
 

Journal of Advanced Research in Industrial Automation and Cyber-Physical System 3, Issue 1 (2019) 1-9 

1 
 

 

Journal of Advanced Research in 
Industrial Automation and Cyber-Physical 

System 

 

Journal homepage: www.akademiabaru.com/aria.html 
ISSN: 2637-0263 

 

Test-Retest Reliability of Kinect’s Torso Joint Prediction for 
Compensatory Assessment After Stroke  

 

Nurdiana Nordin1,*, Sheng Quan Xie2, Burkhard Wuensche3 

  
1 Centre for Robotics and Industrial Automation, Fakulti Kejuruteraan Elektrik (FKE), Universiti Teknikal Malaysia Melaka, Malaysia 
2 School of Mechanical Engineering and School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK  
3 Department of Computer Science, The University of Auckland, 23 Symonds Street, Auckland, New Zealand 

 

ARTICLE INFO ABSTRACT 

Article history: 
Received 9 January 2019 
Received in revised form 1 March 2019 
Accepted 9 March 2019 
Available online 22 April 2019 

Stroke patients typically incorporate compensatory s trategies to complement the 
minimal use of distal segment of the upper limb to perform daily activities. The ability 
to monitor compensatory s trategies in terms  of abnormal torso and shoulder 

movements through Kinect is attractive due to i ts portability and cost. However, 
Kinect’s joint proposals can be undermined with the occluded pose typical of s troke 
patients. This study investigated these discrepancies through test-retest procedures of 
s tatic pose typical to stroke patients. It was found that at the distance of approximately 
2.5 meters , all the joint proposals were reliable for normal pose. However, only joints 

attributed to the torso were reliable when stroke pose is prevalent. Therefore, joints 
attributed to torso can be readily measured from the intrinsic biomechanical model 
but model fidelity of distal segments must be improved for useful assessment. 
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1. Introduction 
 

Compensatory strategies were prevalent in reaching to complement the minimal use of distal 
segment to complete function [9]. In clinically accepted photogrammetric method, the extent of 
torso movement when compensatory strategies are prevalent is defined by three independent torso 
angles namely forward bending, axial rotation and lateral flexion. Previous research on Kinect’s torso 
joint predictions was promising, in which lateral flexion angle was reported to have excellent 
agreement with marker-based motion capture system [3]. However, the intrinsic model was also 
reported to have false axial rotation [16] which inspired the development of Torso-Principal-
Component-Analysis (TPCA) model [11] to represent the dynamics of torso in space. 

Kinect is an RGBD camera which provides color images and depth data. Kinect’s intrinsic 
biomechanical model provides real-time position and orientation of various human joints [13] as 
depicted in Figure 1 (a)). Joint proposals named waist, spine, chest, collar, shoulder, elbow and hand 
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were valuable for assessment of the upper limb movement quality after stroke since the ability to 

monitor these joints would provide holistic overview of the improvement [12].  
Compensatory movement typically performed by stroke patients in daily activities also include 

the shoulder hike [7] whenever the arm transport becomes difficult due to paresis of the affected 
arm. Monitoring such movement using Kinect is possible by observing the orientation of the shoulder 

joint. The trajectory of shoulder joint orientation, depicted as decomposed orientation quaternion 
to Z-X-Y Euler angles are depicted in Figure 1 (b)). It can be seen that abduction to 90° was recorded 

as the angular position’s change from approximately 60° to -15, 75° in total. As angular position 
attributed to Z-axis were perpendicular to the arm length in space, flexion to 90° was also recorded 

with apparent change. Based on these observations, shoulder joint orientation estimates were able 
to determine the gross movements to some extent which may be influenced by the accuracy of joint 

proposals at the time of prediction [5]. 
 

 
       (a)                                                        (b) 

Fig. 1. (a) Location and orientation of Kinect’s joint proposals on the upper body based on intrinsic 
biomechanical model; (b) Orientation trajectory of shoulder joints of a person performing abduction to 90˚ 
followed by flexion to 90˚. The independent axis is the number of recording sample and dependent axis is 
the angle in degrees. 

