) and vegetable (potato, tomato, and cabbage) wastes. The 
tomato derived bioethanol pH decreased from 4.19 to 3.79, while, for potato, pH declined from 5.39 
to 4.62 and for cabbage, it reduced from 5.35 to 4.19 [36]. Yeast isolate from sugarcane juice showed 
an increase in bioethanol yields from 22.4 g/L at pH 6 to 33.4 g/L at pH 5 when glucose was used as 
a defined sugar medium [37].  
 

Table 2 
pH during fermentation of bioethanol 
Fruit  Time 

(h) 
pH during ethanol fermentation  

(acidic 
hydrolysis) 

(enzymatic hydrolysis) 

Orange 0 6.95±0.02 6.90±0.10 
24 3.11±0.16 4.51±0.05 
48 3.78±0.51 4.78±0.07 
72 4.13±0.20 4.94±0.34 
96 4.88±0.16 5.20±0.38 
120 5.12±0.13 5.58±0.43 

Sweet Lime 0 6.87±0.05 6.92±0.14 
24 3.25±0.02 3.98±0.01 
48 3.82±0.05 4.29±0.08 
72 4.36±0.12 4.73±0.26 
96 4.81±0.09 5.10±0.16 
120 5.06±0.21 5.44±0.30 

Banana 0 6.86±0.09 6.90±0.11 
24 3.38±0.36 4.81±0.18 
48 3.95±0.10 5.27±0.05 
72 4.21±0.14 5.45±0.19 
96 4.92±0.08 5.65±0.07 
120 5.20±0.11 5.82±0.27 

 
3.2.2 Effect of hydrolysis on ethanol yield 
 

Enzymatic hydrolysis of pre-treated fruit peels resulted in varying bioethanol yields for different 
fruit peels (Table 3). The individual peels resulted in a final yield of 3.9 mL, 4.2 mL, and 6.7 mL (for 
banana, orange, sweet lime) after sulfuric acid treatment as compared to 8.2 mL, 9.6 mL, and 12.1 
mL for the same in the presence of α-amylase. After initial enzymatic hydrolysis, the partially 
delinearized fibers were converted to bioethanol with the help of microbial cellulases and 
hemicellulases produced by yeast S. boulardii. SHF also resulted in 228 mL of bioethanol at a larger 
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scale. Similar higher bioethanol yields were reported for sugarcane bagasse [1], where cellulase-
hemicellulase combination resulted in effective biomass conversion as compared to dilute sulfuric 
acid. Several additional commercial enzymes such as β-glucosidases and endo-glucanases, exo-
glucanases are also used for lignocellulosic conversion [38] as they are thermostable, highly specific 
and result in complete degradation of cellulose, hemicellulose into glucose and xylose, arabinose, 
mannose, galactose respectively without accumulation of byproducts [18]. These sugars are then 
converted to ethanol during anaerobic fermentation by microbial enzymes [39]. The increased 
surface area of the substrate due to enzymatic hydrolysis might be another reason behind higher 
ethanol production [40]. Acidic treatment resulted in a lower yield of ethanol which might be due to 
several factors. Acid hydrolysis is more suitable for substrates with high lignin content as it can break 
down its complex structure [41]. The treatment being non-specific to cellulose also break downs 
hemicellulose which blocks the accessibility of cellulose for further enzymatic degradation [42,43]. 
The acidic reaction in addition to being expensive also results in the incomplete breakdown of 
complex sugars into oligomers. Therefore, it forms inhibitory intermediates (such as furfurals, 
acetate, benzaldehydes) which interfere with fermentation and slows down the hydrolysis. This 
process necessitates neutralization which may lead to corrosive reactions [44]. 
 
