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Kinect’s joint proposals can be undermined with the occluded pose typical of stroke
patients. This studyinvestigated these discre pancies through test-retest procedures of
static pose typical to stroke patients. It was found that at the distance ofapproximately
2.5 meters, all the joint proposalswere reliable for normal pose. However, only joints
attributed to the torso were reliable when stroke pose is prevalent. Therefore, joints
attributed to torso can be readily measured from the intrinsic biomechanical model
but model fidelity of distalsegments must be improved for useful assessment.
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1. Introduction

Compensatory strategies were prevalent in reaching to complement the minimal use of distal
segment to complete function [9]. In clinically accepted photogrammetric method, the extent of
torso movement when compensatory strategies are prevalent is defined by three independent torso
angles namely forward bending, axial rotation and lateral flexion. Previous research on Kinect’s torso
joint predictions was promising, in which lateral flexion angle was reported to have excellent
agreement with marker-based motion capture system [3]. However, the intrinsic model was also
reported to have false axial rotation [16] which inspired the development of Torso-Principal-
Component-Analysis (TPCA) model [11] to represent the dynamics of torso in space.

Kinect is an RGBD camera which provides color images and depth data. Kinect's intrinsic
biomechanical model provides real-time position and orientation of various human joints [13] as
depicted in Figure 1 (a)). Joint proposals named waist, spine, chest, collar, shoulder, elbow and hand
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were valuable for assessment of the upper limb movement quality after stroke since the ability to
monitor these joints would provide holistic overview of the improvement [12].

Compensatory movement typically performed by stroke patients in daily activities also include
the shoulder hike [7] whenever the arm transport becomes difficult due to paresis of the affected
arm. Monitoring such movement using Kinect is possible by observing the orientation of the shoulder
joint. The trajectory of shoulder joint orientation, depicted as decomposed orientation quaternion
to Z-X-Y Euler angles are depicted in Figure 1 (b)). It can be seen that abduction to 90° was recorded
as the angular position’s change from approximately 60° to -15, 75° in total. As angular position
attributed to Z-axis were perpendicular to the arm length in space, flexion to 90° was also recorded
with apparent change. Based on these observations, shoulder joint orientation estimates were able
to determine the gross movements to some extent which may be influenced by the accuracy of joint
proposals at the time of prediction [5].
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Fig. 1. (a) Location and orientation of Kinect’s joint proposals on the upper body based on intrinsic
biomechanical model; (b) Orientation trajectory of shoulder joints of a person performingabductionto 90°
followed by flexion to 90°. The independent axisis the number of recording sample and dependent axis is
the angleindegrees.

Existing study however expressed concerns on the effect of distance between camera and the
subjects on the joint prediction [4]. That is, the joint predictions can be severely undermined at the
distance too close to the camera and near the end of Kinect's field of view (close to 4 meter). Greater
outliers are typically observed in a form of spikes in the trajectory trace of the dynamic movements.
Furthermore, the subject’s physique may also be the influencing factor of inaccurate tracking as
upper limbs are prone to be occluded in large person.

For the purpose of upper limb assessment after stroke, the study emphasized only on 11 joint
proposals; waist, spine, chest, left and right collar, left and right shoulder, left and right elbow, and
left and right hand in order to determine the outcome of stroke task assessment. While the usability
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and cost of Kinect are attractive, the challenges of obtaining repeatable measurements are
tremendous due to probable inclusion when abnormal flexor synergy is apparent after stroke.

In the assessment of upper limb movement quality after stroke, besides the gross body
movements in coronal and sagittal plane, the tasks that are performed to assess flexor and extensor
synergy for example; require a cross-body movement in which the arm is highly occluded by the torso
[6,15]. Similarly, with planar assessment task, the hand movement is restricted to a slightly tilted
transverse plane, occluded by the torso and possibly by the table [8]. Hence, with numerous reports
addressing concerns on the accuracy of Kinect when fine movement is measured, the data provided
by Kinect can be hypothetically unreliable for assessment. A further insight on the repeatability of
Kinect in predicting the upper body joints in seated condition is warranted.

