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ABSTRACT 

Nanofluids are important because they enhance heat transfer. Nanofluids are colloidal mixtures of nanometric metallic or ceramic 
particles in a base fluid, such as water, ethylene glycol or oil. Nanofluids possess immense potential to enhance the heat transfer 
character of the original fluid due to improved thermal transport properties. In this article, a brief overview has been presented to 
address the unique features of nanofluids, such as their preparation, heat transfer mechanisms, conduction and convection heat 
transfer enhancement, etc. About 55 published studies (1976-2015) are reviewed in this paper. It is marked from the literature 
survey articles that nano fluids performance are the most frequently studied as an efficient coolant for heat exchangers. 
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1. Introduction 
 

This review gives an overview of Nano-fluid, synthesis of nano-fluid, heat transfer through nano-
fluids and problems associated with their applications. Nanofluids are a new class of fluids 
engineered by dispersing nanometer-sized materials (nanoparticles, nanofibers, nanotubes, 
nanowires, nanorods, nanosheet, or droplets) in base fluids [1-3]. In general, materials can have 
different properties at the nanoscale (nanometer is one billionth of a meter) than they do at larger 
size. Some materials become stronger, lighter increased stability or better at conducting electricity 
or heat or at reflecting light. Others display different magnetic properties or become chemically 
active in special ways [4] .Nanofluids are nanoscale colloidal suspensions containing condensed 
nanomaterials. Nanofluids have been found to possess enhanced thermo-physical properties such as 
thermal conductivity, thermal diffusivity, viscosity, and convective heat transfer coefficients 
compared to those of base fluids like oil or water [5-12]. Researchers have measured the thermo 
physical properties of nanofluids while many others used well-known predictive correlations. Their 
works have been both experimental and theoretical [13]. Applications of nanofluids in industries such 
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as heat exchanging devices appear promising with these characteristics. It has demonstrated great 
potential applications in many fields. 

However, the development and applications of nanofluids may be slowed down by several factors 
such as long term stability, increase pumping power and pressure drop, nanofluids’ thermal 
performance in turbulent flow and fully developed region, lower specific heat of nanofluids and 
higher production cost of nanofluids [13]. One of the most important issues is the stability of 
nanofluids, and it remains a big challenge to achieve desired stability of nanofluids. This paper, we 
will review the new progress in the methods for preparing stable nanofluids and summarize the 
stability mechanisms. 

In recent years, nanofluids have attracted more and more attention. The main driving force for 
nanofluids research lies in a wide range of applications. Although some review articles involving the 
progress of nanofluids investigation were published in the past several years, most of the reviews are 
concerned of the experimental and theoretical studies of the thermo physical properties or the 
convective heat transfer of nanofluids. The purpose of this paper will focuses on the new preparation 
methods and stability mechanisms, especially the new application trends for nanofluids in addition 
to the heat transfer properties of nanofluids. 

 
2. Synthesis of nanofluids 

 
Preparation of nanofluids is the first key step in applying nano phase particles to changing the 

heat transfer performance of conventional fluids. The nanofluid does not simply refer to a liquid–
solid mixture. Some special requirements are necessary, such as even suspension, stable suspension, 
durable suspension, low agglomeration of particles and no chemical change of the fluid. Generally, 
these are effective methods used for preparation of suspensions: (1) to change the pH value of 
suspensions; (2) to use surface activators and/or dispersants; (3) to use ultrasonic vibration. All these 
techniques aim at changing the surface properties of suspended particles and suppressing formation 
of particles cluster in order to obtain stabile suspensions. It depends upon the application case how 
these techniques are used. 

Different methods have been developed to prepare nanofluids, such as the dispersing method 
[14, 6, 15-17] , physical vapor condensation [18, 19], and one-step chemical method [20] etc. 
However, preparation of a uniformly dispersed nanofluid is essential for obtaining stable 
reproduction of physical properties or superior characteristics of the nanofluids [21, 22]. 
 
2.1 Two-Step Method 

 
Two-step method is the most widely used method for preparing nanofluids. Nanoparticles, 

nanofibers, nanotubes, or other nanomaterials used in this method are first produced as dry powders 
by chemical or physical methods. Then, the nano sized powder will be dispersed into a fluid in the 
second processing step with the help of intensive magnetic force agitation, ultrasonic agitation, high-
shear mixing, homogenizing, and ball milling [23]. Two-step method is the most economic method to 
produce nanofluids in large scale, because nano powder synthesis techniques have already been 
scaled up to industrial production levels [24]. 

