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ARTICLE INFO ABSTRACT 

This paper investigates the magnetic blood flow in an inclined multi-stenosed artery under the influence of a uniformly distributed 
magnetic field and an oscillating pressure gradient. The blood is modelled using the non-Newtonian Casson fluid model. The 
governing fractional differential equations are expressed by using the fractional Caputo Fabrizio derivative without singular kernel. 
Exact analytical solutions are obtained by using the Laplace and finite Hankel transforms for both velocities. The velocities of blood 
flow and magnetic particles are graphically presented. It shows that the velocity increases with respect to the Reynolds number 
and the Casson parameter. Meanwhile, the velocity decreases as the Hartmann number increases. These results are useful for the 
diagnosis and treatment of certain medical problems. 
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1. Introduction 

 
A detailed literature survey shows that cardiovascular disease is one of the fatal diseases 

currently. The main reason is due to the unusual hemodynamics within the bloodstream. 
Hemodynamic is the knowledge of blood circulation, which is useful in the diagnosis of coronary 
illness. The reason behind the malfunction of cardiovascular system is the presence of fats, 
cholesterol and lipoproteins at the sites of atherosclerotic lesion in the artery [1]. In recent years, 
due to its great importance in the human cardiovascular system, the study of blood flow through 
constricted arteries has received a great deal of attention [2-4]. Blood vessels have been regarded as 
having zero inclination, which were treated as horizontal in most available studies. Physically, these 
arteries are tilted [5]. Prasad and Radhakrishnamacharya [6] considered the steady blood flow 
through an inclined non-uniform tube with multiple stenoses. Agarwal and Varshney [7] studied the 
flow of Herschel-Bulkley fluid through an inclined tube of non-uniform cross-section with multiple 
stenoses. Biswas and Paul [8] observed the steady blood flow through an inclined tapered vessel, 
where the blood was modelled as Newtonian fluid and the slip vessel wall condition was applied. 
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Also, their analysis includes one-dimensional Poiseuille blood flow through tapered vessels with 
inclined geometries. 

 Extensive research has been done since the last few decades on the dynamics of biological fluid 
in the presence of magnetic field with implications in bio-engineering and medical technology. 
Bhargava et al., [9] investigated a mathematical model for blood flow through an inclined artery 
under the influence of an inclined magnetic field. Mekheimer et al., [10] discussed the blood flow 
through an elastic artery with overlapping stenosis under the effect of induced magnetic field. Many 
researchers considered blood as viscous and non-viscous fluid in stenotic arteries with magnetic field 
effects, but limited number of research works focused on the effect of induced magnetic field on 
blood flow through stenosis [11-12]. Mukhopadhyay and Layek [13] worked on a mathematical 
model to study blood flow through a variable shape stenosed artery under the influence of magnetic 
field and demonstrated the effect of stenosis shape and magnetic field on the flow resistance. 

Plasma is classified as Newtonian fluid, but blood exhibits non-Newtonian behavior [14]. It is well 
known that blood being a suspension of cells behaves as a non-Newtonian fluid at low shear rate and 
while flowing through small blood vessels, especially in diseased states when clotting effects in small 
arteries are present [15]. As blood flows at low shear rate into narrow arteries, it behaves like a 
Casson fluid [16]. Many researchers [17-19] have been working on the Casson fluid model for 
modelling blood flow through narrow arteries. Nagarani and Sarojamma [20] studied the effect of 
body acceleration on pulsatile flow of Casson fluid through a mild stenosed artery. The pulsatile flow 
of Casson fluid with body acceleration subjected to a slip velocity condition in stenosed artery has 
been studied by Siddiqui et al., [21].  

Caputo and Fabrizio gave a new expression for fractional derivative operator with an exponential 
kernel without singularities. Due to the increasing concern in modelling by using fractional 
derivatives, several fractional derivative models have been formulated by inferring the existing fluid 
models [22-23]. Ali et al., [24] had developed a fractional order model for blood flow (Casson fluid) 
with the help of Hankel and Laplace transform techniques to obtain the exact solutions. The so-called 
Caputo and Fabrizio fractional derivative is employed to solve different real problems [25]. Shah and 
Khan [26] applied the idea of the Caputo-Fabrizio fractional derivatives to generalize the starting flow 
of second grade fluid over a vertical plate and obtained the exact solutions using the Laplace 
transform technique. Saqib et al., [27] developed a mathematical model for MHD blood flow in a 
magnetite dusty particle tube by replacing the ordinary time derivative with a fractional time 
derivative of Caputo. Some other recent studies can be found in Alkahtani and Atangana [28], Shah 
et al., [29] and the references therein.  

