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Better systems can be produced from various utility outputs that are integrated to 
make choices. The emergence of polygeneration after triggers and cogeneration can 
be used as sustainable solutions, making it possible to utilize resources optimally, 
efficiently and environmentally friendly. Polygeneration can be conceptualized with 
several possibilities because, theoretically, the working system has been well received 
as contained in some literature. Various scientific works have reported that the input 
and output vary greatly. The results of experimental analyses and prototypes 
developed have also been widely investigated and reported. Optimization tools that 
are based on the function of each objective are also used as a step to develop 
polygeneration effectively and efficiently. Polygeneration assessment has 
multidimensional criteria and their definitions can be applied based on cases with 
specific objectives. The main objective of this article is to comprehensively review the 
various literature available to investigate the status of polygeneration for renewable 
and sustainable energy solutions in the future. Various possible logical and predictable 
future works on polygeneration are also discussed at the end of this article. 
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1. Introduction 
 

The main input and growth and civilization of the world economy are energy sources [1,2]. The 
availability of primary energy contained in nature has several differences and their respective uses, 
however, the safest forms are used and benefits, such as secondary energy for power generation [3–
7]. Therefore, technology for converting other energy into electricity is very important since 
conventional fuel is a resource that has a high heat pillar with a long period of time available. In 
general, power plants still use fossil fuels [3,4]. Worldwide, the electricity sector is still dominated by 
large-scale power plants, such as ultra-mega and mega power plants. However, as fossil fuels 
continue to run low, limited and included CO2 greenhouse gas emissions become the main problem 
for the power plants [8–10]. To make better use of resources, it can be done by increasing efficiency 
so that indirect environmental degradation can also be reduced. However, the saturation of the 
steam-based power cycle to increasing efficiency depends on the material being developed. The gas-
vapor combination cycle, in essence, has significantly increased efficiency so that the impact on the 
environment is minimal because the type of fuel used can be limited specifically for this plant. A 
combined cycle of integrated gasification (CCIG) and coal can also be used for this cycle. CO2 from 
CCIG capture is an option in limiting or reducing CO2 through coal. However, it has a very large 
connection to the efficiency resulted. To date, sustainable development has been considered as one 
of the most rational goals for the long term. The use of energy from the results of conversion into 
aspects and objectives on an ongoing basis is very important. Optimal use of resources, management 
of requests, efficient improvement, etc. are things that should be done as soon as possible. This is a 
different aspect of sustainable energy use. The limited availability of resources, as well as various 
environmental impacts and long-term use of fossil fuels, cannot be fulfilled because of the depletion 
in the last few decades [11–14]. However, during the transition, the renewable energy from fossil 
fuels in their use must also be ensured to be more environmentally friendly and more efficient. 

Sustainable energy solutions can be utilized with polygeneration systems because the fuel used 
can vary for several utilities [15–18]. Increased overall efficiency is very significant with the system 
design on the integration of several sub-systems that can be done efficiently. In addition, the use of 
alternative fuels to utilize resources can be increased by making appropriate fuel changes or mixing 
conventional fuels. Higher efficiency with the use of suitable fuels can reduce environmental impact. 
Utilities found in conventional fuel-based polygeneration which is used for gas/liquid fuel synthesis 
can also reduce CO2 emissions [19–22]. The output of the utility will determine the optimal use of 
available resources. In addition, it is also possible to integrate hybrid systems for renewable and non-
renewable resources with an optimum capacity [23–26]. Research or investigation on polygeneration 
has been available in some literature. Investigations regarding multigenerational used for distributed 
applications have been carried out by Chicco and Mancarella [18]. The purpose of the investigation 
is to meet the heating power, power (CCHP) and hybrid cooling. An overview of models and 
assessment techniques for distributed multi-utility generation is generally presented by [27–29]. An 
investigation into the potential of hybrid power plants with well-integrated solar biomass in several 
desalination and cooling techniques has also been carried out by Sahoo et al., [30]. Research on this 
desalination technique has been carried out in India [30]. Sustainable energy solutions with the use 
of distributed polygeneration have also been investigated by Rong and Lahdelma [31]. In the review, 
they mainly focus on the angle of optimization. Meanwhile, expanded polygeneration with tri 
generative syntax (CCHP) has been investigated by Murugan and Horak [32,33]. The process with 
integrated systems is polygeneration in providing input to utilities that are one unit, so that it can 
produce multi-utility systems efficiently. The design of polygeneration properly and correctly can 
increase energy efficiency, increase economic benefits, reduce waste and emissions by implementing 
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a system of increased complexity [16,18,32]. Biomass-based polygeneration from the sun has various 
advantages such as reducing carbon emissions, increasing energy efficiency and overcoming the 
problem of scarcity of fossil fuels compared to stand-alone units. The outermost regions which are 
decentralized with polygeneration can increase energy access in areas that are difficult to access 
electricity [18]. Meanwhile, coal-based polygeneration is very beneficial for the use of carbon for 
environmental and economic perspectives [34,35]. Thus, energy efficiency can be improved by 
polygeneration to save resources. 

The power generation system can be obtained from the use of fuel energy as shown in Figure 1.1. 
While at the same time, the wastes are disposed into the environment in the form of exhaust gases, 
hot water waste, etc. In addition, the utility and electric heat contained in the cogeneration plant is 
produced as shown in Figure 1.2. The output of the resulting plant is a truthful factory as shown in 
Figure 1.3. This output is in the form of heating, electricity and cooling. Production results from 
various utilities from one factory or from several resources can be called polygeneration or 
multigenerational as shown in Figure 1.4. Other outputs from polygeneration, such as chemicals, are 
independent from the available energy service system [36,37]. The combination of several processes 
can be called polygeneration because the design is very important and varies in intensity. To produce 
various outputs from polygeneration, it can be done with multiple and single inputs so that an 
assessment of its performance is very important. This performance measurement can be done with 
a matrix type, and it is very important to be carried out continuously on multi-dimensional aspects 
[23,30]. Polygeneration is the energy that can produce various utilities from only one factory. 
Previous studies of polygeneration have been conducted and reported [38–40]. This polygeneration 
is carried out by utilizing coal with the aim of producing electricity, thermal energy, liquid hydrogen 
and nitrogen gas which are designated at the request of the Kennedy Space Center. 
 