Literature review reveals that the initially nanofluids, used a two-step process [14], In which 
nanoparticles or nanotubes are first produced as a dry powder, often by inert gas condensation [25]. 
Chemical vapor deposition has also been used to produce constituents for use in nanofluids, 
particularly multi walled carbon nanotubes [21]. The nanoparticles or nanotubes are then dispersed 
into a fluid in a second processing step. Simple techniques such as ultrasonic agitation or the addition 
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of surfactants to the fluids are sometimes used to minimize particle aggregation and improve 
dispersion behavior. Such a two-step process works well in some cases, such as nanofluids consisting 
of oxide nanoparticles dispersed in deionized water [14]. Less success has been found when 
producing nanofluids containing heavier metallic nanoparticles. Since nano powder synthesis 
techniques have already been scaled up to industrial production levels by several companies[26], 
there are potential fiscal advantages in using two-step synthesis methods that rely on the use of such 
powders. 

Literature shows that, there are three effective procedures used to achieve stability of suspension 
against sedimentation of nanoparticles. Some of the researchers applied all of these methods to gain 
better stability [27-29], but others just applied one [30] or two techniques with satisfaction [31-33]. 
There is no standard to recognize the superlative mix up of combining methods. This area acquires 
more experiments to be clarified. 

 
2.2 One-Step Method 
 

To decrease the cluster of nanoparticles, Eastman et al. developed a one-step physical vapor 
condensation method to prepare Cu/ethylene glycol nanofluids [19]. The one-step process consists 
of simultaneously making and dispersing the particles in the fluid. In this method, the processes of 
drying, storage, transportation, and dispersion of nanoparticles are avoided, so the agglomeration of 
nanoparticles is minimized, and the stability of fluids is increased [34]. The one-step processes can 
prepare uniformly dispersed nanoparticles, and the particles can be stably suspended in the base 
fluid.  

However, there are some disadvantages for one-step method. The most important one is that 
the residual reactants are left in the nanofluids due to incomplete reaction or stabilization. It is 
difficult to elucidate the nanoparticle effect without eliminating this impurity effect. The preparation 
of nanofluids with controllable microstructure is one of the key issues. The nanofluid microstructure 
can be varied and manipulated by adjusting synthesis parameters such as temperature, acidity, 
ultrasonic and microwave irradiation, types and concentrations of reactants and additives, and the 
order in which the additives are added to the solution [35, 36]. 
 
3. Heat Transfer Characteristics of Nanofluids 
3.1 Conduction 

 
Since thermal conductivity is the most important parameter responsible for enhanced heat 

transfer many experimental works been reported on this aspect. The transient hot wire method[37], 
the steady-state parallel-plate technique [38] and the temperature oscillation technique have been 
employed to measure the thermal conductivity of nanofluids [39]. Among them the transient hot 
wire method has been used most extensively. Because in general nanofluids are electrically 
conductive, it is difficult to apply the ordinary transient hot-wire technique directly. A modified hot-
wire cell and electrical system was proposed, Coating the hot wire with an epoxy adhesive which has 
excellent electrical insulation and heat conduction. However, researcher pointed that possible 
concentration of ions of the conducting fluids around the hot wire may affect the accuracy of such 
experimental results. 

Oscillation technique was developed and later modified [40, 41]. This method is purely thermal 
and the electrical components of the apparatus are removed from the test sample. Hence ion 
movement should not affect the measurement. 
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Fig. 1. Effect of Different Materials on thermal conductivity [42] 

The experimental results for different nanofluids by researchers are summarized in Table 1, 
illustrated the conductive heat transfer coefficient nanoparticles in liquid and shows overall trend of 
heat transfer enhancement.  
 
Table 1  
Effect of Different particles on thermal conductivity [43] 

 Particle Base fluid Average particle 
size 

Volume fraction Thermal 
conductivity 
enhancement 

Metallic 
nanoparticles 

Cu Ethylene glycol 10nm 0.3% 40% 

  7.5% 78% 

Cu 100nm 0.55% 21% 

Fe Water  0.001% 17% 

Au Ethylene glycol 10-20nm   

Ag 60-80nm   

Non-metallic 
nanoparticles 

Al2O3 Water 13nm 4.3% 30% 

Al2O3 33nm 4.3% 15% 

Al2O3 68nm 5% 21% 

CuO 36nm 3.4% 12% 

CuO 50nm 0.4% 17% 

SiC 26nm 4.2% 16% 

 

The maximum measured thermal conductivity enhancement for different nanofluids is 
summarized in Table 2. 
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Table 2 
Summary of the maximum measured thermal conductivity enhancement for nanofluids contacting 
nanoparticles 

Base Fluid Nano Particle 
Size of 

particles 
(nm) 

Maximum 
Concentration 

(vol %) 

Maximum 
Enhancement in k 

(%) 
Reference 

Water Al2O3 13nm 4.3 30 [44] 

Water Al2O3 33 5 30 

[5] Water CuO 36 5 60 

Pump Oil Cu 35 0.055 45 

Water Al2O3 13 4.3 32 
[45] 