3.2.3 Effect of fermentation time on bioethanol yield  
 

An increase in fermentation time after 24 h resulted in lesser bioethanol yield as seen in Table 2. 
For orange peels subjected to acid and enzymatic hydrolysis, the bioethanol yields decreased from 
4.2 mL and 9.6 mL after 24 h to 1.7 mL and 4.2 mL after 120 h. The sweet lime peels derived 
bioethanol yields declined from 6.7 mL and 12.1 mL to 2.6 mL and 6.8 mL. In the case of banana peels, 
the bioethanol yields reduced from 3.9 mL and 8.2 mL to 0.8 mL and 3 mL. The bioethanol yields 
increase with fermentation time up to a saturation point, after which it declines. This is the time 
when complex sugars in substrates (fruit peels) are completely converted to bioethanol by microbial 
enzymes. In the present study, 24 h was the point where bioethanol yield was the highest. In similar 
cases, bioethanol yield from citrus waste and banana peels declined from 26.84 g/L after 48 h to 
25.22 g/L after 72 h [45]. Also, bioethanol from pineapple peels reduced from 5.98 g/L after to 4.5 
g/L after 72 h [46].  
 

Table 3 
Effect of hydrolysis on bioethanol production 
Fruit peel type  Time (h) Volume of produced bioethanol (mL) 

Acidic hydrolysis Enzymatic hydrolysis 

Orange 
 

24 4.2 9.6 
48 3.8 8.5 
72 3.3  6.4 
96 2.8 5.6 
120 1.7 4.2 

Sweet Lime 
 

24 6.7 12.1 
48 5.4 11.2 
72 4.8 10.5 
96 3.9 8.9 
120 2.6 6.8 

Banana 24 3.9 8.2 
48 3.2 7.1 
72 2.5 6.3 
96 1.6 4.8 
120 0.8 3.0 
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3.2.4 Physiochemical properties of bioethanol 
 

The bioethanol obtained from fruit peels showed optimum characteristics for use as automobile 
fuel. The physical properties of bioethanol were compared with that of absolute alcohol (Commercial 
ethanol) and gasoline in Table 4. The variation could be attributed to moisture content retention in 
the produced bioethanol after dehydration [47,48]. The produced bio-ethanol has been shown in 
Figure 3 for different sources of the fruit peels. 
 

 
Fig. 3. Synthesized Bio-ethanol from different fruit 
peels (a) Banana (b) Orange (c) Lime 

 
Table 4 
Some Physiochemical properties of ethanol and gasoline [6,49] 
Properties Absolute Alcohol Produced bioethanol Gasoline 

Chemical Formula C2H5OH C2H5OH C8H17 

Molecular Weight 46 46 113.2 
Specific gravity 0.79 0.83 0.74 
Absolute Viscosity (cp) 1.2 1.31 0.56 
Flash point (K) 290.15 302.15 228 
Fire point (K) 299.15 307.15 234 
Lower Heating Value 
(MJ/kg) 

27 23.4 43.5 

 
3.2.5 Gas Chromatographical (GC) analysis 
 

Commercial ethanol was used as a reference for GC analysis as shown in Figure 4. The compound 
eluted from the column at a retention time of 4.26 min. The bioethanol obtained from fruit peels 
showed a retention time of 4.63 min with a deviation in retention time of 8.7 %, similar to results 
obtained in [50]. 
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3.3 Performance Testing 
 

The variation in TFC with BMEP at an engine speed of 2000 rpm has been displayed in Figure 5(a). 
With an increase in BMEP, the fuel consumption was found to increase for each blend. At any given 
BMEP, E0 showed the maximum fuel consumption and as the bioethanol content increased in the 
blend, the total fuel consumption was found to drop. BSFC with BMEP at an engine speed of 2000 
rpm has been shown in Figure 5(b). With the increase in BMEP, the BSFC was found to decrease, in 
all the four blends. At a given BMEP, the BSFC was found to decrease as ethanol content was 
increased. Thus, bioethanol showed a reducing effect on the BSFC. The brake thermal efficiency was 
found to an increase with an increase in BMEP as well as bioethanol content (Figure 6(a)). The peak 
efficiency of 16.8% was noticed for the E12 bioethanol blend. The thermal efficiency could be 
improved by increasing the compression ratio which could be accommodated for bioethanol blends 
since ethanol has a higher octane number than gasoline [47]. The volumetric efficiency increased on 
increasing the BMEP for all the blends (Figure 6(b)). The increase in bioethanol content enhanced the 
volumetric efficiency. At the peak BMEP, the effect of bioethanol content on the volumetric efficiency 
was found to be more pronounced for the E12 blend.  
 