Cogeneration PlantPower Plant

Trigeneration Plant

ElectricityEffluent
Electricity Utility heat

Effluent

Fuel Fuel

RefrigerationElectricity Utility heat

Effluent
Polygeneration 

Plant

Utility heatRefrigeration Electricity Chemicals etc.
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Solar, Wind, etc.
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Fig. 1.1. Power Plant Fig. 1.2. Cogeneration Plant

Fig. 1.3. Trigeneration Plant Fig. 1.4. Polygeneration Plant  
Fig. 1. Resource for Power generation, cogeneration, trigeneration and polygeneration 

 
The research on polygeneration has also been carried out by several partners funded by the 

European Commission [40,41]. The research is named as (POLYSMART) which aims to investigate 
various technological feasibility of polygeneration and market potential in the world and in Europe 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 74, Issue 2 (2020) 85-119 

88 
 

itself. Various forms and types of polygeneration are found in some literature as illustrated in Figure 
2. The existing polygeneration operations are not carried out on a commercial scale. While the 
polygeneration system available in the literature is the largely theoretical study and has not been 
found in the form of experiments. The simulation and modelling of polygeneration in the review of 
this article are shown in Table 1.  

 
Table 1 
Development and simulation of polygeneration 

Electricity 
converting devices 

Types of energy input Outputs/Application Purposes Ref. 

CCGT Municipal solid 
Waste and Natural gas 

Fuel for Transportation and 
Electricity 

Techno-economic 
modelling 

[54] 

CCGT Coke oven gas and 
Coal 

Methanol, Dimethyl ether and 
electricity 

Modelling System [56] 

CCGT Agricultural waste Ethanol, Power, chill and heat  Design Process with 
(Aspen Plus simulation) 

[57] 

CCGT Shale gas Ethylene and Power Design Process with 
(Aspen Plus simulation) 

[58] 

CCGT Coconut fiber Desalinated water, Power, Chill 
and Heat 

Design Process with 
(Aspen Plus simulation) 

[59] 

CCGT Coal Utility heat, Power and Urea  Design Process with 
(Aspen Plus simulation) 

[60] 

CCGT Coal gasifier 
Gas and Coke-oven gas 

DME, Electricity and Methanol  Optimization and 
Simulation with 
Aspen Plus  

[61] 

CCGT Coal Power and Methanol  Optimization and 
Simulation with 
Aspen Plus 

[62] 

CCGT Coal Cooling, Power and Heating Optimization with Multi-
objective  

[63] 

CCGT Natural gas Methanol and Power Design System  [64] 
CCGT Syngas Methanol and Power Small and medium-sized 

process design 
[65] 

CCGT Coal  Power and Natural gas Analysis of Exergy  [66] 
CCGT Coal  Methanol and Electricity Design Optimal (MINLP) [67] 
CCGT Coal  Power and H2  Modelling (dual looping 

cycle of chemical 
substances) 

[68] 

CCGT Lignite Tar and Electricity For Simulation [69] 
CCGT Coal Power, H2, Ammonia and Urea  Modelling of Economic  [70] 
Turbine Steam  Coal  Electricity, Ammonia and SNG Evaluation of model and 

economy 
[71] 

Turbine Steam Biomass  Ethanol, Power and Heat  Analysis of Exergy [72] 
Turbine Steam Biomass  Power, Ethanol and Heat Drying process influence [73] 
Turbine Steam Biomass Power, Ethanol and Heat Simulation with Aspen 

Plus  
[74] 

Turbine Steam Sugarcane Ethanol, Sugar and Electricity Optimization of Exergy  [75] 
Turbine Steam, Gas 
Turbine and Fuel 
Cell 

Coal, Biomass and 
Natural Gas 

Captured CO2, Electricity, H2 and 
Heat  

Optimization with Multi-
Objective  

[76] 

Turbine Steam and 
Gas Turbine 

 Methanol, Power and DME Chemical changes [77] 

Stilling Engine, Gas 
Turbine and Fuel 
Cell,  

Energy Solar and 
Natural Gas  

Cooling Fresh 
Water, Electricity and Heating  

Optimization and Design  [25] 
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PV Energy Solar Electricity, Heating and Cooling,  Model, simulation and 
optimization of 
Thermoeconomic 

[78] 

PV Solar PV/T Hot Water, Space Heating, 
Electricity and Chilling, 

Dynamic simulation and 
optimization of 
Thermoeconomic 

[79] 

PV Biomass and Solar 
PV/T  

Fresh Water, Power, Heating and 
Cooling 

Analysis of Exergy  [80] 

PEM fuel cell and 
PV 

Biomass, PV, Solar 
Thermal and PEM fuel 
cell 

Electricity, Heating and Cooling  Simulation and 
performance assessment 
of TRNsys 

[81] 

Fuel cell with solid 
oxide 

Hydrogen and Syngas  Heating and Electricity  Simulation and Design  [82] 

Fuel Cell and Wind 
Turbine  

Energy Solar and Wind 
Energy  

H2, Electricity and water Optimization and 
Simulation  

[83] 