A thorough search of the relevant literature has witnessed the fact that the existing literature did 
not present the exact solution of MHD blood flow model in the context of Caputo Fabrizio fractional 
derivative for inclined multi-stenosed artery. In the present study, we use the fractional order time 
derivative to model the non-Newtonian Casson fluid. The blood flow is due to the oscillating pressure 
gradient in the z-direction and the external magnetic field. The fractional derivative model is obtained 
by converting the first-order derivatives to Caputo Fabrizio fractional derivatives for the axial blood 
flow and magnetic particles velocities. The exact solutions are then calculated by means of significant 
transformations like Laplace and finite Hankel transforms. For numerical computations, we take the 
zeros of the Bessel functions to generate the graphical findings by using Mathcad for different values 
of fractional parameters as well as some important physical parameters. 
 
2. Methodology  
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Let us consider the unsteady blood flow in an inclined multi-stenosed artery as shown in Figure 1 
aligned in the axial direction (z-axis). r-axis is the radial direction. Blood is treated as an 
incompressible non-Newtonian Casson fluid subjected to an oscillating pressure gradient. The blood 
flow is driven by an applied magnetic field and the induced magnetic field is assumed as negligible as 
it is considerably small as compared to the applied magnetic field. The corresponding momentum 
equation is therefore a generalization of the preview study conducted by Shah et al., [30] with the 
adding factors of Casson fluid in the inclined multi-stenosed artery. At t=0, the blood and the 
magnetic particles are treated as stationary. 

 

 

Fig. 1. Geometry of an inclined arterial segment with multi-stenosis. 

 
The governing equations are the Navier-Stokes equations describing the blood flow, the 

Maxwell’s relations describing the magnetic field and the Newton’s second law describing the particle 
motion.  

The Maxwell equations are 
 

00, , ,
B

B B J E
t




    

      


           (1) 

 

where 𝐵⃗  is the magnetic flux intensity, 𝜇0 is the magnetic permeability, 𝐸⃗  is the electric field intensity 

and 𝐽  is the current density given by Zaman et al., [5] and Hatami et al., [31]. 
 

( ),J E V B
   

                (2) 

 

Here 𝜎 is the electrical conductivity and 𝑉⃗ is the velocity field. The electromagnetic force 𝐹 𝑒𝑚 is 
defined as 
 

2

0( ) ( , )
em

J B E V B B B u r t kF  
       

                 (3) 

where 𝑘⃗⃗⃗   is the unit vector of the z-direction and 𝑉⃗ = 𝑢(𝑟, 𝑡)𝑘⃗  is the axial velocity of the blood. The 

force 𝐹 𝑒𝑚 will be included in the momentum equations. 
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The unsteady blood flow in an axisymmetric cylindrical tube of radius R0 under the influence of 
uniform transverse magnetic field and pressure gradient of the form [7]. 

 

0 1 0cos( ),      0.
p

A A t A
z




   


           (4) 

 
is considered, where the constants A0 and A1 are the amplitudes of the pulsatile magnetic field and 
pressure gradient that give rise to systolic or diastolic pressure.  

The geometry of the multi-stenosis in the arterial lumen may be described mathematically [11] 
as follows 

 
2 3 4 5 61 (1.48 0.7398 0.1485 0.013955 0.0006145 0.000010243 )zR z z z z z z           (5) 

 

where   zR is the radius of the artery in the constricted region, 0R  is the radius of the normal artery,

x  is the length of stenosis and   is the degree of the stenosis. 
The momentum equation for fluid flow in an inclined stenosed artery [24,30,32] can be written 

as  
 

𝜕𝑢

𝜕𝑡
= −

1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝜐 (1 +

1

𝛽
) (

𝜕2𝑢

𝜕𝑟2 +
1

𝑟

𝜕𝑢

𝜕𝑟
) +

𝐾𝑁

𝜌
(𝑣 − 𝑢) −

𝜎𝐵0
2 𝑠𝑖𝑛 𝜃

𝜌
𝑢 + 𝑔 𝑠𝑖𝑛 𝜙,     (6) 

 

where 𝜌 is the fluid density,   is the kinematic viscosity, 
2B c

r

 



 is the material parameter of 

Casson fluid, in which 
B  is the plastic dynamic viscosity, 

r is the yield stress of fluid, and 2 c  is the 

critical value of this product based on the non-Newtonian model,p is the pressure, N is the number 
of magnetic particles per unit volume, K is the Stokes constant, u  is the fluid velocity and 𝜈 is the 

velocity of the particle. The term ( )
KN

u


  is the force due to the relative motion between fluid 

and magnetic particles. It is assumed that the Reynolds number of the relative velocity is small. As 
such, the force between the magnetic particles and the blood is proportional to the relative velocity.  