 
Fig. 4. GC Analysis (a) Absolute alcohol (b) Bioethanol 
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Fig. 5. (a) TFC Vs BMEP @ 2000 RPM (b) BSFC Vs BMEP @ 2000 RPM 

 

 
Fig. 6. (a) BTE Vs BMEP @ 2000 RPM (b) Volumetric Efficiency Vs BMEP @ 2000 RPM 

 
Figure 7 shows the variation of the equivalence ratio with the BMEP at an engine speed of 2000 

rpm. The equivalence ratio of E0 i.e. 100% gasoline which lay within lean limits at the lowest BMEP 
increased with BMEP and the mixture attained At-Stoichiometric strength at the peak BMEP. The 
bioethanol blends E4, E8 and E12 showed an equivalence ratio less than unity i.e. the mixtures 
remained lean at all values of the BMEP. E8 and E12 showed very lean mixtures at the lowest BMEP, 
hence posing a risk of premature flame quenching at cold start conditions [51,52].  

Hence, for increasing the content of bioethanol beyond 12%, some modification in the air intake 
system was deemed necessary to regulate the rate of air supply into the engine in correlation with 
the operational air-fuel ratios. The comparison of the stoichiometric air-fuel ratio with the actual air-
fuel ratio has been shown in Table 5 along with the density and lower heating values of different 
blends. 
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Table 5 
Comparison of operational parameters of different blends 
Blend 
type 

(A/F)Ac (A/F)S ρf 

(kg/m3) 
Qcv 
(MJ/kg) Engine load 

25% 
Engine load 
50% 

Engine load 
75% 

Engine load 
100% 

E0 21.6 20.6 17.7 15.2 14.94 740 43.5 
E4 24.5 23.3 21.4 17.5 14.76 745 42.7 
E8 27.5 25.2 25.2 19.7 14.58 749 41.9 
E12 28.2 25.6 26.8 20.5 14.39 753 41.1 

 

 
Fig. 7. Equivalence Ratio Vs BMEP  

 
4. Conclusions 
 

The cellulosic content in banana, sweet lime and orange were successfully converted into 
bioethanol by the action of α-amylase treatment and cellulases produced by Saccharomyces 
boulardii. Both steam and alkali pretreatments with sodium hydroxide brought about significant 
changes in the lignocellulosic structure which were analyzed using FTIR spectra analysis. Sweet lime 
peel resulted in a maximum yield of ethanol after enzymatic hydrolysis as compared to dilute sulfuric 
acid. α-amylase proved to be a potential replacement for the commercially expensive cellulases in 
bio-based fuel production. GC analysis confirmed the authenticity of the produced bioethanol. The 
obtained bioethanol showed effective physiochemical properties requisite for application in 
automobile fuels. 

The following conclusions were drawn from the performance testing of the bioethanol blends 
with gasoline on the four-stroke, spark-ignition engine: 

i. The brake thermal efficiency increased with an increase in ethanol content as well as an 
increase in BMEP’s. 

ii. TFC increased while BSFC reduced with the increasing ethanol content at different BMEP’s. 
iii. The volumetric efficiency was found to rise with the ethanol content at different BMEP’s. 
iv. There was a drastic reduction in the equivalence ratio especially at lower BMEP’s which set a 

limitation on the maximum content of ethanol that could be used for blending with gasoline. 
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