2. Methodology

In order to determine the extent of inaccuracies in the assessment of upper limb movements, an
analysis on the repeatability of all upper limb joint position for subjects performing repeated seated
T-Pose as well as initial pose typical to stroke patients was conducted. Stroke patients with either a
flexor synergy or extensor synergy will have difficulty trying to maintain a stretched affected arm.
Three additional static pose typical to stroke patients were analyzed, namely Flex-Extend, Flexed and
Relaxed pose. T-Pose is a recommended pose to initialize joint position as all the upper limb joints
are in direct view of the camera without occlusion [2]. Relaxed pose is the typical seated position
with hand on lap. T-Pose and typical stroke poses are depicted in Figure 2.

Physically, bone lengths of a person should remain relatively constant regardless of the distance
of the subject from the camera. Therefore, it was selected as the dependent variable in order to
assess the constancy of the Kinect’s joint prediction. Ten different bones are computed based on the
joint positions provided. Lower Spine is computed from the Euclidean length between Spine position
and Waist position, Upper Spine (Chest and Spine), Left and Right Collar (Collarand Chest), Left and
Right Clavicle (Upper Arm and Collar), Left and Right Arm (Forearm and Upper Arm), and also Left
and Right Forearm (Forearm and Hand).

Fig. 2. From left: Aseated T-Pose, Flex-Extend, Flexed pose

A Microsoft Kinect Sensor v2 was placed at roughly 4 different position in sequential order; 1.5
meter, 2 meter, 2.5 meter and 3 meter from subjects sitting on a chair without armrest. The data was
captured and streamlined using Brekel Kinect Pro Body v2 [1] for easier database built-up. The sensor
was mounted on a tripod and placed on the floor at an approximately -10 degrees angle from the
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horizontal axis, at the height higher than the head of the subject and looking down, without any
particular attempt to secure it from vibrations.

Two healthy subjects without upper limb impairment were recruited, both are of different
physique and coded as Medium and Large built subject. The Medium subject is female, 1.62-meter-
tall with body mass index (BMI) of 28 kg/m2. The Large subject is male, 1.8-meter-tall with BMI of 33
kg/m?.

First, they were asked to perform series of a static seated T-Pose. The task consists of performing
the pose repeatedly 5 times at eachdistance. The predicted joint position of waist, spine, chest, collar
and shoulder of the person was provided by Kinect V2. The repeatability of the bone lengths was
observed and analyzed. Then, a series of static stroke poses was performed repeatedly 5 times at
selected distance from the camera based on the repeatability of the bone length initialized using T-
Pose.

3. Results
3.1 Reliability of joint predictions initialized by T-Pose

The descriptive statistics of the comparison between all the captures are presented in Table 1.
Standard error of the mean for all bone lengths were in the order of millimetre. In this sample,
standard deviation of bone lengths for large subject was greater than 0.5cm for left arm at 1.5 meter
and 3 meter from the camera, and greater than 0.5 cm for left forearm when recorded at 2 meter
from the camera. However, the standard deviation of any bone length for medium subject was less
than 0.5 cm for all distance. The sum of standard deviation for all bones was the smallestat 2.5 meter
from the camera for both subjects and the largest at 3 meter from the camera.

With these discrepancies, a further analysis is warranted to examine the effects of distance from
camera on ten of the predicted upper limb bone lengths inclusive of lower spine, upper spine, left
collar, right collar, left clavicle, right clavicle, left arm, right arm, left forearm and right forearm and
whether this effect was dependent on the physique of the subject.