The motion of magnetic particles is governed by the Newton’s second law:  
 

( )
v

m K u v
t


 


             (7) 

 
where m is the average mass of the magnetic particles. 

In order to consider the time-fractional model, we firstly multiply Eqs. (Error! Reference source 

not found.) and Error! Reference source not found.) multiplied by 0

0

R

A


   , to yield a term with 

dimension of time t. The governing equations of the time-fractional model are  
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 
2

0 1 2

2

0

1 1
cos( ) 1 ( )

sin
sin ,

t

u u KN
D u A A t v u

r r r

B
u g

   
  

  

 
 



    
         

   

        (8) 

 
and 
 

( )t

K

m
vD u v  

                (9) 

 
where the Caputo-Fabrizio derivative operator is 
 

0

1 ( ) ( , )
( , ) exp

1 1

t

CF

t

t u r
D u r t d   


  

  
  

   
                (10) 

 
The Laplace transform of the Caputo-Fabrizio time derivative can be written as 

 

 
{ ( , )} ( ,0)

( , )
(1 )

CF

t

sL u r t u r
L D u r t

s



 




 
               (11) 

 
The initial boundary conditions of the fluid inside the cylindrical domain of radius R0 are  

 

 

   

( ,0) 0,    ( ,0) 0,     0,

, 0,    , 0,     

z

z

u r v r at r R

u r t v r t at r R

  

  
               (12) 

 
For dimensionless study, the following non-dimensional parameters can be introduced  

 

* * * *

0 0 0

* * * *0 1
0 1 2

0 0 0 0

,   ,   ,  ,

,   ,   ,   
/

r t u v
r t u v

R u u

A A g
A A g

u u u R



 
 

 

   

   

               (13) 

 
where u0 is the characteristics velocity. 

By introducing the above parameters and dropping the * notation the non-dimensional forms of 
Eqs. Error! Reference source not found.), Error! Reference source not found.), and Error! Reference source 

not found.) are 
 

2 *
2

0 1 1 2 * *

1 sin
cos( ) ( )t

u u
D u A A t R v u Ha u

r r r F

 
 

  
        

  
               (14) 

 

tG D v u v                  (15) 
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where
2

Re zR

v
  is the Reynolds number, 

kN
R




 is the particles concentration parameter,   

0 sinHa B


 


 is the Hartmann number, 0

0

R
F

u g
 is the inclination angle parameter and 

1

1 1
1

Re




 
  

 
. 

The non-dimensional boundary conditions are 
 

 ,0 0,    ,0 0,     0,1

, 0,    , 0,    1

z z z

z z z

r r r
u v at

R R R

r r r
u t v t at

R R R

   
     

   

   
     

   

               (16) 

 
Laplace transform is well suited when the temporal variable t is adopted in the blood flow model 

(see Eqs. Error! Reference source not found.), Error! Reference source not found.)) and boundary 
condition in Eq. Error! Reference source not found.). After the transformation process, we obtain 

 
2

0 1
12 2 2

2

( , ) ( , ) 1 ( , )

(1 )

sin
( ) ( , )

A A ssu r s u r s u r s
Rv

s s s s r r r

R Ha u r s
sF


 



  
     

     

  

               (17) 

 
( , )

( , ) ( , )
(1 )

sv r s
G u r s v r s

s s
 

                 (18) 

 
(1, ) 0,    (1, ) 0.u s v s                 (19) 

 
From Eq. Error! Reference source not found.), the following equation can be obtained: 
 

(1 )
( , ) ( , )

(1 )

s s
v r s u r s

Gs s s





 


  
               (20) 

 
Substituting ( , )v r s from Eq. Error! Reference source not found.) into Eq. (Error! Reference source not 

found.), the following can be obtained: 
 

2

2

0 1
12 2 2

(1 )
( , )

(1 ) (1 )

1 sin

s s s
R R Ha u r s

s s s sG s

A A s u u

s s r r r sF



 






   
     

      

  
    

   

               (21) 
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Applying finite Hankel transform of order zero (i.e. applying the boundary condition in Eq. Error! 

