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Abstract

In this work, a local algorithm has been proposed to obtain an optimal shape parameter for
the infinitely smooth Radial Basis Functions (RBF) when they have been used to solve
Convection-Diffusion Equations (CDE) under grid-free environment.  The algorithm is
based on re-construction of the forcing term in the CDE using the collocation over the
centers of the local support domain. The residual errors are calculated using the Rippa's
“leave one out cross validation” algorithm originally been developed for interpolation using
RBF functions. It has been shown that the cost function and RMS error functions obtained
with the developed local scheme are oscillation free unlike the existing global collocation
schemes.  It has been also observed that, for most of the diffusion dominated problems, the
pattern of the (global) Cost function of the proposed algorithm  is appeared to be similar to
the (R.M.S) error function, however, the same is not been found true for convection
dominated problems. Therefore, for the latter case, an (near) optimal variable shape
parameter has been obtained by minimizing the local Cost function at each center (node) of
the computational domain. The Local RBF (LRBF) scheme with the proposed local
optimization algorithm has been tested over several one and two-dimensional linear
convection-diffusion problems with strong boundary layer and found to be accurate.

Keywords: grid-free scheme; radial basis function; convection-diffusion; multiquadric;
optimal shape parameter.

1. Introduction

The Radial Basis Function(RBF) based grid-free local schemes are becoming very attractive
choice for solving fluid flow and heat transfer problems due to their better conditioning and
flexibility in handling the non-linearities. When infinitely smooth RBFs are used then the shape
parameter of these RBFs plays a very significant role in obtaining accurate and stable solutions. In
most of the existing literature, researchers have chosen the shape parameter either by trial and error
or by some ad hoc means. This strategy may not give accurate and stable solutions for the problems
with non-smooth solutions like convection dominated problems of the convection-diffusion
equations. The convection-diffusion equation may be regarded as a simplified model problem to

* Corresponding Author: Sanyasiraju VSS Yedida
Email: sryedida@iitm.ac.in Phone: + 91 44 22574621 Fax: +91 44 22574602
© 2013 All rights reserved. ISSR Journals PII :  S2180-1363(12)44151-X



RBF based  grid-free local scheme with spatially variable optimal shape parameter for steady convection-diffusion equations

152

Navier-Stokes equations and plays an important role in Computational Fluid Dynamics(CFD). The
steady form of the CDE is given by

(1.1)

(1.2)

where  is the convection coefficient,  is

the diffusion coefficient, is the boundary operator (based on the values of and , it

can be a Dirichlet, Neumann or a mixed operator), is a bounded domain,  is the boundary of
and  is the dimension of the problem. The numerical solution of any CDE is very challenging,

when the convective part is dominant over the diffusion because in such cases the numerical
approximations get contaminated due to the spurious oscillations and numerical diffusion.
Traditional central difference based methods can be used for solving diffusion dominated problems,
however, when the convective term is dominant, some accuracy has to be sacrificed to stabilize the
numerical scheme.

RBFs are one of the important tools for the interpolation of sparse and scattered data points
in multi-dimensions. The most popular and conditionally positive definite [1] RBFs have been
listed in the Table 1, along with their order . The RBF collocation method was initiated by Kansa
[2] using globally supported interplant, which was popular as non-symmetric collocation scheme.
Micchelli [1] proved that the Kansa's collocation matrix is invertible (i.e., the method is well posed)
for any distinct set of scattered centers, in particular, with the Multi-Quadric(MQ), an infinitely
smooth RBF. Another collocation method based on the Hermite - Brikhoff interpolation which is
also known as the symmetric collocation scheme was proposed by Fasshauer [3] and Wu [4]. The
required theoretical justification for the well posed criteria of these schemes is given by Wu [4] and
Shaback [5]. Due to globally supported RBFs, the collocation matrices are highly dense and ill-
conditioned which is also may increase with the number of centers.  Recently Shu[6], Wright and
Fornberg [7] and Chandini and Sanyasiraju [8,9,10] proposed some RBF-based local schemes, by
sacrificing the spectral accuracy which is inherent in the global collocation schemes. However,
these schemes produce better conditioned linear systems and also more flexible in handling the non-
linearities.