Water TiO2 27 4.35 10.7 

Water Al2O3 28 4.5 14 

[38] 

Ethylene Glycol Al2O3 28 8 40 

Pump Oil Al2O3 28 7 20 

Engine Oil Al2O3 28 7.5 30 

Water CuO 23 10 35 

Ethylene Glycol CuO 23 15 55 

Water Al2O3 24.4 4.3 10 

[14] 
Ethylene Glycol Al2O3 24.4 5 20 

Water CuO 18.6 4.3 10 

Ethylene Glycol CuO 18.6 4 20 

Water Al2O3 38 4 25 
[39] 

Water CuO 28.6 4 36 

Water Al2O3 60 5 20 

[46] Ethylene Glycol Al2O3 60 5 30 

Pump Oil Al2O3 60 5 40 

Water Al2O3 10 0.5 100 [47] 

Water Al2O3 20 1 16 [48] 

Ethylene Glycol CuO 25 5 22.4 [49] 

Water TiO2 15 5 33 [50] 

Toluene Au 15 0.011 8.8 

[22] Water Au 15 0.00026 8.3 

Water Ag 70 0.001 4.5 

Ethylene Glycol Fe 10 0.55 18 [51, 52] 

 
 
3.2 Convection 

 
Researchers presented an experimental system to investigate the convective heat transfer 

coefficient and friction factor of nanofluids for laminar and turbulent flows in a tube [53, 54]. The 
working fluid used was 100 nm Cu particles dispersed in deionized water. Experiments with different 
concentrations of nanoparticles were conducted. The Reynolds number of the nanofluids varied in 
the range of 800-25000. The nanofluid used consisted of Fe3O4 magnetic nanoparticles with an 
average diameter of 13 nm dispersed in water with six volume fractions (0, 0.6, 0.8, 1, 1.5 and 2%). 
The results revealed that as volume fraction and Reynolds number increased, Nusselt number 
increased, and friction factor decreased as Reynolds number increased[55] .The experimental results 
concluded that the convective heat transfer coefficient of the nanofluids varied with the flow velocity 
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and volume fraction. Also, the values were higher than those of the base fluid in the same conditions. 
The Nusselt number of the nanofluids with 2% volume fraction of Cu particles was 60% higher than 
that of water. From the experimental data of [54, 53], the new heat transfer correlations for the 
prediction of the heat transfer coefficient of nanofluids flowing in a tube were given as follows: 

Laminar flow: 
 

0.754 0.218 0.33 0.40.4329[1.0 11.285 ]Re Prnf d nf nfNu Pe        (1) 

 
Turbulent flow: 

 
0.6886 0.001 0.9233 0.40.0059[1.0 7.6286 ]Re Prnf d nf nfNu Pe 

       (2) 
 
where 
 

;Re ;Pr
m p nfm

d nf nf

nf nf nf

u d vu D
Pe

v 
  

         (3) 
 

( ) (1 )( ) ( )

nf nf

nf

p nf p f p d

k k

C C C


    
 

 
        (4) 

 
The results indicated that the friction factor of the nanofluids was equal to that of water under 

some working conditions, and did not vary with volume fraction. This shows that the nanofluid did 
not increase the pump power. The friction factor of the nanofluids was determined from the 
following equation 
 

2

2

nf

nf

m

p D

L g

u




              (5) 

 
Researcher performed experiments with Al2O3 and CuO nanoparticles in water under laminar 

flow up to turbulence [56]. They found more heat transfer enhancement, as high as 40%, with Al2O3 
particles, while the thermal conductivity enhancement was less than 15%. The Dittus Boelter 
equation was not valid for the prediction of the Nusselt number of the nanofluids at various volume 
fractions. Figures 2 and 3 show the performance of different nanofluids on the car radiator. 
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Fig. 2. The effect of volumetric concentration of nanoparticle on the Reynolds number and 
pumping power compared to the base fluid [57] 
 
 

 
Fig. 3. A comparison of the heat transfer coefficient and friction power per unit area with 
three nanofluids of 1–3% concentration and the base fluid [57] 

 
 
4. Conclusion 

 
The current review is a comprehensive outlook on the research progress made in the thermal 

enhancement process using nanofluids. The aim of the nanofluid research is to develop new methods 
to augment the synthesis method, novel equipment’s for measuring the thermo physical properties 
and synthesize nanofluids with excellent transport properties. The size of the nanoparticles plays an 
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important role in improving the heat transfer properties. The dispersion behavior of nanoparticles 
improves, if the nanoparticles can be prevented from agglomeration using appropriate surfactants. 
The mechanism of the temperature dependence of thermal conductivity continues to be a prime 
research area, where experimental findings are used to substantiate theory and applications. 
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