 
Classification based on the type of energy sources of input, output, devices for energy conversion 

and objectives in this paper is also described in Table 1. The energy inputs to polygeneration shown 
in this table are renewable and non-renewable energies that produce electricity, cooling, liquid fuel, 
heating, drinking water, cooling, gas, etc. Polygeneration can be configured with some variations, 
especially for energy input and output. Conversion from primary to secondary energy can be done 
with different energy conversion devices depending on the configuration and technology and socio-
economic choices made. 
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Fig. 2. Classification of polygeneration articles in several 
previous articles 

 
In several studies of polygeneration, pilot plants have been tested and considered. The 

polygeneration pilot plant designed by conducting experiments and investigations at 190 kW was 
reported by Ma et al., [42]. Electric power developed from polygeneration as well as for cooling, clean 
water and food preparation has also been investigated by Hossain et al., [43]. Compression engines 
are built in the plant and run on factory oil with an engine power of 9.9 kW. The face of 
polygeneration energy is specifically designed for people in remote areas who can solve various 
problems with maintenance and operations related to the electricity production system 
autonomously [44,45]. The system built is very flexible and strong in operating for different 
conditions. Investigations and comparisons of experimental results on real-time management of 
smart micro-grids have also been carried out by [46–48]. The investigation on the results of the 
analysis is carried out only by looking at from the perspective of the environment and the economy. 
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The main drivers of different polygeneration performance curves have also been investigated and 
measured [49,50]. Internal combustion engines, micro-turbines, refrigeration catchments and SOFC-
hybrid systems were selected for prime movers as the main facilities created in this study. The pilot 
plant from the results of the polygeneration process developed by pyrolysis has been tested on a 
laboratory scale by conducting several developments [51–53]. Improvements to the scale of the 
results of the polygeneration process have been reported by several researchers before. The 
polygeneration pilot plant developed in Spain was carried out by Ortega et al., [54]. The results of 
development carried out by operations through polygeneration are destined for electricity, cooling 
and heating. Sun-based polygeneration investigated by conducting experiments has also been carried 
out [31,55]. The polygeneration experiment designed at the plant is developed for the production of 
cold water intended for air conditioning, domestic hot water which is utilized from heat recovery and 
clean water through membrane utilities. 

This comprehensive review of the study of polygeneration with various results has been reported 
in several kinds of literature from previous studies. This includes systems for local resources that can 
be distributed on a small or large scale with the aim at and focus on more efficient polygeneration 
(including fossil fuels). In addition, the discussion also includes different types of input on hybrid 
systems with renewable and conventional fuels. The benefits of polygeneration include outputs to 
energy services such as heating, cooling, electricity, etc. In addition, the output from polygeneration 
such as drinking water, fertilizer, gas and liquid fuels, etc. are also discussed in this study. The 
objective function for optimizing polygeneration with different boundary conditions using 
mathematical tools has been discussed. The operation and control of the polygeneration prototype 
that has been discussed in some literature are also discussed in this study, however, with different 
cases and results. 
 
2. Type Fuel for Polygeneration  
 

Polygeneration has a varied range of fuel inputs that can be applied. Most decentralized factories 
have adequate supply of energy at the local level [23,31,84–86]. The plant design of polygeneration 
to date has only focused on the use of coal [86–89], even though renewable-based polygeneration 
has a higher capacity. In some cases, polygeneration has been chosen and used because it has the 
desired output. The inputs refer to the production of liquid fuels that use biomass or coal as their 
input [87,90–92]. In addition, there are also some inputs that can be used as in [93,94]. However, the 
determination of input resources has previously been determined such as the utilization of local 
resources, and the output of this polygeneration is chosen based on its configuration. The display of 
various inputs in the form of fossil fuels such as natural gas and coal as well as renewable-based fuels 
and mixtures from various sources are shown in Figure 3 [31,32,95,96].  

The selected polygeneration input must be suitable for the purpose of mapping the specified 
resources. An increasing country’s GDP has a direct impact on energy consumption. In 2000 to 2015, 
the average electricity consumption throughout the world increased 2.1% [97]. On the other hand, 
energy supply from conventional fuels still dominates the increase in GHG emissions by 47% [98]. 
Therefore, the energy demand for the community can be met by reducing GHG emissions so that a 
sustainable energy system needs cannot be avoided and are very necessary. Thus, the features of a 
sustainable energy system must at least be available (such as; efforts to reduce GHG emissions, 
economic viability and maximum utilization of resources). Specifically, the discussion of the 
polygeneration system has been largely discussed [14,15,99]. The design of the energy system must 
initially assess the availability of resources very carefully, in this case, renewable energy because of 
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its intermittent and dilute nature. Renewable energy cannot be carried away at any further place in 
producing energy; this is significantly different from fossil fuels. 
 

Fuel Type for 

Polygeneration

Biomass

Coal

Others Renewable 

sources

Solar

Natural gas

Hybrid
 

Fig. 3. Type Fuel for Polygeneration 

 
A brief description of the energy scenario found in several countries in the world from renewable 

energy to the total electricity mix is shown in Table 2 [98]. The largest share of renewable energy can 
be observed in three countries including India, China and the US. Socio-economic-political conditions 
and types of energy resources have increased renewable energy compared to other countries. A 
polygeneration system can be well designed since the right resource mapping is very important. This 
study reports the type of resource mapping by taking from several countries that are sampled, 
especially in India. The maximum energy consumption in India has been carried out and applied to 
the industrial sector, transportation and housing. It is because the large part of these sectors are still 
dominated by fossil fuels. 
 