 
Existing study however expressed concerns on the effect of distance between camera and the 

subjects on the joint prediction [4]. That is, the joint predictions can be severely undermined at the 
distance too close to the camera and near the end of Kinect’s field of  view (close to 4 meter). Greater 
outliers are typically observed in a form of spikes in the trajectory trace of the dynamic movements . 
Furthermore, the subject’s physique may also be the influencing factor of inaccurate tracking as 
upper limbs are prone to be occluded in large person. 

For the purpose of upper limb assessment after stroke, the study emphasized only on 11 joint 
proposals; waist, spine, chest, left and right collar, left and right shoulder, left and right elbow, and 
left and right hand in order to determine the outcome of stroke task assessment. While the usability 
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and cost of Kinect are attractive, the challenges of obtaining repeatable measurements are 

tremendous due to probable inclusion when abnormal flexor synergy is apparent after stroke. 
In the assessment of upper limb movement quality after stroke, besides the gross body 

movements in coronal and sagittal plane, the tasks that are performed to assess flexor and extensor 
synergy for example; require a cross-body movement in which the arm is highly occluded by the torso 

[6,15]. Similarly, with planar assessment task, the hand movement is restricted to a slightly tilted 
transverse plane, occluded by the torso and possibly by the table [8]. Hence, with numerous reports  

addressing concerns on the accuracy of Kinect when fine movement is measured, the data provided 
by Kinect can be hypothetically unreliable for assessment. A further insight on the repeatability of 

Kinect in predicting the upper body joints in seated condition is warranted. 
 

2. Methodology  
 

In order to determine the extent of inaccuracies in the assessment of upper limb movements, an 
analysis on the repeatability of all upper limb joint position for subjects performing repeated seated 

T-Pose as well as initial pose typical to stroke patients was conducted. Stroke patients with either a 
flexor synergy or extensor synergy will have difficulty trying to maintain a stretched affected arm. 
Three additional static pose typical to stroke patients were analyzed, namely Flex-Extend, Flexed and 
Relaxed pose. T-Pose is a recommended pose to initialize joint position as all the upper limb joints 
are in direct view of the camera without occlusion [2]. Relaxed pose is the typical seated position 

with hand on lap. T-Pose and typical stroke poses are depicted in Figure 2. 
Physically, bone lengths of a person should remain relatively constant regardless of the distance 

of the subject from the camera. Therefore, it was selected as the dependent variable in order to 
assess the constancy of the Kinect’s joint prediction. Ten different bones are computed based on the 

joint positions provided. Lower Spine is computed from the Euclidean length between Spine position 
and Waist position, Upper Spine (Chest and Spine), Left and Right Collar (Collar and Chest), Left and 

Right Clavicle (Upper Arm and Collar), Left and Right Arm (Forearm and Upper Arm), and also Left 
and Right Forearm (Forearm and Hand). 

 
Fig. 2. From left: A seated T-Pose, Flex-Extend, Flexed pose 

 
A Microsoft Kinect Sensor v2 was placed at roughly 4 different position in sequential  order; 1.5 

meter, 2 meter, 2.5 meter and 3 meter from subjects sitting on a chair without armrest. The data was 
captured and streamlined using Brekel Kinect Pro Body v2 [1] for easier database built-up. The sensor 
was mounted on a tripod and placed on the floor at an approximately -10 degrees angle from the 
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horizontal axis, at the height higher than the head of the subject and looking down, without any 

particular attempt to secure it from vibrations.  
Two healthy subjects without upper limb impairment were recruited, both are of different 

physique and coded as Medium and Large built subject. The Medium subject is female, 1.62-meter-
tall with body mass index (BMI) of 28 kg/m2. The Large subject is male, 1.8-meter-tall with BMI of 33 

kg/m2.  
First, they were asked to perform series of a static seated T-Pose. The task consists of performing 

the pose repeatedly 5 times at each distance. The predicted joint position of waist, spine, chest, collar 
and shoulder of the person was provided by Kinect V2. The repeatability of the bone lengths was 

observed and analyzed. Then, a series of static stroke poses was performed repeatedly 5 times at 
selected distance from the camera based on the repeatability of the bone length initialized using T-

Pose. 
 

