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Present paper investigates the flow and heat transfer of Magnetite (Fe3O4) water 
based nanofluid termed as ferrofluid on stagnation point past a stretching sheet with 
slip effect. The methodology starts with transforming the non-linear partial differential 
equations that governed the model to ordinary differential equations, then solved 
numerically by Runge-Kutta-Fehlberg (RKF45) method in Maple software. The 
influenced and characteristics of pertinent parameters which are the stretching 
parameter, magnetic parameter, velocity slip parameter and solid volume fraction for 
nanofluid are analyzed and discussed. It was found that the magnetite (Fe3O4) 
ferrofluid provided higher wall temperature and heat transfer capabilities compared 
to water. Meanwhile, the presence of slip effect had minimized the skin friction 
coefficient. 
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1. Introduction  

 

Ferrofluid termed as a nanofluid with nanoscale ferromagnetic particles. It is strongly magnetized 
in the presence of magnetic field. It was first invented by NASA as a liquid rocket fuel that can be 
injected toward pump inlet in a weightless or no gravity situation in aero space [1]. Further, ferrofluid 
is also employed in field medicine as intelligent biomaterials for wound treatment and medicine drug 
targeting especially in cancer tumor treatment. Other applications involving this type of fluid includes 
in electrical instruments such as computer hard disks, heat controlling agents in electric motor and 
hi-fi speakers [2,3]. 

In considering the convective heat transfer boundary layer flow, Crane [4] pioneered this study 
in stretching surface. The study regarding this topic then extended with various type of fluid include 
the ferrofluid. In modelling the mathematical model of ferrofluid, Tiwari and Das [5] introduced a 

                                                             
 Corresponding author. 
E-mail address: baa_khy@yahoo.com (Muhammad Khairul Anuar Mohamed) 

Open 

Access 



CFD Letters  

Volume 11, Issue 1 (2019) 17-27 

18 
 

single-phase model with a specific case of nanofluid. This approaches is suitable to study the flow 
and heat transfer characteristic of specific ferrofluid. The coefficient physical properties like thermal 
conductivity, density and specific heat of nanofluid are taking account in computation.  

Recent study focus on a stagnation point flow past a stretching sheet studied by Zokri et al., [6], 
Kho et al., [7] and Mohamed et al., [8] whose considered the effects of MHD, thermal radiation, 
viscous dissipation and heat generation in viscous fluid, Jeffrey fluid and Williamson nanofluid. 

Present paper extends the study on stagnation point flow past a stretching sheet in a magnetite 
(Fe3O4) ferrofluid with slip effects. Recent studies on ferrofluid includes the works from Ramli et al.,  
[9],  Sheikholeslami [10], Jusoh et al., [11] and Hussanan et al., [12,13]. The Newtonian heating 
boundary conditions are more realistic to be taken account since it consider the proportional relation 
between the wall temperature and the heat transfer rate Merkin [14]. Results published here are 
important for researchers in this area either in numerical or experimental approach so it can be used 
as a comparison and reference in future. The fact that the problem considered here has never been 
studied before, thus the reported result in this paper is new. 
 
2. Mathematical Formulation  
 

Consider a steady incompressible ferrofluid on a stagnation point past a stretching sheet with 

ambient temperature 
T . Assume that the free stream velocity U  and stretching velocity ( )wu x are 

in the forms of linear ( )wu x ax  and U bx   where a  and b  are positive constants [15]. Further, a 

uniform magnetic field of strength 0B is assumed to be applied in the positive y-direction normal to 

the stretching sheet. The magnetic Reynolds number is assumed to be small, and thus the induced 
magnetic field is negligible. The physical model and coordinate system of this problem is shown in 
Figure 1. It is further assumed that the plate is subjected to a Newtonian heating as proposed by 
Merkin [14]. The boundary layer equations are [16,17,9] 
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where, u and v are the velocity components along the x and y directions, respectively. Further, T is 
the ferrofluid temperature in the boundary layer,  is the electrical conductivity, sh  is the heat 

transfer coefficient, nf  is the kinematic viscosity of ferrofluid, nf  is the ferrofluid density and nf  is 
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the thermal diffusivity of ferrofluid, which can be expressed in terms of the properties of base fluid, 
ferroparticles and solid volume fraction   as follows [17,18] 

 

 
Fig. 1. Physical model and the coordinate system 
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Note that ,nf fk k  and sk are the thermal conductivity of the ferrofluid, base fluid and ferroparticles, 

respectively while  p nf
C is the heat capacity of ferrofluid. 