TABLE 1: THE STRICTLY CONDITIONALLY POSITIVE DEFINITE RBFS
     Name of the RBF Order of the RBF
    Multiquadratic (MQ)
    Inverse Multiquadratic (IMQ)
    Gaussion

    Polyharmonic splines

Franke [11] proved numerically that the Hardy's MultiQuadric (MQ) [12] provides the best
approximation when compared with the other methods tested, including other RBFs like
Polyharmonic splines and Gaussian. However for MQ, the accuracy of the scheme depends highly
on the shape parameter ( ). A large shape parameter helps in generating a well conditioned system;
however, the corresponding approximation using the RBF becomes poor. If one chooses to use a
small shape parameter, the RBF approximation becomes accurate, but the system matrix becomes
severely ill-conditioned. That is, if the shape parameter becomes too small the resultant ill-
conditioned system matrix causes errors in floating point arithmetic, which in turn affects the
accuracy of the scheme. This trade-off between the accuracy and conditioning of the scheme is
known as Uncertainty Principle [13], which is the main drawback of the global RBF collocation
[2]. Therefore, to produce accurate and reliable solutions, the shape parameter of the infinitely
smooth radial functions must be made optimum.
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For the interpolation with scattered data, there is some work on the optimal choice of the
shape parameter based on the number of centers and the distance between them. Hardy [12]

proposed to use , where N is the number of centers and  is the

distance from the center  to its nearest neighbor. Franke [11] suggested , where
D is the diameter of the minimal circle enclosing all data points. In [2] Kansa used exponentially

varying shape parameters, , where

and are the input parameters. Rippa [14], for interpolation using RBF functions based on
global collocation, proposed a “leave-one-out” cross-validation (LOOCV) algorithm, according to
which the shape parameter should depend on the number of centers, distribution of centers, RBF
interpolant ( ), conditional number of the matrix and finally the machine precision. Kansa [15],
Fornberg [16] proposed to use spatially variable shape parameters to improve the accuracy in MQ-
RBF interpolation instead of the constant shape parameter. Fasshauer [17] extended the LOOCV
algorithm for finding the optimal shape parameter using pseudo-spectral (PS) methods to solve
elliptic type of equations. Roque [18] experimented the LOOCV algorithm for finding the optimal
shape parameter in global RBF collocation to solve partial differential equations. The global
optimization techniques may be good for the problems having smooth solutions but inaccurate in
capturing boundary layer solutions.  They also suffer from the ill-conditioning as the number of
centers increase. For the problems like CDEs, special attention has to be be paid on the optimization
of the shape parameter and also on the numerical scheme in order to get accurate and stable
solutions.

In the present work  global and local optimization schemes based on local RBF (LRBF)
collocation have been proposed to find an (near) optimal shape parameter for solving Convection-
Diffusion Equations (CDE). The algorithm is based on the re-construction of the forcing term in
CDE using collocation over the centers in the local support domain. To realize this, Rippa's [14]
leave one out cross validation algorithm has been used to calculate the residual errors. The (near)
optimal shape parameter is obtained by minimizing the local Cost function at each center (node) of
the computational domain. For most of the diffusion dominated problems, the (global) Cost
function of the proposed algorithm is ideally imitates the (R.M.S) error function. However, for the
convection dominated problems the algorithm produces a larger shape parameter in the regions
where the solution varies rapidly and a small value elsewhere.  This variable shape parameter makes
the LRBF scheme to produce stable and accurate solutions for solving CDEs.  Another most
important feature of the developed local optimization schemes is the oscillation free nature of its
cost and RMS error functions unlike their global counterpart. The proposed optimization algorithm
with LRBF scheme is tested over linear CDEs in one and two-dimensions with strong boundary
layer solutions.