3. Results  
3.1 Reliability of joint predictions initialized by T-Pose 

 
The descriptive statistics of the comparison between all the captures  are presented in Table 1. 

Standard error of the mean for all bone lengths were in the order of millimetre. In this sample, 
standard deviation of bone lengths for large subject was  greater than 0.5cm for left arm at 1.5 meter 
and 3 meter from the camera, and greater than 0.5 cm for left forearm when recorded at 2 meter 

from the camera. However, the standard deviation of any bone length for medium subject was less 
than 0.5 cm for all distance. The sum of standard deviation for all bones was the smallest at 2.5 meter 

from the camera for both subjects and the largest at 3 meter from the camera.  
With these discrepancies, a further analysis is warranted to examine the effects of distance from 

camera on ten of the predicted upper limb bone lengths inclusive of lower spine, upper spine, left 
collar, right collar, left clavicle, right clavicle, left arm, right arm, left forearm and right forearm and 

whether this effect was dependent on the physique of the subject. 
In order to choose an appropriate test to examine both effects, Shapiro-Wilk’s Test of Normality 

was performed to analyze the normality of the data. As evident in Table 2, residuals were normally 
distributed for measurements at 2.5 meter from the camera regardless  of the physique. However, it 

was striking that majority of bone lengths of the large-built subject violated the normality assumption 
(6 out of 7 occurrences of violation) at p < .05. Furthermore, at the distance of 2 meter from the 

camera, large-built subject has the majority of violations as left collar, left clavicle and right forearm 
violated the assumption of normality. This results intrinsically support the large standard deviation 
observed earlier. 

Due to the violations of normality, a non-parametric alternative to one-way repeated measures 
ANOVA (Friedman Test) [10] was run to determine if there were differences on the bone lengths at 
4 different recording distances from the camera. Pairwise comparisons were performed [14] with a 
Bonferroni correction for multiple comparisons.  

Separate tests were run for both subjects and the results were presented in Table 3. All bone 
lengths of medium built subject showed very small variation between the tested recording distances, 

and were not statistically significant as evident in Table 3 under column ’Sig’ in which all the 
asymptotic significance were higher than 0.05. For example, the right forearm length for medium 

built subject performing a static T-Pose shows a very small variation in median values at each distance 
and the differences were not statistically significant, χ2(3) = 0.989, p = .804. This results proved that 

for medium subject, the measurements are stable and reliable for static pose. 
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Table 1 
Descriptive statistics of Kinect Measurements of Bone Length at Different Distance  
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Table 2 
Results of Shapiro-Wilk’s Test of Normality 

 

 
Table 3 
Results of Friedman Test for bone length differences at different recording distance from Kinect  
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However, in large-built subject; left and right collar, left and right clavicle, left and right forearm 

and left arm lengths were all statistically significantly different at the tested recording  distances. 
Median values for these bone lengths were however quite similar between tested distance. This 

would suggest that the different between group ranks were significant, and there exist large outliers  
which would undermine the accuracy of recordings.  

Post-hoc analysis revealed that for every bone length of the large built subject, the difference at 
the tested distance were not statistically significant at the comparison between distance of 2 meter 

to 2.5 meter, 2 meter to 3 meter and 2.5 meter to 3 meter. This is evident as the Bonferroni adjusted 
asymptotic significance were at p > .05 for all bone lengths measured at these distances. 