In order to choose an appropriate test to examine both effects, Shapiro-Wilk’s Test of Normality
was performed to analyze the normality of the data. As evident in Table 2, residuals were normally
distributed for measurements at 2.5 meter from the camera regardless of the physique. However, it
was striking that majority of bone lengths of the large-built subject violated the normality assumption
(6 out of 7 occurrences of violation) at p < .05. Furthermore, at the distance of 2 meter from the
camera, large-built subject has the majority of violations as left collar, left clavicle and right forearm
violated the assumption of normality. This results intrinsically support the large standard deviation
observed earlier.

Due to the violations of normality, a non-parametric alternative to one-way repeated measures
ANOVA (Friedman Test) [10] was run to determine if there were differences on the bone lengths at
4 different recording distances from the camera. Pairwise comparisons were performed [14] with a
Bonferroni correction for multiple comparisons.

Separate tests were run for both subjects and the results were presented in Table 3. All bone
lengths of medium built subject showed very small variation between the tested recording distances,
and were not statistically significant as evident in Table 3 under column ’Sig’ in which all the
asymptotic significance were higher than 0.05. For example, the right forearm length for medium
built subject performing a static T-Pose shows a very small variation in median values at each distance
and the differences were not statistically significant, x2(3) = 0.989, p = .804. This results proved that
for medium subject, the measurements are stable and reliable for static pose.
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Table 1

Descriptive statistics of Kinect Measurements of Bone Length at Different Distance

Bone Lower Spine Upper Spine Left Collar
Built Distance from camera at 1.5m at2m at2.5m at3m atl.5m at2m at2.5m at3m atl.5m at2m at25m at3m
Mean 27.61 2634 2599 2612 2024  19.17  19.02  19.12 2.12 222 2,19 2.16
Std. Deviation 0.14 0.06 0.08 0.16 0.10 0.05 0.06 0.12 0.05 0.03 0.02 0.01
© Std. Error of Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5“ Median 27.64 2633 2597 2618 2026 19.17 19.00  19.16 2,13 2,23 2.20 2.16
~ Minimum 27.22  26.20 25.86 2557 1997 19.02 1895 1870 2.06 2,13 2,14 2.13
Maximum 27.79 26534 2623 2628 2038 1929 19.16 19.24 2.23 2.27 2.24 2.18
Range 0.57 0.34 0.37 0.71 0.41 0.27 0.22 0.54 0.17 0.13 0.11 0.05