Rest of the paper is organized as follows. In Section 2, the derivation of the RBF grid-free
local (LRBF) scheme has been presented. In Section 3, the proposed local optimization algorithm to
optimize the shape parameter has been described. In Section 4, first the implementation of the
proposed optimization in over local collocation has been presented. After demonstrating the
oscillations in the optimization based on the global collocation, the optimization schemes based on
the local collocation have been validated by applying them to solve several CDE.  Finally, some
concluding remarks are made in the last section.

2. Development of grid-free  local scheme based on RBF's

The local RBF (LRBF) grid-free scheme has been developed by Chandini and Sanyasiraju
[8] and it is tested for the steady convection diffusion type problems and unsteady incompressible
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viscous flow problems [9].  In this section, the LRBF scheme is discussed briefly, for the sake of
continuity.

Let be a linear convection-diffusion operator, N is the total number of centers. If , at
any center ` ', is expressed as a linear combination of the function values u at  centers

 in the neighbourhood of , then it is given by

 , for each (2.1)

where j is the local index and i is the global index. Then the computation of the weights  gives
the required approximation.  If  is the interpolant

(2.2)

that interpolates the data,  , . In (2.2),  is the Euclidean norm,  is a
shape parameter,  , , is the basis for  (space of all -variate polynomials
with degree , where  is the order of ) and its inclusion may be necessary to guarantee
the wellposedness of the interpolation problem [1]. (2.2) at , gives
conditions for the interpolation problem, to take care of the extra degrees of freedom, extra
conditions are chosen by taking the coefficient vector  orthogonal to (the
polynomial space restricted to , i.e.,

(2.3)

Imposing the interpolation conditions  and the orthogonality conditions (2.3) on
gives a linear system,

(2.4)

where , and , .
Denote the coefficient matrix in (2.4) as  for any future reference. To compute the weights , also
consider the Lagrange representation of RBF interpolant (2.2), for  nodes, given by

(2.5)

where satisfies the cardinal conditions

(2.6)

The closed form representation for , in terms of  by constructing a
set of RBF interpolation problems for which the data is obtained from the cardinal conditions on ,
is given by

(2.7)



Yedida & Satyanarayana CFD Letters Vol. 4(4) 2012

155

where  is same as the matrix  with size , except that jth row is replaced by the
vector

(2.8)

The representation derived through (2.5)-(2.7) can be used to approximate the derivatives of
a function or in general, values of at a given set of centers, say . Applying the operator  to
the Lagrange representation of RBF interpolant (2.5) gives

(2.9)

Comparing equations (2.1) and (2.9), gives

(2.10)

If are given by (2.10), then using the Cramer's rule backwards they can also be obtained by
solving the linear system,

 ] = , for each (2.11)
where is a matrix given in (2.4), is a vector given in (2.8) and  is a vector of weights. We
apply a similar procedure to discretize the boundary operator . For any center , the
system (2.11) is of size only  and can be solved using any direct method say, Gauss
elimination. It is clear from the development of the final linear system (2.11) that, though it is
dense, the size is very small, that makes the system more stable for a wide range of .
Further, only the right-hand side of (2.11) depends on the operator , for which the weights are to
be computed. This optimizes the computation, if the weights have to be computed for many
operators with the same distribution of the centers, as in the case of non-linear equations.

3. Local algorithm to optimize the shape parameter

It has been observed that, the optimized shape parameter depends on the differential operator,
forcing term, boundary conditions,  in addition to RBF interpolant ( ), the number of centers and
their distribution. In this section, an algorithm, which can be used as a global or a local scheme and
also free from ill-conditioning, has been proposed to optimize the shape parameter of the infinitely
smooth radial basis functions. The proposed algorithm also satisfies the above stated requirements.
It is clear from the development of the LRBF scheme, presented in the earlier section, that when
collocation is used at any center  over a local support domain for , the
collocation conditions are,  , .