The non-linear partial differential (Eq. 1-3) contains many dependent variables which in 
dimensional forms and difficult to solve. Therefore, the following similarity variables are applied 
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where ,  and  are non-dimensional similarity variable, temperature and stream function. The 

Eq. 1 satisfied by definition 
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where , ( 0)
a

b
   is the stretching parameter, 
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 is the Prandtl number. The transformed boundary conditions are 
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respectively. The physical quantity interest are the wall temperature (0), the heat transfer rate

(0)   and the skin friction coefficient fC  which given by 

  

2
,w

f

f

C
u



 

                                     (10) 

 

with surface shear stress
0

.w nf

y

u

y
 



 
  

 
  Using the similarity variables in Eq. 6 gives 
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where, Rex

U x


  is the Reynolds number. 

 
3. Results and Discussion 
 

The system of ordinary differential Eq. 7 and Eq. 8 with boundary conditions Eq. 9 were solved 
numerically using the RKF45 technique in Maple. The boundary layer thickness 

 between 3 and 6 

was used in the computation, depending on the values of the parameters considered so that the 
boundary condition at ‘infinity’ is achieved. The numerical results are obtained for wall temperature 

(0) ,  the temperature gradient (0)   and the reduced skin friction coefficient 1/ 2Ref xC  for various 

values of pertinent parameter namely as the stretching parameter ,  magnetic parameter ,M  velocity 

slip parameter   and solid volume fraction for nanofluid .  

In order to validate the numerical results obtained, the comparison has been made. Table 1 
shows the comparison values of (0) and (0)  with previous published results by Salleh et al., [19] 

and Sarif et al., [20] for ordinary viscous fluid with various values of Pr. It is found that the results are 
in a good agreement.  

Next, Table 2 shows data related to the thermophysical properties for water and magnetite 
(Fe3O4) applied by Khan et al., [17] and Ramli et al., [9]. Note that as water employed as a base fluid 
in this study therefore, the numerical computation set Pr as 6.2.  
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Table 1  

Comparison results with previously published for Pr  when 0     M  and 1.   

Pr  
Salleh et al., [19] Sarif et al., [20] Present 

(0)  (0)   (0)  (0)   (0)  (0)   
7 1.13511 2.13511 1.11816 2.11816 1.11689 2.11689 
10 0.76531 1.76531 0.76507 1.76507 0.76456 1.76456 
100 0.16115 1.16115 0.14757 1.14757 0.14781 1.14781 

 
Table 2 
Thermophysical properties of water base fluid and magnetite (Fe3O4) nanoparticles 

Physical Properties Water Base Fluid Magnetite (Fe3O4) Nanoparticles 
 (kg/m3) 997 5180 

pC (J/kg·K) 4179 670 

k(W/m·K) 0.613 9.7 

 
Figures 2-5 show the temperature profiles for various values of , ,M  and .  It is worth 

mentioning here that in Newtonian heating, the effect of heat transfer coefficient (0)   is similar 

since this quantity is directly proportional to the wall temperature (0) . In Figure 2, it is found that 

the increase of   reduced the temperature as well as its thermal boundary layer thicknesses. The 
increase of stretching velocity over stream velocity has thinning the boundary layer thicknesses. 
Contrary with Figures 3-5, the increase of , M and   gives rise on temperature. It is realistic since 

the increase volume of magnetite nanoparticles in the fluid had increase the ferrofluid capabilities in 
thermal conductivity hence increase the temperature as well as the heat transfer rate. Further, the 
increase in magnetic field had attract the ferrofluid particles stick to the surface which enhanced the 
efficiency of the heat transfer rate. Notice that in Figure 5, the boundary layer thicknesses increases 
more significantly with the increase in   compared to the changes in M and  from Figures 3 and 4. 

 

 
Fig. 2. Effect  on     when Pr 6.2, 0.5, 1   M

and 0.1.   
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Fig. 3. Effect M on     when Pr 6.2, 0.5, 1    

and 0.1.   

 

 
Fig. 4. Effect  on     when Pr 6.2,

0.5, 1   M and 0.1.   

