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Abstract 
 

In this work a  Radial Basis Function (RBF) based local gridfree scheme has been presented 
for unsteady convection diffusion equations. Numerical studies have been made using 

multiquadric (MQ) radial function. Euler and a three stage Runge-Kutta schemes have been 
used for temporal discretization.  The developed scheme is compared with the 

corresponding finite difference (FD) counterpart and found that the solutions obtained using 

the former are more superior. As expected, for a fixed time step and for large nodal 

densities, though the Runge-Kutta scheme is able to maintain the higher order of accuracy 

over the Euler method, the temporal discretization is independent of the improvement in the 

solution,  which in the developed scheme, has been achieved by optimizing the shape 

parameter of the RBF. 

 

Keywords: radial basis function; multiquadric: local; unsteady; convection-diffusion.   

 

 

1. Introduction 

 

 The convection-diffusion process plays a very significant role in fluid flow and heat transfer 

problems. This process is peculiar in the sense that it is a combination of two dissimilar phenomena, 

convection and diffusion. It can also be viewed as a simplified model problem for the governing 
equations of the fluid flow, i.e, Navier-Stokes equations. This makes the numerical prediction of the 

solution of the convection-diffusion equation very important in computational fluid dynamics. The 
unsteady convection-diffusion equation is given by 

 
(1) 

with general initial and boundary conditions.  

 
(2) 

  

 (3) 

where ( , )u x t is the unknown to be computed, d  is the dimension of the problem, Ω  is a bounded 

domain in , ∂Ω  is the boundary of Ω , D  is the diffusion coefficient, 
1

( , , )
d

a a a= K  is the 
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convection coefficient, 

j

j

e

e
x

∂
∇ =

∂
 is gradient operator, 

2
2

j je ex x

∂
∇ =

∂ ∂
, 

1
α  and 

2
α  are known 

constants, and 
0( , ), ( , ) and ( )f x t g x t u x  are known functions. 

The numerical computation of the solution of the convection-diffusion problem, described in 
equations (1)-(3) becomes very challenging when the convective process is dominant over 

diffusion. That is, the dimensionless parameter that measures the relative strength of the diffusion 

( D ) over convection is very small. In such situations numerical approximations get contaminated 

due to the spurious oscillations and numerical diffusion. In the present work, the local radial basis 

function (RBF) based scheme [1, 2] has been used to solve transient convection-diffusion equations.  

Kansa [3] initiated the use of RBFs in the global collocation methods for solving partial 

differential equations (PDEs). Following this, Fasshauer [4] proposed another collocation method 

based on Hermite-RBF interpolation. Due to the global nature of these methods, the linear algebraic 

systems ultimately obtained in these schemes are highly dense and ill-conditioned. To circumvent 

this, recently, an RBF based local method has been proposed by Wright et al [2]. Chandhini and 

Sanyasiraju [1] has extended the RBF local scheme to linear and non-linear coupled steady 

convection-diffusion equations in one and two dimensions and demonstrated that by varying the 

shape parameter of the radial basis functions the solutions of steady convection-diffusion equations 

can be made non-oscillatory.  
 The temporal discretisation has been tested with Euler and also with a three stage Runge-

Kutta scheme. The main purpose of this work is to highlight the advantage of localness of the 
developed gridfree scheme and also to demonstrate how an optimum shape perameter of the RBF 

generates more accurate solutions than its finite difference counterpart for time dependent 
convection diffusion equations. The developed scheme has been validated using some one and two 

dimensional problems with sharp gradients. Solutions are obtained for the diffusion parameter as 
small as 0.01. Multiquadric (MQ) (17) has been used in all the reported numerical experiments due 

to its excellent performance over the other RBFs. It has been proved by Driscoll and Fornberg [5] 

that, for infinitely smooth RBFs like MQ, as the shape parameter 0ε →  in one dimension, these 

interpolants converge to Lagrange interpolant. Hence, as 0ε → , the classical FD solutions can be 

reproduced from the present local RBF scheme. However, to produce non-oscillatory solutions the 

optimum non-zero ε  has been exploited in all the computations. 