Let

and (3.1)
be the set of data points and their function values , respectively, after removing the  center and
its function value from the support . Then the forcing term  can be re-constructed, locally over

 using the collocation, as
(3.2)

where  is a linear differential operator applied on RBF as a function of the second
argument(center). The second term in the R.H.S of the equation (3.2) is necessary to guarantee the
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non-singularity of the collocation matrix and the extra  conditions are chosen by taking the
coefficient vector orthogonal to i.e.,

(3.3)

The coefficients, and , in the equation (3.2) can be obtained by imposing the collocation
conditions (3.1) and the orthogonality conditions (3.3). If  is the function value at the point

that has been removed from  and  is the corresponding re-constructed value using (3.2)
then the residual error, , can be computed using

(3.4)
For each center , (3.4) gives residual errors for , therefore (3.4) requires

 operations for each center. To reduce the computational complexity, the Rippa's [14]
formula (been developed for interpolation problems)

, each (3.5)

where is the component in the vector and  is the  diagonal element of the
inverse of the collocation matrix

(3.6)

based on the data, over  has been used.  Since (3.5) requires the inversion only once, the
computational complexity is now only. By adopting a similar procedure for the boundary
operator, , the residual error is computed using

, each (3.7)

Equations (3.5) and (3.7) can now be used to calculate the (global) or (local) optimal shape
parameter in the following way.

3.1. Global optimal shape parameter

Using equations (3.5) and (3.7), define the (global) Cost function, that measures the
quality of fit for the global collocation, as

(3.8)

where the vector for each  and N is the total number of

centers in the domain. Then the (near) global optimal shape parameter is obtained by
minimizing the (global) Cost function (3.8).

The (global) Cost function obtained using (3.8) is different from such global Cost
functions exist in the literature (because they are obtained using global collocation). It is
also free from the ill-conditioning of the collocation systems. To compare the (global) Cost
function with the (RMS) error function, for different values of the shape parameter  in the
neighborhood of optimal shape parameter, test problems are solved using LRBF method and
the corresponding RMS error is calculated using

(3.9)

For diffusion dominated problems, the (global) Cost function ideally imitated the
(RMS) error function, therefore, the (near) global optimal shape parameter obtained by
minimizing the (global) Cost function is very ideal. However, for the convection dominated
problems, the residual errors, in general, are very large in the boundary layer regions when
compared to the other smoother regions, therefore, for these problems, the (global) Cost
function may not match with the (RMS) error function. That means, there may not be a
global optimum shape parameter which can minimize the RMS error for these problems.
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That necessitates, for the convection dominated problems, an alternate algorithm which may
generate a variable (local) optimum shape parameter but satisfy the requirements stated at
the beginning of this section.

3.2. Local optimized variable shape parameter

Define a (local) Cost function, which measures the quality of fit for the local
collocation, as

(3.10)

where the vector  and  is as given in equations (3.5), (3.7)

for every or , respectively. In this process, the (near) optimal shape
parameter is calculated by minimizing the (local) Cost function at each center of the
computational domain locally and the same will be used in the LRBF scheme.

The size of the coefficient matrices, , , in the equations (3.5), (3.7) is ( ) very
small, when compared to the size ) of the global collocation matrix, which makes the
system more stable for wide range of shape parameters. The routine function Brent has been
used from the Numerical Recipes [19] to carry out the optimization. The implementation of
the developed local optimization algorithm along with LRBF scheme, for solving CDEs is
presented in the next Section.

4. Numerical implementation

In this section, the RBF grids free local scheme with the proposed optimization algorithms has
been tested over several Convection-Diffusion Equations (CDE), using the following algorithm

4.1. Algorithm

 Choose a reference centre  and for every such reference center, select
 in the neighbourhood of , such that the reference center is

always part of the  local support domain, i.e., .
 Find the (near) optimal shape parameter, using the optimization algorithm, described in

the Section 3 (the global optimization gives a single & the local optimization gives a
variable ).

 Calculate the weights  (for every reference centre ) by solving the
local linear system (2.11), using the optimum shape parameter obtained in the earlier
step.

 Assemble the weights of (2.11) at proper locations of the  row, known from the
centers belong to , to form the global system

(4.1)
where is the matrix containing the weights for , at  and the vector contains the
contributions from the boundary . The matrix is sparse and its sparseness depends
on the centers chosen in . It is also non-symmetric.

