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Abstract

Blood flow analysis is a study of measuring the blood pressure and finding its equivalent 
flow rate, velocity profile and wall shear stress. In this article, the relationship between 
blood pressure gradient, velocity profile, centreline velocity, volumetric flow rate and wall 
shear stress is determined analytically through a Graphical User Interface (GUI) developed 
using MatLab. If one of these time-dependent blood flow properties is known, i.e. pressure 
gradient, velocity profile, volumetric flow rate or wall shear stress, then the remaining 
properties can be calculated. A code is developed to solve these blood flow properties. Any 
time-dependent blood properties can be used as input data. These data are then digitized 
and saved in this code. Subsequently, these data are curve-fitted using the Fourier series. 
The corresponding coefficients of Fourier series are then used to calculate the blood 
property. Once this is obtained, the remaining three other flow properties can be 
subsequently calculated. This GUI serves as a learning tool for students who wish to 
pursue his/her knowledge in understanding the relationship of various blood flow properties 
of pulsatile blood flow as well as the mathematics governing pulsatile flows. 
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1. Introduction

Pulsatile flow theory has been the topic of intense research over several decades. Stokes’s 
second problem can be considered as the first mathematical treatment of a simple oscillatory 
motion. Following this, various studies, both theoretical and experimental have taken place and 
their summaries can be found in the survey carried out by Rott and White [1]. Studies from 
Womersley [2] have also been universally cited. Hale, McDonald, and Womersley [3] studied the 
velocity distribution across the femoral artery of a dog. The velocity profiles were drawn of the 
harmonic components of this flow based upon experimental data derived from the femoral artery. 
The corresponding maximum viscous drag had been calculated. Womersley J. R. (1955) [2] derived 
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the exact solution for a homogeneous, incompressible, Newtonian fluid flow in a rigid, cylindrical 
tube and introduced a dimensionless variable, called the Womersley Number, α. The solution 
proposed for the motion of a liquid in a circular tube was in the form of a pressure gradient which 
was a periodic function of time. The corresponding calculation of flow rate from an observed 
pressure gradient was described. It was also shown that there exist a phase-lag between the flow 
rate of the liquid and the pressure gradient which served as a driving function. The calculation of 
flow rate from an observed pressure gradient was described. 

With the rise in availability of computer programs and softwares, the Womersley calculation 
can now be performed easily without involving extensive manual mathematics. The Womersley 
analysis is suitable for an arbitrary periodic waveform. Therefore, the calculation of the solution for 
a range of physiological blood properties can be determined if one of the flow properties is known. 
This in return, can provide important physical insight of fluid mechanics of pulsatile flows. X. He, 
David. N. Ku and James E. Moore Jr. [4] developed a computer program code using Mathematica 
that can be used to perform the Womersley calculation. It also calculates the pulsatile centreline 
velocity and wall shear stress from an input driving function of pressure gradient. 

This article outlines the exact solution method for calculating the blood flow properties if one 
of the driving functions are given. It also provides an explanation of the GUI MatLab program that 
is developed to perform the calculation. The waveform shape of pulsatile hemodynamics in a rigid 
straight cylindrical tube can be explored by manipulating the program code.

2. Methods
2.1 Mathematical formulation

In order to design better strategies for diagnosis and treatment, a better understanding of both 
physiological and pathological aspects of blood flow is needed. Since most conduits for the flow of 
fluids within the human body are cylindrical or nearly so, such as arteries and veins and because of 
the sensitivity of vessel wall cells to the applied shear stress, it is important to have full solutions for 
these blood flows. 

The flow of fluid has been considered to be incompressible

, homogeneous, Newtonian , laminar, axis-symmetric , and fully 

developed . Consideration was only given to axial flow  and body forces 
along a sufficiently long, straight cylindrical tube with rigid wall were neglected (g=0)[5]. By 
imposing these assumptions and further algebraically manipulating the continuity and momentum 
equations in cylindrical coordinates, we arrive at;

(1)

(2)

(3)

The first two equations (1) and (2) above show that the pressure must be a function of  and 
time: . Equation (3) is linear in both the pressure  and velocity . The steady 
and unsteady parts of the flow will be dealt independently. Subscripts  and  is used to denote 
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steady flow and unsteady flow, respectively. The unknown pressure and velocity fields are written 
respectively, as;

(4)

(5)

Substituting equation (4) and (5) into (3), yields;

(6)

The terms that depend on time is separated from those that do not. Each group must equal zero 
separately because of the differences between the two groups of terms. The derivation of the steady 
part equation with respect to velocity distribution, volumetric flow rate and wall shear stress can be 
found in any fluid mechanics textbook. Hence, the final equations are given for brevity i.e. equation 
(7)-(9). 