Mean 2490 2526 2441 2406 1820 1860 1795 1775 1.73 1.84 1.79 1.69
Std. Deviation 0.12 0.13 0.05 0.13 0.08 0.09 0.04 0.10 0.00 0.02 0.01 0.02
E Std. Error of Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Median 2484 2525 2443 2406 1816 1859 1796 17.75 1.73 1.85 1.79 1.68
ﬁ Minimum 2472 2493 2415 2346 18.09 1837 1773 17.34 1.73 1.81 1.77 1.65
Maximum 25.14 2547 2449 2427 1835 1873 18.02 1795 1.74 1.86 1.81 1.73
Range 0.41 0.54 0.34 0.81 0.27 0.35 0.29 0.62 0.02 0.05 0.04 0.09
Bone Right Collar Left Clavicle Right Clavicle
Built Distance from camera at 1.5m at2m at25m at3m atl.5m at2m at25m at3m atl.5m at2m at2.5m at3m
Mean 2.23 2.15 2.18 2.08 19.10 1999 1976 1941 20.08 19.32 19.66 18.74
Std. Deviation 0.05 0.03 0.02 0.03 046 0.28 0.18 0.14 0.45 0.32 0.18 0.25
o Std. Error of Mean 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.01
;]!a Median 2.25 2.15 2.19 2.08 19.15 20,05 1979 1941 20.21 19.37  19.71 18.69
Minimum 2,13 2.05 2.12 2.04 1854  19.14 1922 1907 19.09 1836 19.10 18.36
Maximum 2.30 2.20 2.21 2.16 20.08 2039 2020  19.65  20.71 19.85 19.94 1945
Range 0.17 0.16 0.09 0.11 1.54 1.25 0.98 0.58 1.61 1.49 0.84 1.09
Mean 1.70 1.75 1.83 1.74 1559 1652 1607 1524 1527 1577 1647 1566
Std. Deviation 0.01 0.02 0.01 0.04 0.06 0.16 0.13 0.24 0.09 0.13 0.11 0.36
E Std. Error of Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01
'?: Median 1.70 1.75 1.83 1.75 1559 16,55 1608 1516 1526 1575 1649 15.77
= Minimum 1.68 1.72 1.81 1.67 1544 16,17 1586 1482 1507 1546 1630 1491
Maximum 1.72 1.79 1.85 1.79 1572 1680 1630 1571 1548 16.13 16.65 16.15
Range 0.04 0.07 0.04 0.12 0.29 0.64 0.44 0.89 0.41 0.67 0.35 1.24
Bone Left Arm Right Arm
Built Distance from camera at 1.5m at2m at25m at3m atl.5m at2m at2.5m at3m
Mean 28.29  26.10 2744 2660 27.62 27.4 27.17  26.50
Std. Deviation 0.62 0.34 0.29 0.66 040 042 0.30 037
y Std. Error of Mean 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01
5:3“ Median 28.51 26,19 2745 2647 27.80 27.02 27.17 2647
- Minimum 25.85  25.02 2649 2550 26.79 25.85 26.61 25.68
Maximum 2896 2741 2837 2822 28.23 28.13 28.30 27.61
Range 3.11 2.39 1.89 2.72 .44 228 1.69 1.92
Mean 22,06 2546 2467 26.51 22.00 24.83 2435 2421
Std. Deviation 0.01 0.20 0.28 0.31 0.01 0.17 0.27 032
E Std. Error of Mean 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01
5 Median 22.05 2545 2465 26.51 22.00 24.81 24,42 2433
Eu Minimum 22,04 2505 2414 25098 21.98 24.50 23.83  23.50
Maximum 22.07 2589 2534 2754 22.03 25.31 2475 24.55
Range 0.04 0.85 1.21 1.56 0.05 0.81 0.92 1.05
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Table 2