 Finally, solve the global system (4.1) using any iterative method (for most of the
iterative solvers explicit generation of the global system may not be needed).
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4.2. Validation

One and two-dimensional CDEs, with known analytical solutions are chosen, for
testing the developed algorithm. The forcing term and Dirichlet boundary conditions have
been calculated from the analytical solution wherever they are needed. All the computations
have been carried out using MQ (with  as the basis function, over uniformly
distributed centers. Though the proposed scheme works with any scattered data set, the
uniformity has been imposed on the set of centers for the sake of simplicity. The list of
problems are:

Example 1
 with (4.2)

(4.3)

Example 2
(4.4)

with (4.5)
Example 3

with (4.6)

(4.7)
Example 4

(4.8)

, where (4.9)

Example 5
(4.10)
(4.11)

Example 6
(4.12)

(4.13)

(a)   N = 11 (b)  N = 21
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(c) N = 41 (d) N = 81
Figure 1. Comparison of (RMS) error function and Cost function against the Shape parameter,
using Global Collocation, at  for Example 1.

(a)   N = 11 (b)  N = 21

(c) N = 41 (d) N = 81
Figure 2. Comparison of (RMS) error function and Cost function against the Shape parameter,
using Global Collocation, at  for Example 3.
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 First, the one dimensional test problems 1 and 3 have been solved using the conventional
global collocation scheme [2].  The RBF parameter has been optimized using Rippa's (global)
leave one out cross validation algorithm [18].  By varying the number of centers to discretize the
domain with 11, 21, 41 and 81, the global cost function and the corresponding (RMS) error function
( here after referred as error function ) with respect to the shape parameter have been obtained and
compared in the Figures 1  and 2 at , for the problems 1 and 3, respectively. It is clear from
these comparisons that, except with , the cost function and also the error function for larger
N are very oscillatory.  It has been noticed that the oscillations have increased very rapidly with the
number of centers N. Therefore, minimizing these functions is highly complicated and often leads
to spurious minimums.  Further, it has been observed that, the amplitude and frequency of these
oscillations are also increased with decrease in .  To demonstrate this, the cost and error functions,
by varying , are given in Figures 3 and 4 for  and , respectively. It is clear from
these figures that the cost and error functions are highly oscillatory at .  Since the Rippa's
algorithm requires an initial interval of shape parameter to minimize the cost function, the optimum
value is very much dependent on the initial interval and due to high oscillations the initial interval

(a)  Example 1, a = 0.1 (b)  Example 1, a = 0.01

(c) Example 3, a = 0.1 (d) Example 3, a = 0.01

Figure 3. Comparison of (RMS) error function and Cost function against the Shape parameter,
using Global Collocation, with N = 11.
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must be very fine to avoid too many local minimums to group inside the chosen interval and spoil
the optimization process.  In other words, the oscillatory nature of these functions makes the
optimization algorithm to be very ineffective and the corresponding RBF solution can be inaccurate.
Looking at the plots of the cost function and error function, a very narrow interval of shape
parameter has been chosen for test problem 1 and the corresponding error norms and optimum
shape parameters have been reported in Table 2 for different values of with different values of N.
It must be noted that the results presented, in this table, under ‘Global’ are obtained with the global
optimization procedure for the shape parameter (after choosing a very narrow band of initial
interval taken by looking at the graph of the cost function) and the results presented under ‘Best’ are
the ones obtained without using the optimization algorithm but choosing a shape parameter at which
the error function is minimum and finally the results presented under ‘Fixed’ are the ones obtained
with .  The results presented in this table are obtained by manually looking at the graphs of
cost and error functions therefore, cannot be reproduced for any general problem.  However, these
can be used as guideline values for the validation of the developed, in Section 3, local optimization
procedure.