Table 2 
Scenario energy brief of the world's various countries 

Country China United 
States 

India United 
Kingdom 

South 
Africa 

Australia Egypt Norway 

Total consumption of 
energy (Mtoe) 

3101 2196 882 179 138 126 80 32 

Total consumption of 
electricity (Mtoe) 

423.1 110 88.3 27 17.8 19 12.5 2.7 

Renewable electricity 
percentage (%) 

24.7 13.8 14.1 26.3 3.3 15.2 8.9 97.9 

 
2.1 Biomass Based Polygeneration 
 

Solid fuels, such as biomass, have similarities with coal, such as hydrocarbons consisting of lingo-
cellulose and cellulose. However, the complexity involved in gasification and combustion is different 
during operations [100–106]. Tar formation and ash fusion are the main problems that arise [107–
111]. The investigations regarding tar burning and tar cracking have also been carried out before 
[112–115]. Biomass conversion is principally thermo-chemical and utilizes syngas so that the results 
are very similar to coal even though they have different qualities. Thermochemical conversion of 
biomass can be carried out with two different options between pyrolysis and gasification [116–118]. 
Power production for the polygeneration scheme in producing power, heating, cooling and ethanol 
is shown in Figure 4. Biomass-based polygeneration is one of the most important aspects because it 
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can produce both gas and liquid fuels for transportation [119–122]. Thermoses ethanol production 
from the results of the syngas process as is illustrated in Figure 5. Biofuels can be converted from 
biomass through biochemical routes, so this option can be considered more promising. The 
production process through biochemistry against bioethanol, alcohol and gas is higher because it is 
safer and easier. However, the type of biomass, the effectiveness of algae, the quality of catalysts, 
etc. can determine variations on biofuel production [123–127]. First-generation biofuel production 
is controversial in food and energy security [128–130], because the production of biodiesel and 
bioethanol in this process uses corn, sugar, etc. [131,132]. Meanwhile, in the second generation, 
biofuels are produced using biomass such as organic waste, wood, plants, etc. Therefore, the biofuel 
process using this waste does not have significant obstacles to food security. Biofuel production has 
been increased significantly in the third generation [133–135]. Integration of carbon storage and 
capture can be done with various biofuel production processes, so that the net negative system is 
obtained with biofuel produced in the fourth generation [136]. 
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Fig. 4. Schematic diagram of polygeneration process 

 
Agricultural waste is the largest source of biomass with no influence on food security [137,138]. 

The energy resources processed from agricultural waste have very good potential [139–143]. The 
thermochemical properties found in this waste vary more depending on the type of plant used [144–
146]. The properties contained in biomass have different potential, so it is very suitable in the process 
of producing different biofuels for electricity generation. Meanwhile, in remote/rural areas, the 
availability of agricultural waste needed is very limited. Therefore, the main need for producing 
electricity is a supply of biomass [91]. Each year, the production and manufacture of waste greatly 
vary [147,148]. During the harvest period, waste can be produced in very large quantities specifically 
for seasonal crops such as rice. Waste can also be produced from several food processing industries 
such as sugarcane bagasse produced from agricultural crops because the availability of this waste is 
available in concentrated areas. Meanwhile, plants such as coconut have less waste available. 
Agricultural wastes that are used in a certain way have different variations depending on the type of 
waste used. The absence of geographical location and the practice of local communities are different 
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socioeconomic reasons. The heating value contained in agricultural waste is quite sufficient for the 
biofuel process. Thus, this process can be used as a better-added value compared to advanced 
technology [145,146,149]. The use of rice straw as heating, ethanol production by thermochemical, 
biochemical or electricity generation are the examples of possible implementation. Technology 
development by utilizing this waste for energy sources has many challenges [109]. This waste can be 
utilized through decentralized technology with appropriate development [150–152]. However, this 
concentration can occur if agro-industrial waste such as sugarcane bagasse is centralized. Technology 
developed by utilizing agricultural waste as an energy resource is more appropriate since the 
availability and local energy needs are more likely to secondary energy for sustainable energy 
solutions, especially in rural areas in the future [43]. A summary of polygeneration with complicated 
biomass is described in Table 3. Types of various biomass inputs with the conversion process of 
output from polygeneration are also described in Table 3. It can be reported that the use of biomass 
as an energy source for polygeneration input by utilizing biofuels such as DME, ethanol, methanol, 
etc. in polygeneration are very important outputs [153–157]. 
 

Table 3 
Description of biomass hybrid and based biomass for polygeneration 

Inputs Product Biomass conversion 
process 

Year Ref. 

Bio-Oil and Coal Chemicals and Power  Thermochemical 2013 [158] 
Hemicellulose, Lignin and 
Cellulose 

Pyrolysis oil and Char Pyrolysis 
Thermochemical  

2013 [159] 

Palm oil residues Electricity, Bio-diesel, Steam and 
Pellet 

Biochemical 2013 [160] 

Biomass FT Diesel, Ethanol, DME and Biogas  Thermochemical and 
Biochemical  

2014 [161] 

Biomass (switchgrass), solar 
energy focused 

Heat, Electricity and H2  Gasification 
Thermochemical 

2015 [162] 

Fiber of coconut Heat, Power, Chill and Desalinated 
Water 

Gasification 
Thermochemical 

2015 [59] 

Waste from tobacco Oil, Gas and Char Pyrolysis 2015 [154] 
Biomass and Coal  Methanol and Power Gasification 

Thermochemical 
2011 [163] 

Biomass, Coal and Heavy Oil FT liquids, Power, H2, Methanol and 
Urea 

Gasification 
Thermochemical 

2011 [38] 

Solid waste Hydrogen, Heat, and Power Digestion Biochemical  2013 [164] 
Farming straw Polygeneration pyrolysis Torrefaction 2014 [165] 
Agricultural straws (stalks of 
cotton) 

Liquid oil, Char and biogas Pyrolysis Torrefaction  2016 [155] 