Reference source not found.) in Eq. (Error! Reference source not found.)) the following equation can be 
obtained: 

 

2

0 11
12 2

(1 )
( , )

(1 ) (1 )

( )sin
( , )

H n

n
n H n

n

s s s
R R Ha u r s

s s s sG s

A J rA s
r u r s

s s sF r



 






   
     

      

 
    

               (22) 

 

where
1

0

0

( , ) ( , ) ( )H n nu r s ru r s J r r dr  represents the finite Hankel transform of the velocity function 

( , ) [ ( , )]u r s LT u r t  and , 1,2,...nr n   are the positive roots of the equation 0( ) 0,J x   Here 0J is the 

Bessel function of order zero and it belongs to the first kind. By simplifying the coefficient of ( , )H nu r s

in Eq. (Error! Reference source not found., the following equations can be formulated: 
 

 2 2
15 6 1

02 2 2

2 3 4

1 sin
( , )

nn n
H n

n n n n

J rs y sy A s
u r s A

s y sy y s F s r
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

    
        

                 (23) 
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7 8
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H n
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y y J rA s
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s y s y s F s r





    
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                 (24) 
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



   
    

    

 
  

   

                  (25) 

 
Note, the parameters in Eqs. (Error! Reference source not found.) and (Error! Reference source not 

found.) introduced for simplifying the coefficient of ( , )H nu r s are: 
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2 2

3 3 2 4 3 3 2 4
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2 2
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The Laplace transform of the image function ( , )H nu r s discussed in Eq. (Error! Reference source not 

found.) can be obtained by using the Robotnov and Hartley’s functions: 
( 1) 1

1

0
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By inverting the finite Hankel transforms (i.e. Eq. (Error! Reference source not found.)) we obtain 
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The magnetic particle velocity can then be obtained from Eq. Error! Reference source not found.): 
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n nv r t x y u r t e                         (33) 

 
In Eqs. Error! Reference source not found. and Error! Reference source not found.), f g  

represents the convolution product of f and 𝑔. The parameters introduced in Eq. Error! Reference 

source not found.) are: 
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11 12

1
,    y

1 1
n ny

G G

 

 


 

   
                     (34) 

 

The convolution product of f  and g can be calculated as 

 

0
( * )( ) ( ) ( )

t

f g t f g t d                          (35) 

 

3. Results and Discussions 
 

In order to determine the impact of the different flow parameters on the blood flow velocity u(r, 
t) and the magnetic velocity v(r, t), we have implemented a Mathcad code to obtain the numerical 
results extracted from the analytical solutions in Eqs. (31) and (33). The fractional parameters result 
on the velocity distributions are presented graphically. The velocity results for several non-
dimensional parameters such as Reynolds number Re, Casson fluid parameter β, and Hartmann 
number Ha are presented in Figures 2-8. 

For numerical computations, the following values are set as [24,30] 𝐴0 = 0.5, 𝐴1 = 0.6, 𝐺 =

0.8, 𝑅 = 0.5, 𝑅𝑒 = 3,𝜔 =
𝜋

4
, 𝐻𝑎 = 2 and 𝛽 = 0.4. All velocity profiles have been plotted for 

different fractional parameters and r values.  It is interesting to note that the fractional parameter 
plays a key role in regulating blood velocity. Here we use 𝛼 = 0.4, 0.6, 0.8, 1. Fractional derivatives 
describe memory effects, so fractional models provide additional information on the behavior of 
fluids with complex rheology as compared to ordinary models. The numerical results have been 
compared with [30] for having the same blood flow with magnetic particles as shown in Figure 2. In 
the current work, we concentrate on the Casson fluid with magnetic particles that flow through an 
inclined multiple stenosed artery while [30] considered the blood flow with magnetic particles 
travelling through a cylindrical tube under the influence of a magnetic field and an oscillating pressure 

gradient. We have set 𝐴0 = 0.5,  𝐴1 = 0.1, 𝐺 = 0.8, 𝑅 = 0.5, 𝑅𝑒 = 5, 𝜔 =
𝜋

4
, 𝐻𝑎 = 2, 𝑧 =

1 and 𝛽 = 0.25 for comparison purposes, so that both problems become similar.  
  

Fig. 2. Comparison of velocity distribution with previous study 

 
Blood flow resistance is a factor controlling the blood flow rate. For both profiles, Figure 3 

illustrates the velocity distributions at different locations: 𝑧 = 0.5, 1.5, 3, 5 for representing various 
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stenotic regions. From this figure it is found that the blood flow movement is slower as blood passes 
through the narrow stenotic region as compared to that in the wider part. It can be found that the 
patterns of flow resistance in both regions are similar for different stenotic sizes. It is important to 
note that increased stenotic height will increase flow resistance as the blood vessel diameter 
becomes smaller when the blood flows at vessel section of radius 0.2. It is indeed significant to 
mention that the fractional parameter changes the velocity profiles entirely.  