Results of Shapiro-Wilk’s Test of Normality

Lower Spine Upper Spine Left Collar Right Collar Left Clavicle
Distance from camera “q o™ df  Sig.  Sttisic df  Sig.  Statistc df Sig. Statistic df Sig. Sttisic df Sig.
i Large 0.895 5 038 0855 5 0209 0869 5 0264 0865 5 0247 0852 5 0.200
LSmeter  Medium 0.878 5 0301 0871 5 0272 0979 5 0927 0875 5 0286 0901 5 0417
Large 0915 5 0499 0974 5 0898 0706 5 0011 0850 5 0196 0709 5 0.012
2meer  Medium 0961 5 0812 0948 5 0724 0914 5 0494 0939 5 0661 0931 5 0.601
, e Large 0954 5 0763 0950 5 0740 0968 5 0864 0905 5 0439 0966 5 0.852
SO Melr v o dium 0966 5 0.852 0992 5 0985 0930 5 0597 0994 5 0993 0957 5 0.787
R  Large 0745 5 0.026 0760 5 0.037 0897 5 0395 0901 5 0417 0936 5 0.639
SmeRT Medium 0739 5 0.023 0810 5 0098 0920 5 0528 0871 5 0270 0910 5 0.466
Right Clavicle Left Arm Right Arm Left Forearm Right Forearm
Distance from camera =g i ™ 4t Sig Statisic df  Sig.  Statistc df  Sig. Statistic df Sig.  Statsic df Sig.
_ Large 0.859 5 0225 0773 5 0.048 0877 5 0297 0830 5 0139 0850 5 0.194
LSmeter  pfedium 0956 5 0783 0990 5 0981 0843 5 073 0894 5 0377 0979 5 0.931
Large 0.833 5 0146 0826 5 0131 0939 5 0656 0835 5 0151 0748 5 0.029
Zmeler  Medium 0.888 5 0347 0933 5 0617 0903 5 0425 0970 5 0873 0985 5 0.959
_ Large 0956 5 0778 0960 5 0811 0962 5 0825 0970 5 0.874  0.858 5 0.220
Z5meter  Medium 0906 5 0444 0926 5 0568 0919 5 0527 0969 5 0869  0.879 5 0.303
R  Large 0.896 5 0390 0977 5 0916 0979 5 0927 0716 5 0.014 0927 5 0.578
S MERT  Medium 0863 5 0238 0954 5 0764 0809 5 0095 0978 5 0926 0908 5 0.456
Table 3
Results of Friedman Test for bone length differences at different recording distance from Kinect
Medium Built Large Built
Bone Length 13(3) Sig Median les) Sig Median
= at 1.5m  at2m  at2.5m  at3m i at 1.5m  at2m  at2.5m  at3m
Lower Spine  0.994  0.803 24.071 24070 24071 24070 2.64 04500 24.065 24.071 24070 24.072
Upper Spine  1.103 0776 17750 17747 17747 17747 1.869  0.6000 17.746 17751 17.747  17.750
Left Collar 0335 0953  1.683  1.683  1.683  1.683 46487 00005 1684  1.683  1.683  1.683
Right Collar ~ 0.040 0998 1754 1755 1755 1755 47856 0.0005 1751 1755 1755 1755
Left Clavicle 0342 0952 15141 15141 15141 15142 42926 0.0005 15157 15141 15143 15.141
Right Clavicle 0370  0.946 15788 15789 15780 15790 44392 0.0005 15768 15790 15788  15.790
Left Arm 0281 0964 26.539 26538 26541 26541 6.803 00780 26512 26536 26539 26.543
Right Arm 3414 0332 24285 24288 24278 24289 9.128  0.0280 24328 24285 24288  24.283
Left Forearm  0.045 0997 21473  21.474 21472 21474 14191 00030 21459 21474 21.474 21.475
Right Forearm 0.989  0.804 21348 21.349 21.348 21.348 41.113 00005 21343 21349 21.349 21.349
Post-hoc Analysis
1.5m -2m pair 1.5m -2.5m pair 1.5m - 3m pair 2m -2.5m pair 2m-3m pair 2.5-3m pair
BoneLength g ™ diSie. St AdiSiz St AdiSiz. St AdjSie  S@  AdjSis  Stat  AdjSig
Left Collar 0.27 00005 0249 0.0005 0299 0.0005 -0.021 1 0.029 1 0.05 1
Right Collar 0.29 00005 -0.254 0.0005 -0.288 0.0005 0.036 1 0.002 1 0.034 1
Left Clavicle 0274  0.0005 0242  0.0005 0275 00005 -0.032 1 0.0005 1 0.033 1
Right Clavicle -0.28  0.0005 -0.234  0.0005 -0284 0.0005 0.046 1 -0.004 1 0.0 1
Right Arm 0.114 0128 0113 0136 0135 0039 -0.001 1 0.021 1 0.022 1
Left Forearm  -0.151  0.015  -0.148 0017 -0.159  0.008  0.003 1 -0.008 1 0.011 1
Right Forearm -0.257  0.0005 -0.229  0.0005 -0.281 0.0005  0.028 1 0.024 1 0.053 1
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However, in large-built subject; left and right collar, left and right clavicle, left and right forearm
and left arm lengths were all statistically significantly different at the tested recording distances.
Median values for these bone lengths were however quite similar between tested distance. This
would suggest that the different between group ranks were significant, and there exist large outliers
which would undermine the accuracy of recordings.

Post-hoc analysis revealed that for every bone length of the large built subject, the difference at
the tested distance were not statistically significant at the comparison between distance of 2 meter
to 2.5 meter, 2 meter to 3 meter and 2.5 meter to 3 meter. This is evident as the Bonferroni adjusted
asymptotic significance were at p > .05 for all bone lengths measured at these distances.