Solar energy and Biomass  Power and Methanol Gasification Thermal  2015 [166] 
Rice husk and Cotton stalk Woody vinegar, Charcoal, Woody tar 

and Biogas  
Pyrolysis 2016 [167] 

Stalks of cotton, stalks of 
rape, stems of tobacco, rice 
and bamboo 

Gas fuel of high quality, liquid oil 
enriched with phenols, carbon 
adsorbent, biochar 

Pyrolysis 2016 [153] 

The shell of the pine nut Chemicals, Biochar and bio-oil Pyrolysis 2016 [155] 
Biomass Chemicals, FT fuel and DME Gasification 

Thermochemical 
2011 [168] 

Sugarcane Electricity, Sugar and Ethanol Biochemical 2011 [75] 
Pongamia and Jatropha  Electricity, food, cold storage and 

clean water 
Biochemical 2013 [43] 

Biogas Electricity, potable water for cooking 
fuel 

Digestion 2014 [169] 
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Fig. 5. Thermo-chemical method of processing of ethanol 

 
2.2 Biofuel for Polygeneration 
 

Bio-fuel methanol can also be used as polygeneration for renewable energy. Methanol produced 
from biomass is very suitable to be used as polygeneration other than coal, solar energy and other 
energy. The production of methanol for polygeneration has been carried out in a research by [170]. 
However, the research is a coal-based polygeneration system intended to produce methanol and 
electricity. Electricity and methanol productions from renewable energy using natural gas-based 
polygeneration systems have also been evaluated [64]. The results of their research show that the 
new system can save about 6% energy than a system with a single product. The polygeneration 
system by producing biofuel by utilizing heat as one of the by-products can provide cooperation 
between the transportation sector and district heating [161,171]. DME and FTD productions are two 
technologies that can be used for biomass gasification. The configuration scheme is shown in Figure 
6(a) is a process for biofuel production. Production of this type can generally be carried out in a 
number of steps: pretreatment, gasification through thermochemistry into synthetic natural gas 
(SNG), increasing SNG, purification and synthesis of biofuels [172–174]. Exothermic is a process that 
opens the possibility to be able to use excess heat in the production of DH or combined heat and 
power (CHP). The scheme shown in Figure 6(b) is the simplified result for the ethanol production 
process based on SSF. The process for this stage is pretreatment, in which biomass is converted into 
pulp. Then, the slurry is cooled using a flash, then the pH is neutralized and diluted first. The SSF 
process is carried out with yeast obtained from the cultivation results in the slurry and then the 
ethanol is separated by distillation and dehydrated [175,176]. 
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Fig. 6. Biofuel production schematic biomass gasification and ethanol/biogas processing on SSF 

 
2.3 Solar and Coal for Polygeneration 
 

One of the renewable energies found throughout the world is solar energy in which has different 
intensity in each country. This solar energy can replace conventional energy dependence in a number 
of countries [157,177]. To harness energy from the sun, this can be done by polygeneration. 
However, the solar energy input for polygeneration is very difficult to achieve due to its lower energy 
concentration [178]. The uniformity of solar energy which is carried out in some cases regarding to 
renewable energy such as fuel cells and biomass is carried out to produce utility outputs as shown in 
Figure 7.  
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Fig. 7. UTM-LST delta wing VFE-2 profiles 

 
Fuel cells and biomass gasifier are renewable energy sources with the result of a combination of 

photovoltaic or solar thermal collector shown in Table 4 [179–181]. Table 4 describes the various 
applications of solar thermal collectors by comparing solar photovoltaic collectors found in 
polygeneration systems. Hybridized fuel cells in polygeneration have produced electricity with 
cooling, drinking water and heating as an output from utilities. Hybridization systems in biomass 
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polygeneration, in general, can produce biofuels such as methanol, ethanol, etc. In addition, outputs 
such as electricity, cooling, heating are some of the results. Energy storage capacity can be reduced 
by hybrids from polygeneration, so that their utilization has the potential to be efficiently used as an 
energy source [182]. 
 

Table 4 
System of hybridized solar polygeneration 

Input Hybridization type Product  Solar 
thermal 

Solar 
PV 

Year Ref. 

Biomass, Energy 
Solar & Natural Gas 

A network of natural gas 
and gasification of biomass 

Heating, Electricity, fresh 
water & cooling  

Yes  No  2011 [25] 

Energy Solar & Coal Coal gasification Heating, energy, 
hydrogen, oxygen and hot 
water 

Yes  No  2013 [183] 

Energy Solar  The fuel cell of PEM Heating, Electricity & 
Cooling  

Yes  Yes  2012 [178] 

Energy Solar  Engine Heat  Heat & Electricity Yes  Yes  2008 [184] 
Solar and wind 
energy 

Wind turbine, micro grid 
based on wind turbines 

Heating, Electricity & 
Cooling 

Yes  No  2013 [179] 

Solar and vegetable 
oil 

The engine that is fuelled 
by vegetable oil 

Heating, Electricity & 
Cooling 

Yes  No  2012 [185] 

Energy Solar Fuel cell with solid oxide Heating, Electricity & 
Cooling  

Yes  No  2011 [186] 

Biomass & Solar  Biomass gasifier Electricity, refrigeration, 
hot water, warm air 

Yes  No  2015 [187] 

Solar & geothermal 
energy 

Geothermal well Energy, drying and cooling Yes  No  2014 [188] 

Solar and biomass 
production 

Biomass gasifier Electricity, Refrigeration, 
Heating & Water 

Yes  No  2015 [29] 

Micro-gas turbine 
solar assisted 

Nano turbine gas Energy, Hot Water & 
Cooling 

Yes  No  2014 [189] 

Solar and biomass 
production 

Biomass gasifier Methanol & Electricity Yes  No  2015 [166] 