(7)

(8)

(9)

In order to derive the governing equation for pulsatile flow, the unsteady part of equation (6) is 
focused upon next. For simplicity, the subscript  is omitted and the unsteady part of the equation 
is;  

(10)

                                                                                                  
 The cardiac cycle is a periodic phenomenon. Any flow property which is periodic in time 

can be expressed as the sum of a Fourier series. Therefore, if any one of the blood flow properties is 
known i.e. pressure gradient, velocity profile, flow rate or wall shear stress, its data can then be 
extracted and subsequently curve-fitted using the Fourier series expansion, that takes the form of;

                                                                     

(11)
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where,   represents any one of the blood flow property, 

steady

t)(  represents the steady state part of the 

blood flow property,   is the fundamental frequency and n,  and n  are the Fourier coefficients 

for n-harmonics of the unsteady part of the blood flow.
If the pressure gradient as an input blood property is known, then;

(12)

and for the unsteady part, is then written as;
      

(13)

                 
where nnn iA   . With the above expression, the corresponding velocity profile, centreline 

velocity, volumetric  flow rate and wall shear stress in the z-direction can be developed as 
mentioned by J.R. Womersley [2] as follows;

(14)

        
         

(15)

(16)

where, the respective steady terms are defined by equations (7), (8) and (9). For all the above 
equations, from the pressure gradient, the other three properties can be found.

Another example would be, if the volumetric flow rate as the input blood property is known, 
Q, then;

(17)

From 


steady

Q  steady state part of the pressure gradient can be calculated using equation (9) and from 

tin
neQ   i.e. unsteady part, nA can be calculated using equation (15). Similarly, if any one of the four 

blood flow properties is known, the rest can be found.
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2.2 GUI-MatLab program explanation
            The MatLab software and its Graphical User Interface (GUI) functions have been used to 
perform the calculation. The explanations of the program steps are as follows and as seen in Figure 
1. The raw input data of any blood flow properties i.e.   and t  is imported into the MatLab 
workspace. This data is then curve-fitted to find the Fourier coefficients by pressing the “Curve 
Fitting Tool” button. If, a set of Fourier coefficients corresponding to any of the blood flow 
properties is readily available, press directly the “Fourier Coefficient” button to insert these 
coefficients into the code. Next, the corresponding flow property of these input data is selected from 
the pop-up menu (1). If the input data is velocity, then the program will ask at what radius this 
velocity represents, as shown in Figure 1. Furthermore, the dimensions of the artery can be defined
i.e. radius of artery, density and the viscosity of the blood.  Once these input steps are completed, 
click the “Compute” button and the program will calculate all the unknown blood flow properties. 
By selecting the pop-up menu (2) in the “Output” column, program will show us (i) any flow 
property profiles, (ii) the relationship between any two of these properties and (iii) 3D velocity 
profiles.

(a) 

(b)
Figure 2. (a) Flowchart of program steps (b) Pulsatile blood flow GUI created with MatLab
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3. Results and discussion

As a test to validate the developed program code, the classic Womersley example was used to 
present our findings. The input data is taken from McDonald (1955) [6] that is, the pressure 
gradient, being measured in the femoral artery of a dog. This input data is then digitized and its 
series of data is saved in a text file. The number of digitized data should be as many as possible in 
order to increase its accuracy. Next, in MatLab, this digitized text data is imported into the 
workspace of MatLab and this data is renamed as DATA. The pressure gradient waveform was the 
input i.e. Figure 2 and the corresponding rate of flow was computed and its results are in good 
agreement with the figures shown in the J. R. Womersley [2] and McDonald [6]. As an extension to 
this, the corresponding velocity profile distribution, centreline velocity and wall shear stress with 
regards to the pressure gradient was computed. It is observed that there is a phase lag between zero 
pressure and zero flow as shown in Figure 3. The positive peak pressure reaches at 350 and 
subsequently drops back to zero at 780. During this time, the flow rate increases and reaches its 
maximum peak at 650. Next, when the pressure drops almost to its negative peak, the flow rate 
drops to zero at 1120. The negative pressure gradient continues up to 2000 and during this time, the 
flow decelerates further. Once the pressure gradient increases further in the positive direction from 
2000 onwards, the flow reverses back to a forward flow. The flow reaches zero at 2800 . Besides the 
flow rate, the axial velocity profile with respect to various radiuses was computed. Figures 4-6
show the axial velocity distributions at different radius ranging at r=0.0 (at centre of the tube), 
r=0.1cm,  and r=0.13cm, respectively. The velocity profile for all these figures have similar shape 
but with different magnitude, whereby the maximum magnitude is observed at the centreline of the 
tube and decreases to zero at the wall of the tube.

     It is useful to derive the shear stress from the unsteady flow because the quantity is 
difficult to measure experimentally. Figure 7 shows the relationship between the pressure gradient 
and wall shear stress. There is a phase lag between these two properties. The development of wall 
shear stress along the wall of the tube is faster than the pressure gradient.

Figure 2. Pressure gradient waveform taken from the femoral artery of a dog [6]. 
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Figure 3. Comparison between experimental results shown in [6] with regards to our calculated 

results
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Figure 4. Velocity profile distribution at radius r=0.0cm
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Figure 5. Velocity profile distribution at radius r=0.1cm
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Figure 6. Velocity profile distribution at radius r=0.13cm

Figure 7. Relationship between wall shear stress and pressure gradient

Conclusion
The exact solution of pulsatile flow was derived. A graphical user interface (GUI) using MatLab

was developed to solve these blood flow properties. Any time-dependent blood properties can be 
used as input data. If one of these time-dependent blood flow properties is known, i.e. pressure 
gradient, velocity profile, volumetric flow rate or wall shear stress, then the remaining properties 
can be calculated. This GUI serves as a learning tool for students who wish to pursue his/her 
knowledge in understanding the relationship of various blood flow properties with pulsatile 
characteristics as well as the mathematics governing the pulsatile flows.
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