Thus it can be concluded that for both subjects, the measurements of bone length on the upper 
limb were not statistically significantly different in a non-occluded pose when measured from 2 meter 

to 3 meter from Kinect. This is an important conclusion as the joint prediction in the non-occluded 
dynamic movements may be undermined if the static pose has statistically significant variance at the 

recording location.  
 

3.2 Reliability of joint predictions initialized by poses typical to stroke patients 
 

While normal person can easily perform a seated T-Pose, stroke patients with either a flexor 
synergy or extensor synergy will have difficulty trying to maintain a stretched affected arm. Flexed 
pose was analyzed as it is the typical possible static pose to initialize joint position as affected arm 

with flexor synergy is naturally flexed after stroke. Relaxed pose was also investigated as patients 
with extensor synergy has affected arm that is too weak to be raised for a T-Pose initialization. These 

poses would hypothetically induced problem in joint prediction as they appear occluded in front of 
the Kinect.  

Affected arm with flexor synergy will appear occluded with the patient’s torso. On contrary, 
patients with extensor synergy will have difficulty flexing their arm and remain naturally extended. 

This affected arm will be occluded when the forearm is rested on the lap. An additional Flex-Extend 
pose was also investigated to determine whether the visibility of the unaffected arm will affect the 

prediction of the occluded and affected arm. 
With the knowledge that the non-occluded static pose appears repeatable at recording distances 

of 2 meter onward, similar protocol is conducted to determine the effect of recording  distances and 
the physique of the subject to the repeatability of joint predictions. The same subjects from previous 

protocol performed Flexed, Flex-Extend and Relaxed pose sequentially at 3 different distance (2 
meter, 2.5 meter and 3 meter) with 5 repetitions at each recording distance. Affected arm was 
assumed as right hand in all the repetitions. All poses were recorded to a similar number of frames 
for balanced comparison analysis. A total of 2704 samples spanning five repetitions were collected. 
The differences between bone lengths when performing Flexed and Relaxed pose and bone lengths 
at seated T-Pose are examined to determine the extent of deviation.  

Friedman Test was performed to determine if there were differences on the bone lengths  when 
performing different static pose at the distance of 2 meter, 2.5 meter and 3 meter. As expected, the 
difference of bone lengths between different poses were all statistically significant as the asymptotic 

significance were lower than 0.005 for all cases.  
Post-hoc analysis revealed that for every bone length of both large and medium built subject, the 

difference at the tested distance were all statistically significant at the comparison between distance 
of 2 meter to 2.5 meter, 2 meter to 3 meter and 2.5 meter to 3 meter. This is evident as the Bonferroni 

adjusted asymptotic significance were at p < .005 for all bone lengths  measured at these distances. 
Figure 3 presents the overview of the median difference in bone lengths recorded at different pose.  
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Fig. 3. The overview of discrepancies in upper limb joint position predictions in comparison with bone lengths 
predicted using T-Pose for medium-built subject (left) and large-built subject (right) at different recording 
distances 

 

It can be observed that for all examined poses for both subjects, right arm (performed as the 
affected side by all subjects) appeared shorter than the length of the arm when performing  T-Pose. 

For medium built subject, the affected arm was recorded with similar median difference for all poses 
at 2.5 meter from the camera. However, right forearm’s median difference was at the minimum at 

this recording distance when performing Flex-Extend pose in comparison to Flexed and Relaxed pose 
in which both arms were rested on the lap. 

 
4. Conclusions 

 
From these analyses, it can be confirmed that the distance of approximately 2.5 meter from the 

camera is ideal to minimize the inaccuracies of predicted joints. However, it is  also evident that distal 
joints such as elbow and wrist which directly influenced the length of arm and forearm require 
refinements to be accepted as accurate measures. On the bright side, joints related to the torso, 
namely waist, chest, collar, and shoulder are all statistically accurate (with the mean difference of at 
most ±2 cm when affected arm are flexed or extended). Hence, the existing biomechanical model 

can be used without further refinement to provide data as foundation to torso assessment model. 
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