Solar & geothermal 
energy 

Geothermal well Electricity, cooling, 
heating, heating and hot 
water for industrial use 

Yes  No  2014 [190] 

Solar & Geothermal 
Energy 

Energy Geothermal  Heating, Cooling & 
Electricity  

Yes  No  2017 [191] 

Natural Gas & 
Energy Solar 

The whole cogeneration 
network is paired with a 
cogeneration gas turbine 

Electricity, Cooling, Hot 
Water in The Building 

Yes  Yes  2014 [78] 

Solar & Geothermal 
Energy 

Geothermal energy Power, desalinated water, 
heating, refrigeration 

Yes  No  2017 [192] 

Biogas & Solar 
Energy 

A digester's biogas Electricity, Heating & 
Drinking Water Biogas 

No  Yes  2015 [24] 

Energy Solar  Organic Rankine Cycle Heating, Electricity & 
Cooling 

Yes  No  2015 [193] 

 
Unrenewable energy sources, such as coal, can also be used as input in polygeneration. Coal 

energy can be utilized in two ways including gasification and direct combustion. Direct combustion 
system can be done by converting the value of coal heat into exhaust gas that is destined to process 
on different downstream sides, such as cooling, utility heating, electricity generation, etc. However, 
synthetic fuels and chemicals cannot directly be produced from this process. Synthetic liquids, 
chemicals and liquid fuels can be produced by gasification-based polygeneration which is more 
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preferred [71,100]. The thermo-chemical properties, in this case, are analyzed by determining the 
coal’s potential for chemical production. Gasification and direct combustion are likely to reduce CO2 
emissions [33,71,194]. However, carbon capture based on gasification based polygeneration is 
intended for pre-combustion. Another solution that can reduce CO2 through chemical repetition and 
combustion of coal-based oxy-fuel in polygeneration [60,68]. Coal-based polygeneration at the plant 
has a greater capacity than renewable energy-based polygeneration. 
 
3. Polygeneration Outputs  
 

A lot of utilities can be generated from the design of polygeneration. The types of output 
contained in various kinds of literature include water, energy and material services [15,31,32]. The 
utilities used in some literature that have been reported are shown in Figure 8. However, the utility 
output from this polygeneration is chosen based on the input request from the required utility. To 
meet local needs, the output from decentralized polygeneration must be adjusted to the demand of 
the region itself. Therefore, it is not feasible to the output from this utility for transportation and 
transmigration over long distances [17]. A decentralized polygeneration scheme is shown in Figure 
9. The polygeneration modelling of the utility supply must be adapted to local needs such as realized 
water, heating, cooling and electricity in rural areas. Biomass that can be used for polygeneration 
inputs is available at local factories, such as coconut fiber. In general, one of the outputs of 
polygeneration is electricity since secondary energy is the most needed/used. 

Biomass and coal are the best sources for H and C [195–198]. Biomass and coal-based 
polygeneration, synthetic liquids and natural gas fuels can be used as additional output as previously 
discussed [93,199–202]. The output of polygeneration can be sulfur, ammonia, urea chemical fuels, 
etc., however, this is independent of the synthetic fuel used [60]. In addition, other outputs can also 
be water, cooling and heating. Household or industrial needs can also take advantage of the output 
of polygeneration including cooling at certain temperatures and loads [203,204]. In general, this 
cooler can be produced during the cooling process so that it absorbs steam that is integrated with 
waste heat. The cooling scheme in the process of producing steam is illustrated in Figure 10. Similarly, 
this scheme is also found in the use of heat in the room, industrial applications and for other food 
processes [205,206]. A very valuable utility to date is water, because, in recent years, scarcity and 
contamination of water have continued. 
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Fig. 8. Product of polygeneration 
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Desalination of the water purification process is a energy-intensive way. It can also be driven by 

power and heat movement [207,208]. In addition, water is needed for electricity generation. 
Therefore, water and energy are related and cannot be separated [209]. Processes with the use of 
heaters include multi-effect distillation (MED) and Multi-stage flash (MSF). Meanwhile, the process 
that is driven by using power is reverse osmosis (RO). The availability of waste heat is preferred to 
drive desalination [210]. The use of power to drive polygeneration in the water purification process 
can be done when electricity demand decreases. As a result, this polygeneration can be used for 
water production and stored in the future. In addition, fluctuating loads can be helped by 
polygeneration and water can be more economically and efficiently produced with multi-generation 
systems [211]. Input and configuration can determine the output of polygeneration by adjusting local 
needs and requirements. However, the fairness of the output must be able to provide 
thermodynamic performance, so that in the long run, its economic performance can be more 
feasible. 
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Fig. 10. Schematic diagram of the process of vapor absorption cooling 

 
4. Optimization of Polygeneration 
 

Multi-input and multi-output systems are processes that are found in polygeneration. The use of 
dual or single resources in polygeneration aims to minimize GHG emissions and costs without having 
to reduce the supply of needed utilities. Optimization with polygeneration has been available in 
several kinds of literature as described in Table 5.  
 

Table 5 
Numerical optimization in the development of systems for polygeneration 

Input Using Algorithm Output Year Ref. 