Thus it can be concluded that for both subjects, the measurements of bone length on the upper
limb were not statistically significantly differentin a non-occluded pose when measured from 2 meter
to 3 meter from Kinect. This is an important conclusion as the joint prediction in the non-occluded
dynamic movements may be undermined if the static pose has statistically significant variance at the
recording location.

3.2 Reliability of joint predictions initialized by poses typical to stroke patients

While normal person can easily perform a seated T-Pose, stroke patients with either a flexor
synergy or extensor synergy will have difficulty trying to maintain a stretched affected arm. Flexed
pose was analyzed as it is the typical possible static pose to initialize joint position as affected arm
with flexor synergy is naturally flexed after stroke. Relaxed pose was also investigated as patients
with extensor synergy has affected arm that is too weak to be raised for a T-Pose initialization. These
poses would hypothetically induced problem in joint prediction as they appear occluded in front of
the Kinect.

Affected arm with flexor synergy will appear occluded with the patient’s torso. On contrary,
patients with extensor synergy will have difficulty flexing their arm and remain naturally extended.
This affected arm will be occluded when the forearm is rested on the lap. An additional Flex-Extend
pose was alsoinvestigated to determine whether the visibility of the unaffected arm will affect the
prediction of the occluded and affected arm.

With the knowledge that the non-occluded static pose appears repeatable at recording distances
of 2 meter onward, similar protocol is conducted to determine the effect of recording distances and
the physique of the subject to the repeatability of joint predictions. The same subjects from previous
protocol performed Flexed, Flex-Extend and Relaxed pose sequentially at 3 different distance (2
meter, 2.5 meter and 3 meter) with 5 repetitions at each recording distance. Affected arm was
assumed as right hand in all the repetitions. All poses were recorded to a similar number of frames
for balanced comparison analysis. A total of 2704 samples spanning five repetitions were collected.
The differences between bone lengths when performing Flexed and Relaxed pose and bone lengths
at seated T-Pose are examined to determine the extent of deviation.

Friedman Test was performed to determine if there were differences on the bone lengths when
performing different static pose at the distance of 2 meter, 2.5 meter and 3 meter. As expected, the
difference of bone lengths between different poses were all statistically significant as the asymptotic
significance were lower than 0.005 for all cases.

Post-hoc analysis revealed that for every bone length of both large and medium built subject, the
difference at the tested distance were all statistically significant at the comparison between distance
of 2 meter to 2.5 meter, 2 meter to 3 meter and 2.5 meter to 3 meter. This is evident as the Bonferroni
adjusted asymptotic significance were at p < .005 for all bone lengths measured at these distances.
Figure 3 presents the overview of the median difference in bone lengths recorded at different pose.
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Median difference of bone lengths in comparison to T-Pose bone lengths
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Fig.3. The overview of discrepancies in upper limb joint position predictionsin comparison withbone lengths
predicted using T-Pose for medium-built subject (left) and large-built subject (right) at different recording
distances

It can be observed that for all examined poses for both subjects, right arm (performed as the
affected side by all subjects) appeared shorter than the length of the arm when performing T-Pose.
For medium built subject, the affected arm was recorded with similar median difference for all poses
at 2.5 meter from the camera. However, right forearm’s median difference was at the minimum at
this recording distance when performing Flex-Extend pose in comparison to Flexed and Relaxed pose
in which both arms were rested on the lap.

4. Conclusions

From these analyses, it can be confirmed that the distance of approximately 2.5 meter from the
camera is ideal to minimize the inaccuracies of predicted joints. However, itis also evident that distal
joints such as elbow and wrist which directly influenced the length of arm and forearm require
refinements to be accepted as accurate measures. On the bright side, joints related to the torso,
namely waist, chest, collar, and shoulder are all statistically accurate (with the mean difference of at
most +2 cm when affected arm are flexed or extended). Hence, the existing biomechanical model
can be used without further refinement to provide data as foundation to torso assessment model.
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