(a) Example 1, a = 0.1 (b)  Example 1, a = 0.01

(c) Example 3, a = 0.1 (d) Example 3, a = 0.01

Figure 4. Comparison of (RMS) error function and Cost function against the Shape parameter,
using Global Collocation, with N = 81.
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TABLE 2: COMPARISION OF THE FIXED (Fixed), GLOBAL (Global), BEST (Best) SHAPE PARAMETERS AND
THE CORRESPONDING RMS ERRORS FOR EXAMPLE 1, OBTAINED USING GLOBAL COLLOCATION
WITH OPTIMIZATION.

Next, the test problems 1 to 6 have been used to test the developed local optimization
schemes. Once again, the one dimensional (1D) domains have been discretised with  11, 21, 41 and
81 centers and two dimensional (2D) domains have been discretised with , 2 ,
4 and 8 centers. The diffusion parameter  has been varied from 1 to 0.01(that is, the
Peclet number, which is the ratio of convection over diffusion, is equivalent to 1 to 100). To find
the optimal shape parameter, the number of centers in the local support domain has been fixed as

 for one dimension and  for two dimensional problems. However, for solving the
CDE, the number of centers in the local supportdomain has been fixed as  and  for
one and two dimensional problems, respectively.

Before looking at the optimized shape parameter, the (global) Cost function (3.8) and the
error function (3.9), have been compared by varying the shape parameter .  For the diffusion
parameter and , the comparisons for all the six problems have been presented in
Figures 5, 6 and 7, respectively. To avoid any dependence of the solution on the discretization, the
comparisons with courser 11 (or for 2D) centers to finer 81 (or 8 for 2D) centers
have been included in all these comparisons. Unlike, the case of global collocation, the cost and
error functions in this local case are non-oscillatory even for  and . Further, it is
also clear from the Figure 5 that, for all the problems and for all the chosen cases, the (global) Cost
function, may be due to the high smoothness of the solutions, more or less  followed the same
pattern of the error function. That means, the value of the RMS error at the optimum obtained by
optimizing the (global) Cost function is expected to match with the minimum of the error function.
This is similar to what has been reported in the literature, mostly for the elliptic Laplacian or
Poisson equations. However, the same is not true if the diffusion parameter  is reduced or the
Peclet number Pe is increased from one. Looking at the Figures 6 and 7 in which the (global) Cost
function and error functions for the test problems 1 to 6, have been compared for the diffusion
parameters and , respectively, unlike the results known from the literature for
pure diffusion problems, it is clear from these comparisons that the minimum value of the error
function is not occurring at the optimum shape parameter (minimum of the (global) Cost function).
In particular, at , say for the test problem 2, the minimization of the (global) Cost function
is giving an value less than 2 for all the chosen cases, however the minimum of the error function
can be seen at close to . Similarly, for the test problem 6, when the global optimum is near

, one can see a sharp fall in the error after  giving a large gap between the obtained
from the global optimization and the best shape parameter ( the value of the shape parameter where
the error function is minimum, which is of course can be obtained if the analytical solution of CDE
is known ). A similar deviation of the optimized shape parameter and the best shape parameter can
also be seen for the other test problems and also for the test problems at  which have been
shown in the Figure 7. The deviation of optimized and best shape parameters is even more clear in
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Figure 7 wherein the comparisons have been made for 2D examples with small N and . All
these comparisons demonstrate that the optimization of the (global) Cost function may not lead to a
shape parameter at which the error function is minimum for CDE problems, particularly, at low
diffusion parameters.

Alternatively, the optimization can be made local, as it is given in the local optimization
algorithm (3.10) to produce a variable optimum shape parameter.  In the local optimization, the
optimal shape parameter varies spatially according to the nature of the solution and the
corresponding forcing function. The value of the shape parameter in this case may be large where
the solution varies rapidly and could be small elsewhere. This nature has been reported in the
Figures 8 & 9 for the test problems 2 and 4.