Energy coal Optimization of mixed integer Methanol & Electricity  2009 [218] 
Energy Biomass, Coal & 
Natural gas 

Linear mixed integer programming Electricity & methanol 2007 [219] 

Energy Solar & Natural gas Nonlinear mixed integer programming Heating, Electricity & 
Cooling 

2011 [25] 

Energy CHP prime mover Multi-target optimization (MOO) with 
heuristic algorithms 

Heating, Electricity & 
Cooling 

2007 [220] 

Power grid, pump, solar 
photovoltaic, main mover, and 

A concept of expectation is constructed 
using both the deterministic model and 
the probabilistic model 

Heating, Electricity & 
Cooling 

2014 [221] 

Energy Biomass Multi-target optimization with MILP and 
Multi-target evolutionary algorithm 

Heat & Electricity  2014 [222] 

Energy Compressed fuel and 
air 

The method for evolution Electricity, ventilation, 
refrigeration and hot 
water 

2012 [63] 

Energy Biomass boiler, solar 
thermal power plant, heat 
processing CCHP 

Pareto borders with the best possible 
trade between the principles of 
economics and exergy 

Electricity 2015 [223] 

Energy Solar & Natural gas  Optimization process Cooling & Electricity  2015 [212] 
Energy Solar & LPG Particle Swarm Optimization Heat & Electricity 2016 [224] 
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Polygeneration can be designed using numerical optimization techniques, where numeric is used 
to determine the suitability of the size of components and resources that are more prudent. Thus, 
the environment and the surrounding economy is maximally useful. The combined maximum is very 
possible to consider when the polygeneration process is designed. The use of multi-objective 
optimization techniques is done when the polygeneration system is designed [25,212,213]. The use 
of optimization contained in some research cases is still very limited [39,214,215]. The components 
contained in polygeneration can be determined by Mixed Integer Linear programming. In this case, 
there are several objective functions that must be maximized and minimized [216–218]. The use of 
Particle Swarm Optimization (PSO) algorithm and multi-objective evolution for non-conventional 
optimization techniques is used to get better results [63]. The discovery of solutions is often found in 
the use of unconventional techniques. The calculated optimization can be better produced by 
applying fuzzy logic. 
 
5. The Capture of CO2 in Polygeneration 
 

Biomass and coal for polygeneration inputs have a pretty good chance of reducing CO2 emissions 
as shown in Figure 11. Whereas carbon sequestration and capture are illustrated in Figure 12. CO2 
concentrations can be increased by coal-based polygeneration. CO2 storage and capture must be 
equipped, so that sustainable energy can be achieved. During storage and capture of CO2, the 
compression power and heat of the boiler function to consume energy. Mass and heat integration in 
polygeneration must be done with CCS integration so that overall energy reduction can be reduced. 
However, CO2 capture can be produced to reduce the economic decline in carbon capture 
[18,33,158,225]. Carbon sources in the process of producing cystic fuels such as DME and methanol 
can also be produced from CO2. Sometimes CO2 occurs after a reaction during a shift in water gas 
(WGS). A large amount of H2 syngas can be produced so that it can maintain the ratio of H2 and CO 
as shown in Table 6. H2 and CO are very suitable for use in thermochemical synthesis fuels such as 
DME, methanol, ethanol, etc. sourced from biomass and coal. Coal-based polygeneration contained 
in the literature with a variety of CO2 recovery and capture is illustrated in Table 6. CO2 from the 
capture of polygeneration can save costs and is more efficient than using a CCS system. The 
polygeneration integration system can make utility heat available from a variety of different 
temperature sources. Utilization of heat with different temperatures can minimize the task of 
reboiler heat in the presence of polygeneration. In addition, the CO2 used is very possible for 
polygeneration. In general, polygeneration is more efficient than independent units, because the use 
of mass heat is better with system integration and more efficient. CCS facilities for polygeneration 
can reduce GHG emissions substantially [136]. 
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Fig. 11. Polygeneration produced with and without CO2 
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Table 6 
Summary of the CO2 capture and recovery of polygeneration 

The reasons for the capture of CO2 Tools for collecting CO2 Products Year Ref. 

SOFC oil, natural gas reform, synthesis of 
methanol 

During-combustion Methanol & Electricity  2011 [226] 

Production for H2  During-combustion Urea & Power  2015 [60] 
CO2 recycling and the synthesis of methanol During-combustion Methanol & Electricity 2011 [227] 
The CCU for the synthesis of methanol During-combustion Methanol & Electricity 2013 [158] 
Recovery for CO2 and the synthesis of 
methanol 

During-combustion Methanol & Electricity 2011 [93] 

Synthesis of methanol During-combustion Methanol & Electricity 2014 [66] 
Increased concentration of H2 During-combustion Electricity, SNG & 

ammonia,  
2015 [71] 

The separation of H2  During-combustion Ammonia, Power, Urea & 
H2 

2016 [70] 

Increased concentration of H2 During-combustion Hydrogen & Power  2015 [20] 
Life cycle reduction of GHG emissions with 
reduced efficiency loss 

Post-burning Synthetic natural gas and 
electricity 

2017 [228] 

CCS Post-burning Tar & Electricity 2015 [69] 
CCS Oxygenated-fuel of 

combustion 
H2 & Power 2016 [68] 
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3. Control of Polygeneration  
 

Multi-input and output are system for polygeneration. However, the renewable energy source of 
the supply system is still disjointed, making the demands on its utility are also different. During the 
operation process, the use of intelligent controls makes it possible to request and supply as shown 
in Figure 13. Control and operating systems for polygeneration that have been available in some 
literature are described in Table 7. It can be concluded that the polygeneration plant has 
synchronized to all needs both in demand and supply. Coal-based polygeneration, wind, solar energy, 
etc. have been investigated in several cases. The load used throughout different years of the 
monarchy also greatly varies. So that at every polygeneration plant, the control system used is in 
accordance with its operational process. In general, the Predictive Control Model has largely been 
used for polygeneration [229–231]. The control application system for monitoring inputs originating 
from the surveillance and data acquisition (SCADA) control systems has been reported in several 
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kinds of literature [232]. Systems analysis and application of fuzzy logic can give better results 
compared to the use of conventional control systems [182,233,234]. The use of programmable logic 
controllers (PLC) in several research cases has also been used. One of which is carried out on 
numerical computational techniques at an advanced level. The control system is needed so that 
intermittent renewable energy sources can be immediately met. Meanwhile, controlling with a PLC 
is very suitable for changing the control logic in a software application. As a result, errors that often 
occur can be minimized [235–237]. 
 