 
 
 
 
 

 

 

Fig. 3. Axial velocity profiles u(r,t) and v(r,t) at different values of z 

 
Figure 4 is plotted to analyze the impacts of the fractional parameter on the blood flow and 

magnetic particle velocities. Also, the velocity components for various fractional parameter values 
𝛼 = 0.4, 0.6, 0.8 and for the ordinary fluid corresponding to 𝛼 = 1 are sketched in these figures. It 
indicates that the blood modelled using the ordinary model flows faster than that using the Casson 
fluid model with fractional derivatives. This study illustrates the effectiveness of fractional-derivative 
models. By choosing an appropriate value of the fractional parameter α, a more physical flow field 
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can be obtained which in some cases may be considered more suitable for a particular practical 
problem. 

Figure 5 represents the velocity profiles of blood and magnetic particles at three different time 
levels, i.e. 𝑡 = 0.25,0.35,0.45 with three different values of fractional parameter 𝛼 = 0.6, 0.8, 1. In 
this figure the influence of fractional parameter has been shown for different time levels and it is 
observed that the velocity for the integer order fluid is higher than that for the fractional order 
derivative fluid for both profiles. The blood velocity increases with respect to time. The increment 
pattern is similar for the first two fractional parameter models, but the gap at different time levels is 
getting smaller for the ordinary model. However, in the case of the distribution of magnetic particles, 
an opposite phenomenon is observed, i.e. velocity increases as time decreases. The fractional 
parameter is found to play a key role in regulating the blood distributions. Figure 6 shows the velocity 
profiles for different Reynolds numbers Re. It is clear that the Reynolds number is proportionally 
related to the velocity of the fluid. In general, increase in Reynolds number will increase the velocity 
of the fluid gradually. Physically, lower viscosity (increased velocity) will increase Re. This figure shows 
the influence of the fractional parameter and it is observed that the velocity at the central axis 
increases with respect to fractional parameter. 
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The Casson parameter is related to the non-Newtonian nature of the blood. Higher Casson 
parameter is attributed to the Newtonian nature. The effects of Casson fluid parameter on the blood 
and magnetic particle motions are depicted in Figure 7. With an increase in the Casson fluid 
parameter, the fluid velocity increases. Casson nature is more significant for small arteries where red 
blood cells (RBCs) can accumulate due to rotation near the axis of the artery, creating a region 
depicted in the cells. This statement is in perfect agreement with Ali et al., [33] for a horizontal 
cylinder. It is hypothesized that the yield stress declines as β increases and the thickness of the 
boundary layer decreases. The magnetic field is used for regulating the blood flow within the human 
circulatory system. 
 

 

 

Fig. 5. Axial velocity profiles u(r,t) and v(r,t) for different time levels t 

 
The effects of magnetic parameter on both fluid and magnetic particle velocities are shown in 

Figure 8. By increasing the Hartmann number Ha, the blood velocity decreases. It is noticeable that 
the magnetic field will reduce the axial velocities of blood and magnetic particles substantially. 
Meanwhile, under the influence of magnetic field, the charged particles would undergo rotational 
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motion. The action of magnetic orientation would induce further the suspension of red blood cells 
and magnetic particles. Higher concentration of magnetic particles will also increase the internal 
viscosity of the blood, thereby raising the rate of axial flow. The usefulness of the magnetic field in 
the fluid flow model would increase the Lorentz force, thus restricting the blood flow in the system. 
 
 
 
 
 
  

 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

Fig. 6. Axial velocity profiles u(r,t) and v(r,t) for different Reynolds numbers 

   

Fig. 7. Axial velocity profiles u(r,t) and v(r,t) for different Casson fluids 
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Fig. 8. Axial velocity profiles u(r,t) and v(r,t) for different Hartmann numbers 

 
4. Conclusions 

A mathematical analysis on the fractional order blood flow model under the influence of an 
external magnetic field acting on the non-Newtonian Casson fluid that flows through a multi-
stenosed artery has been performed. The Caputo Fabrizio time fractional derivative has been used 
to obtain the exact solutions by the use of the Laplace and finite Hankel order zero transformation. 
Typically, an additional mathematical solution is needed to extract the ordinary model; however, the 
ordinary model (α=1) for the velocity equation can be obtained directly by using the current method 
since the equation is completely compatible. We have obtained the solutions of the problem based 
on the above transformations performed on the boundary conditions. The blood flow and magnetic 
particles distributions are highly influenced by the fractional order parameter. It should be noted that 
the particle has the same tendency as the blood; however, it moves slower. The blood velocity 
increases with respect to Reynolds number. In the meantime, the increase in Casson fluid parameters 
increases the velocities of blood and particles. On the other hand, the blood velocity decreases with 
respect to Hartmann number. These findings will be beneficial for atherosclerosis therapy. 
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