(a) Example 1 (b)  Example 2

(c) Example 3 (d) Example 4

(e) Example 5 (f) Example 6

Figure 5. Comparison of (RMS) error function & (global) Cost function against the Shape
parameter at  (from the top to bottom) for Examples  and

 for Examples  (from the top to bottom).
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(a) Example 1 (b)  Example 2

(c) Example 3 (d) Example 4

(e) Example 5 (f) Example 6

Figure 6. Comparison of (RMS) error function & (global) Cost function against the Shape
parameter at  (from the top to bottom) for Examples  and

 for Examples  (from the top to bottom).
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(a) Example 1 (b)  Example 2

(c) Example 3 (d) Example 4

(e) Example 5 (f) Example 6

Figure 7. Comparison of (RMS) error function & (global) Cost function against the Shape
parameter at  (from the top to bottom) for Examples  and

 for Examples  (from the top to bottom).
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(a) Example 2

(b) Example 4

Figure 8. Local optimal variable shape parameter ( ) (left) and the corresponding numerical
solution (u)(right), for the Examples 2 & 4 (from top to bottom) at  (for 1D) and

 (for 2D).

Due to the variable nature of the optimum shape parameter in this case, the comparison of
the  (local) Cost function and error function doesn't make any sense, therefore, one can compare the
error obtained using the local variable  shape parameter with the corresponding error at the best
shape parameter.  If this is more close to the error at the best shape parameter than the error at the
global optimum shape parameter then the purpose of developing local optimization is justified at
least for the CDE problems with low diffusion parameters.  To demonstrate the same, the errors
obtained using global and local optimization procedures are compared with the errors at the best
shape parameter for all the six test problems in Tables 3, 4 & 5 for diffusion
parameters , respectively. Once again the number centers in these computations
are varied from 11 to 81 for 1D and   to 8  for 2D problems. For the sake of
completeness, the computations at  are also performed and the corresponding error norms
have been reported in the Table 3.  It is clear from this table that, for many problems, the local
optimization also produced a unique optimal shape parameter which is very close to the
corresponding global optimum shape parameter. Therefore the minimum error obtained using these
algorithms are one and same.  We have reported the range (minimum and maximum) of the shape
parameter for the problems wherein the local optimization has produced a variable shape parameter.
It can be seen that the errors obtained with the local scheme are more close to the error at the best
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shape parameter than the global scheme. One issue which must be noted here is the amount of
improvement in the solution. Since the error at the best shape parameter is one of the best one can
obtain, the improvement in the solution due to local optimization depends on the gradient of the
error at the best shape parameter.  That is, if the error curve for a particular problem has a marginal
variation at the best shape parameter then the improvement in the solution also will be marginal and
the improvement in the solution will be substantial only if the error curve has a good variation at the
best shape parameter like, for example, for the test problem six in the Figure 5.  Therefore, instead
of looking at the improvement of the solution due to local scheme one should look at the obtained
error whether it is close to the error at the best shape parameter than the corresponding error with
the global shape parameter.

(a) Example 2

(b) Example 4
Figure 9. Local optimal variable shape parameter ( ) (left) and the corresponding numerical
solution (u) (right), for the Examples 2 & 4 (from top to bottom) at (for 1D)
and (for 2D).

Similarly, for the diffusion parameter , presented in Table 4, the RMS errors obtained
for all the test problems using the local optimal shape parameters are better than the RMS error
calculated with the global optimal shape parameter. In particular, once again for the test problem 6,
the RMS errors calculated with the local optimal shape parameters are almost one order better than
the RMS error calculated with global optimal shape parameter and these RMS errors are almost
close to the RMS errors calculated with the best shape parameter. Similar kind of improvement in
the accuracy can also be seen for the diffusion parameter , in the Table 5. Therefore, for the
convection dominated problems, the local RBF grid free scheme with a local variable optimal shape
parameter produces more accurate results than the global optimal shape parameter.
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TABLE 3: COMPARISION OF THE GLOBAL (Global), BEST (Best) and LOCAL (Local) OPTIMUM SHAPE
PARAMETERS AND THE CORRESPONDING RMS ERRORS FOR EXAMPLES , at