Table 7 
Polygeneration process operation and control 
The aim of the study Strategy of optimization Year  Ref. 

Use of the Particle Swarm Optimization (PSO) 
algorithm to optimize the process 

Comparison between the petri net approaches 
coupled with the ON/OFF approach. The petri 
net is used as a cognitive map activator 

2013 [234] 

Micro-grid polygeneration pair with CHP, together 
with solar and wind again 

Model Predictive Control (MPC), Multi 
Commodity Matcher (MCM), Simplified 
Management Control (SMC) 

2016 [47] 

The integration of heat pump and co-generation 
plants is studied here 

Optimal methods for predictive control 2013 [238] 

The controllers are used to regulate the voltage 
and the micro grid frequency consisting of diesel 
generator, PV, storage system and inverters 

Tertiary, primary and secondary operator 2015 [235] 

The system is optimized in size using the PSO 
algorithm 

The fuzzy management system of power logic 
(FMSPL) 

2013 [234] 

Integration of a micro grid of polygeneration with 
an existing grid of micro turbine powered by 
natural gas. The grid for polygeneration consists of 
PV, CSP, chillers for absorption, storage tank, etc. 

Design predictive monitoring 2013 [239] 

A dynamic optimization model is used to minimize 
costs and reduce CO2 emissions. 

MPC with the SCADA server 2015 [212] 

The smart micro grid of polygeneration is 
connected to a data storage system for monitoring 

Decentralized and centralized optimal control 2012 [240] 

Provides the appropriate means (control systems) 
for the integration of renewable energy sources 
such as solar, wind, etc. 

Smart grid integration with user cases by 
applying many modern control strategies such 
as automatic generation control demand side 
management, distributed management system, 
etc. 

2014 [241] 

 
Polygeneration has various input and output systems. Multi-objective optimization is needed so 

that the polygeneration system can be optimized. The availability of resources available locally 
determines the amount and type of output from polygeneration. Some systems that are processed 
can provide more efficient integration for social and economic matters. This integrity process is in 
the form of electricity generation, cooling, fuel synthesis, waste heat recovery, etc. To improve the 
overall process, performance is very dependent on the existing control system, so that the efficiency 
of polygeneration is needed. The control mechanism is needed to further the parameters of SCADA. 
One parameter fluctuation in the polygeneration system can absorb the production of the other, so 
that a more efficient system can be achieved. The more heat the solar collector is put into the chiller, 
so that the absorption carried out can produce a cooling utility. Some literature states that the 
purpose of polygeneration is for optimization [238,242,243]. The ant colony algorithm is an 
optimization system that is easier to understand as it is inspired by nature. In addition, differential 
evolution algorithms can also be used for multi-objective optimization for energy systems [244–246]. 
Efficient algorithms are often used by some researchers to produce smart energy systems that are 
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more efficient. Conventional linear integer linear programming (MINLP) is an algorithm for optimizing 
bee colonies which has advantages as explained by [247–249]. In addition, the uncertainty of other 
parameters can be overcome by designing polygeneration systems from renewable resources. The 
control methods and the optimization of the polygeneration system must be more flexible [250–
252]. Thus, the use of further control strategies such as the Predictive Control Model can be used to 
accommodate the best overall variation. 
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Fig. 13. Multi-generation intelligent control with multiple inputs 

 
7. Conclusions 
 

The depletion of fossil fuels and increasing CO2 emissions to climate change have given challenges 
to a system of sustainable innovation. CO2 emissions can be reduced by increasing efficiency in the 
optimal use of resources for sustainable energy systems. Several utilities can be integrated to 
produce various inputs to the polygeneration system. More efficient integration can produce high 
efficiency and environmentally friendly. This depends on the type of fuel used that is applied. In 
addition, the demand for utilities and appropriate resources and optimal management of resources 
is one of the main examples of sustainability. The theoretical description contained in some literature 
on the value of polygeneration has been discussed. However, the performance of experiments as 
well as the development of prototype designs is still very steps and difficult to find. The availability 
of local resources will determine the amount of capacity for the proposed polygeneration. On the 
other hand, coal energy for polygeneration is more feasible on a large scale and the benefits 
generated can increase utility output to reduce CO2. Combining fossil fuels with renewable energy 
called hybrids has also been reported in some literature. The proposed polygeneration can have 
many inputs and outputs with optimal capacity standards to overcome more critical problems. The 
use of mathematical models for the optimization of polygeneration has also been reported in the 
literature. Multi-dimensional polygeneration performance is used to assess with different objectives. 
The overall review of polygeneration shows as an environmentally friendly and sustainable energy 
solution with natural resources that are more efficient and more environmentally friendly. 
Observations from the reviews available in the literature can be drawn as follows 
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i. Climate change and the continued depletion of fossil fuels have forced the review of 
sustainable energy development with high efficiency. Therefore, the utilization of existing 
resources can be optimized 

ii. Polygeneration is a sustainable solution with a more efficient process of integrity from a 
variety of inputs and outputs and the availability of resources and utilities can be adjusted 

iii. The polygeneration system that has been reported in some literature has shown the direction 
of future research on sustainable energy 

iv. Modelling systems with objective function and optimization for the integration of coal-based 
renewable resources with the evaluated polygeneration performance are some good 
solutions 

v. Biofuel-based polygeneration is a very appropriate choice for a long period of time and 
provides considerable opportunities for researchers in the future 

vi. The development and design of prototypes with intelligent control and monitoring systems 
are some of the optimal solutions, as in the previous literature, and provides a good step for 
future research 
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