    

2. RBF approximation of unsteady convection-diffusion equation 

2.1.  RBF approximation of space operator 

 
A function  is called radial provided there exists a univariate 

function  such that , where  and  is some norm on . 
Radial Basis Functions (RBFs) are well-known for approximating multivariate functions, 

especially from a sparse and scattered set of data. Let L be the stationary part of the 

convection-diffusion operator given by 2.a D∇ − ∇ and 
i

x  be any point in the domain Ω . 

Consider a set
iS , consisting of 

in  neighboring nodes of
ix , given by

1 2{ , , , }
ii nS x x x= K . To 

approximate ( )iLu x , let it be represented as a linear combination of u at the points of iS , 

given by 

 
(4) 

              Then, the computation of the weights 
jc  gives the required approximation to 

( )iLu x . Applying the operator L  to the Lagrange representation of the approximate solution 
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(5) 

where ( )s x is the interpolation function of u  at x  and ( )j xψ 's are the Lagrange functions 

satisfy the cardinal conditions, 

 
(6) 

           gives,      

 

(7) 
 

            From equations (4) and (7), jc 's can be obtained as,   

 
(8) 

Approximation to each jψ , 1, 2, , ij n= K  in terms of RBFs can be obtained by expressing 

them as, 

 
(9) 

where  is some radial function, 
1{ ( )}l

j jp x =  is a basis for d

mΠ   (space of all d - 

variate polynomials with degree m≤ ) and l  is the dimension of d

mΠ .  The weights 
jkλ  and 

jkγ  can be obtained by imposing the cardinal conditions (6) and orthogonality conditions 

 
(10) 

         

on the approximation (9). Combining (9) and (10) together as a system gives 

               
0 0

j

T

ep

p

λ
γ

 Ξ   
        

    
=              (11) 

where , ( ), 1, , and 1, ,
ij i j l i nij p xp = == K K  and je is a vector 

whose jth  element is one  and rest are zeros. Also, for the further reference call the 

coefficient matrix in (11) as A .  Solving (11) for λ  and γ  using Crammer's rule 

gives
| |

| |

k
jk

A

A
λ = , where | |

k
A  is the determinant of the matrix A after replacing the k

th 

column with je . In this computation value of k between 1 and 
i

n  gives λ  and between 

1in +  to 
in l+  gives γ . Using the values of λ  and γ  in (9) gives (for 1, , ij n= K ) 
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(12) 

 

where | ( ) |jA x  is the determinant of the matrix A after replacing its j
th

 row with the vector 

( )B x  given by 

 
(13) 

     

 

Using the definition of j (12) in (8) and making use of the symmetry of the 

interpolation matrix one can write 

 

(14) 

              

  Therefore from (8) and (14) 

 

(15) 

                                  

   Then, applying the Crammer’s rule in reverse manner leads to, 

 

(16) 

                                                      

              where µ , a dummy vector corresponding to the vector γ  in (9). 

 

It is clear from (15) that though it is dense, the size of (16) is only
in , which is very 

much smaller than the size n of the global RBF collocation system. This makes the system 

more stable for wide range ofε . Further, in (16), only the right hand side depends on the 

operator L for which the weights have to be computed. This optimizes the computational 

time when weights are to be computed for many operators with same distribution of nodes, 

as in the case of non-linear equations and even more useful for time dependent problems, 

wherein the weights have to be computed for every time level. This has been exploited in 
the present computations while applying the scheme at different time levels. 

 
Franke [6], has made a comprehensive comparison of about seven groups comprising 

of about 30 interpolation methods on six different test functions and found that performance 
of multiquadric (MQ) is the most impressive and consistently performed better in terms of 

accuracy. Therefore, the multiquadric function, defined by 

 
(17) 

 where 0ε > , has been used in all the computations presented in this work. 

 

2.2. Temporal approximation 

 

                        The temporal approximation of the unsteady convection-diffusion equation  
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(18) 

              is achieved by Euler and a 3-Stage Runge-Kutta (RK) methods. 