TABLE 4: COMPARISION OF THE GLOBAL (Global), BEST (Best) and LOCAL (Local) OPTIMUM SHAPE
PARAMETERS AND THE CORRESPONDING RMS ERRORS FOR EXAMPLES , at
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TABLE 5: COMPARISION OF THE GLOBAL (Global), BEST (Best) and LOCAL (Local) OPTIMUM SHAPE
PARAMETERS AND THE CORRESPONDING RMS ERRORS FOR EXAMPLES , at

One final comparison is the comparison of Table 2 with Tables 3, 4 and 5. That is,
comparing the errors obtained using optimization based on the global collocation with the errors
obtained using optimization based on the local collocation.  It is clear from these tables that the
errors, both global and local, for the test problem 1, in tables 3, 4 and 5 are very close to the errors
presented under global of the Table 2, if not the best, demonstrate the robustness of the developed
optimization procedure.

5. Conclusions

The shape parameter of the infinitely smooth Radial Basis Functions (RBF) plays a significant
role in obtaining the accurate and stable solutions in RBF based local grid-free (LRBF) schemes. In
the present work, we have shown that the cost and error functions obtained using the existing global
optimization schemes are highly oscillatory, particularly for large N and small diffusion parameters,
making the optimization process ineffective.  To avoid such oscillations we have proposed a local
algorithm to find the global and local (near) optimal shape parameter(s) to solve Convection-
Diffusion Equations (CDE) using LRBF scheme. The developed algorithm is based on the re-
construction of the forcing term in the CDE using the collocation over the centers in the local
support domain and the residual errors are calculated using the Rippa’s “leave one out cross
validation” algorithm. The proposed optimization algorithm has been tested with LRBF scheme
over a large number of one and two-dimensional linear CDEs with strong boundary layer solutions
and demonstrated its robustness. The main conclusions of the present work are as follows:

 The (near) optimal shape parameter truly depends on the differential operator, forcing
term, boundary conditions, basis function ( ), the number of centers and their
distribution.
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 The proposed local optimization algorithm is very stable for a wide range of shape
parameters, even with a large number of centers.

 For diffusion dominated problems, the corresponding (global) Cost function ideally
imitates the (RMS) error function.

 For the convection dominated problems the (near) local optimal variable shape
parameters obtained by minimizing the (local) Cost function varies spatially according
to the nature of the solution. The value of the shape parameter is generally large where
the solution varies rapidly and small elsewhere. The variation in these values makes the
LRBF scheme to produce accurate and stable solutions.

 The local RBF grid free scheme with local (near) variable optimal shape parameters
produces more accurate results, when compared with the global (near) optimal shape
parameter.

 The local optimization algorithm can also be applied to find the shape parameter if one
wishes to improve the local accuracy by clustering the nodes in any selected regions.

 The LRBF scheme with a local optimization algorithm can also be applied for solving
the large scale complex problems, since they require the inversion of smaller dense
matrices.

Finally, the Brent's bracketing algorithm [19] which has been used to find the local minima
requires an initial interval that contains the minimum. The interval dependency of this scheme may
be resolved using Particle Swarm Optimization (PSO) algorithm; however, it’s not been used in the
present work.  To conclude, in the present work, we have developed global and local optimization
schemes for RBF shape parameter based on a local collocation procedure which is free from ill-
condition unlike the global optimization schemes those exist in the literature.

Nomenclature
__________________________________________________________________________

Linear convection diffusion (differential) operator
Boundary operator
Forcing term
Right hand side function for the boundary conditions

u Unknown function
Dimension of the problem
Space of -dimensional real numbers
Domain
Boundary of the domain
Diffusion parameter

N Number of nodes in the computational domain
Number of nodes in the local support domain of the node
Set of local supporting nodes for
Radial Basis Function (RBF)
Shape parameter
Order of the RBF
Position vector
Position vector in two dimension
Space of all -variate polynomials with degree

-variate polynomials with degree
Interpolant
Vector in
Interpolation matrix without polynomial term
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Interpolation matrix with polynomial term
Cronical delta
Lagrange Function
Weights

Set of local supporting nodes for  excluding  center

Set of forcing function values over
Linear differential operator applied on RBF as a function of second argument
Residual error vector
Vector in

_________________________________________________________________________
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