 
Next, Figure 6 illustrates the velocity profiles for various values of .  It is found that the presence 

of stretching effects for 1   has increase the fluid velocity while reduced the thickness of velocity 
boundary layer. Thinning in velocity boundary layer thicknesses physically denoted to the increase in 
skin friction coefficient. For 1,   which imply to the case of stretching velocity is equal to the fluid 

external velocity outside the boundary layer, the velocity is constant which cause the zero skin 
friction coefficient, 1/ 2 0.Re f xC The velocity boundary layer thickness is increases as the stretching 

velocity is less than stream velocity. This is shown clearly at 1.   Further, the presents of slip velocity 
had reduced the fluid velocity and the velocity boundary layer thickness. Effect of   on velocity 
profiles are shown clearly in Figure 7. 
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Fig. 5. Effect   on     when Pr 6.2, 0.5  

and 1.  M  

 

 
 

 
Fig. 6. Effect  on  f  when Pr 6.2,

0.5, 1   M and 0.1.   
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Fig. 7. Effect  on  f  when Pr 6.2,

0.5, 1   M and 0.1.   

 
Figures 8 and 9 illustrate the effect of M and   on variation of (0) and 1/ 2 ,Ref xC  respectively. It 

is found that the increase in M and   had increase the wall temperature (0) as discussed in Figures  

4 and 5. Notice that 0   imply to the case that no magnetite nanoparticle or only water base fluid. 

From Figure 8, it is suggested that the ferrofluid ( 0)  provided higher (0) compared to the water. 

It is realistic due to the magnetite nanoparticles is very good in thermal conductivity as stated in Table 
2. Blending this nanoparticle with water was enhanced the based fluid characteristic. It also had 
increase the fluid density and viscosity which reflects to a reducing in fluid velocity as well as the skin 
friction coefficient as shown in Figure 9. Thus, ferrofluid can be concluded had a low skin friction 
coefficient compared to its based fluid. Meanwhile, the value of 1/ 2Ref xC is decreases as M increases 

in Figure 9. The increase of M  on a surface had attracted the magnetite particles in nanofluid which 
then reduced the fluid velocity. This reflects to the low in skin friction coefficient and the rise of 
temperature. 
 

 
Fig. 8. Effect M and  on variation of  0  when Pr 6.2,

0.5   and 1.   
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Fig. 9. Effect M and  on variation of 1/ 2Ref xC  when 

Pr 6.2, 0.5   and 1.   

 
Lastly, the variation of 1/ 2Ref xC  with various values of   and   are presented in Figure 10. 

Generally, the increase of   results to the increase in skin friction coefficient. For 1,  it is suggested 

that the value of 1/ 2Ref xC  is 
 
negative due to the opposing direction as 1    (refer to Eq. 9). The 

presence of slip effect  0.5   has dominant the effects of this small stretching value and enhanced  

the value of 1/2 .Ref xC   As 1,   the skin friction becomes zero and the effect of slip is negligible at this 

stage as the relations as described in boundary conditions (9). Further, for 1,   it is found that the 

presence of slip effect has opposed the stretching effects which then reduced the skin friction 
coefficient. Physically, the increase of stretching velocity over ambient velocity had rise the fluid flow 
velocity. Surprisingly, slip effect then minimize the speed difference between fluid flow and surface 
which reduced the value of the 1/2 .Ref xC  From this figure, it is suggested that sufficient strength of 

slip effect may eliminated the stretching effects. 
 

 
Fig. 10. Effect  and   on variation of 1/ 2Ref xC  when 

Pr 6.2, 1, 0.1M   and 1.   
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4. Conclusions 
 

As a conclusion, the increase of magnetic parameter, velocity slip parameter and nanoparticles 
volume fraction results to a decrease of temperature profiles as well as the thermal boundary layer 
thicknesses while stretching parameter does contrary. The presence of slip effect has reduced the 
velocity boundary layer thickness.  

Next, it is found that the magnetite (Fe3O4) ferrofluid provided higher wall temperature and heat 
transfer capabilities compared to water. The magnetite (Fe3O4) ferrofluid also results the low skin 
friction coefficient which physically reduce chances of erosion thus extending life-time of the surface 
components. 

Lastly, it is worth to conclude that the presence of slip effect had opposed the stretching effect 
capabilities thus minimize the skin friction coefficient. Sufficient strength of slip effect may eliminated 
the stretching effects.   
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