             

            2.2.1   Euler method: 
                       

 

(19) 

 

            2.2.2   3-Stage Runge-Kutta method:  

                                     

 

(20) 

           

where t∆  is the time step and [ ]L u  is the local RBF space discretization, obtained using the 

procedure described from (4) to (17). 

 

3. Numerical Illustrations 

3.1     One dimensional problem 
                          Consider the one dimensional (1D) example problem 

 
(21) 

           

              with analytical solution 

 

(22) 

 

                                                                               

                Initial and boundary conditions and the source term f have been taken from the 
given analytical solution (22). For the Example (21), results are obtained for the parameters 

1a  = 0.8 and D  = 0.01. The number of nodal points has been taken as 21, 41 and 81. 

Though the different nodal distributions considered are of uniformly spaced, the gridfree 

nature of the method has been exploited by increasing the number of supporting nodes (
in ). 

That is, for one dimensional problem, the number of supporting nodes 
i

n  has been varied 

between 3 and 5. The flexibility in the number of supporting nodes comes with no extra 

effort for RBF scheme, while in FD the scheme itself has to be re-formulated.  
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TABLE 1: COMPARISON OF ERROR ( err∞ ) AND RATE OF CONVERGENCE FOR 1D EXAMPLE 

WITH DIFFERENT SUPPORT DOMAINS 

 

No. of Euler based RBF 3-stage  R-K  based RBF 

nodes 21 41 81 21 41 81 

i
n  = 3 

rate 

3.23(-02) 

-- 

9.70(-03) 

1.7 

2.50(-03) 

2.0 

3.12(-02) 

-- 

8.90(-03) 

1.8 

2.00(-03) 

2.2 

i
n  = 5 

rate 

2.60(-02) 

-- 

8.00(-04) 

5.0 

7.00(-04) 

0.2 

2.57(-02) 

-- 

5.00(-04) 

5.7 

1.65(-05) 

4.92 

 

                 Errors (based on ∞ -norm) and the rates of convergence are presented in the Table 

1. In these tables, the results obtained using Euler and 3-stage R-K schemes have been 

compared for different grid densities. In all these computations, the convergence rate has 

been computed using 

 

(23) 

                                                                  

where hE  and / 2hE  are the errors with the grid sizes h  and / 2h , respectively. A relatively 

larger time step ( t∆ ) 0.0365 has been fixed in all the computations. It is clear from these 

 

  
(a) (b) 

Figure 1. Comparison of the solutions for 1D problem at t = 1.25, (a) RBF solutions with 

in = 3, 5 (b) FD solution with in  = 3 

 

comparisons that the number of nodes in the supporting domain influences the rate of 

convergence. For example, with in  = 3, the RBF scheme approximately gave 2
nd

 order rate 

of convergence, but has been improved to 4 once 
i

n  has been increased to 5. The 

improvement in the convergence rate is visible both in Euler and RK based schemes, 

however, when the number of nodes is increased from 41 to 81, Euler scheme failed to 

maintain the higher rate of convergence indicating the need for reduction in the time step. 

On the other hand there is no such problem with the Runge-Kutta based RBF scheme and it 

is able to maintain the 4th order rate of convergence. Figures 1(a) and 1(b) present the 

solutions obtained using RBF and FD schemes, respectively. The smooth RBF based 
solutions are obtained by varying the shape parameter (reported in Figures 1(a)). It is again 
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evident from this comparison that when the finite difference solution is highly oscillatory, 

the RBF solution is non-oscillatory though it is slightly erroneous. Further, the RBF solution 
becomes very accurate once the number of nodes in the local support domain has been 

increased to five. 

 

3.2 .    Two dimensional problem 
 

                              Consider the one dimensional (1D) example problem 

 
(24) 

                              

              with analytical solution 

 

(25) 

                                                             

TABLE 2: COMPARISON OF ERROR (
err∞ ) AND RATE OF CONVERGENCE FOR 2D EXAMPLE 

WITH DIFFERENT SUPPORT DOMAINS 

 

No. of Euler based RBF 3-stage R-K  based RBF 

nodes 21x21 41x41 81x81 21x21 41x41 81x81 

ni  = 5 

rate 

1.20(-02) 

-- 

3.71(-03) 

1.7 

9.81(-04) 

1.9 

1.19(-02) 

-- 

3.68(-03) 

1.7 

9.45(-04) 

2.0 

ni  = 9 

rate 

6.61(-03) 

-- 

3.94(-04) 

4.1 

3.74(-04) 

0.07 

6.54(-03) 

-- 

1.85(-04) 

4.1 

1.25(-05) 

3.9 

 

                  

 

 
 

 

(a) (b) 
Figure 2. A typical 2D domain discretised with (a) 5-node, (b) 9-node support domains (i) 

internal, (ii) boundary and (iii) corner nodes 
 

 
Initial and boundary conditions and the forcing function f have been taken from the given 

analytical solution (25). For the 2D problem (24) the parameters are fixed as 1a  = 2a = 0.8 

and D  = 0.01 and the Table 2 gives the corresponding err∞  and order of convergence. For 

this example again to improve the accuracy, the number of nodes in the support domain has 
been increased as shown in the Figure 2. The corresponding surface plots are presented in 

Figure 3 which makes a comparison between RBF and FD solutions. It is clear from this 

comparison that when the finite difference method over predicts the peak of the solution the 

RBF solution with nine supporting nodes is very accurate. It is also evident from the Table 2 
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and Figure 3, that the behaviour of the solution is similar to the corresponding one 

dimensional example. 
 

 

  
(a) (b) 

 

 
(c) (d) 

Figure 3. Comparison of the solutions for 2D problem at t = 1.25, (a) Exact Solution (b) FD solution 

- ni = 5, (c) RBF solution - ni = 5 (ε = 80) & (d) RBF solution - ni = 9 (ε = 80) 

 

4. Conclusion 
 

In the present article, a radial basis function based local numerical scheme for unsteady 
convection-diffusion equations has been experimented. The method of lines has been used to 

decouple the time and space operators. Explicit Euler and a computationally economical Runge 
Kutta method have been used to discretise the time derivative. The complete derivation of the 

gridfree local scheme for the space discretization of a general time dependent differential operator 
has been included. Numerical studies for both one and two dimensional convection-diffusion 

equations have been carried out. To compare the method with the standard finite difference scheme, 

uniform distribution of nodal points has been chosen, though the developed scheme has a natural 

mechanism to carry out computations over scattered nodal distributions. The convection-diffusion 

parameter, D , has been fixed as 0.01. Even for such small values of D , for which FD solutions are 

oscillatory, the developed local RBF scheme has provided accurate results. The high accuracy is 

achieved by tuning the shape parameterε . That is, for convection dominated problems, oscillations 

are suppressed by increasing the value of ε  and also by increasing the number nodes in the support 
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domain. It is known that for RBFs having the parameter ε , there will be a trade-off between the 

accuracy and the stability with respect to the parameter. This is also been observed in the current 
analysis that for small values of ε  it is seen that the rate of convergence gradually decreased with 

the increase in the grid density. However in such cases the accuracy of the scheme has been 

improved by increasing the number of nodes in the support domain, which comes with no extra 

effort in the developed scheme unlike the corresponding finite difference approximations. The 

optimum value of the parameter ε  has been obtained by trial and error base and its value for each 

problem has been reported. Further the improvement of the solutions obtained using the developed 
local scheme is independent of the temporal approximation as it is shown that for both Rugne-Kutta 

and Euler time derivative approximations the developed scheme gave better solutions than the 

conventional finite difference method. To summarize, the localness of the developed gridfree 

scheme and optimization of the shape parameter of the RBF can be exploited to generate more 

accurate solutions for the time dependent convection diffusion equations over finite difference and 

also over global grid free RBF schemes which are computationally expensive. 
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