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Abstract 
 

Numerical simulations were conducted to estimate the change in entropy generation in swirl 
stabilized CH4/air flame due to H2 addition to the fuel stream. A finite volume 
computational model which solves the Reynolds Averaged Navier Stokes with the 

 kR /  turbulence model and laminar flamelet combustion model was used to compute 
the flow and energy fields of the flame. The numerical simulation was validated by 
comparing computed profiles of velocity and mixture fraction with established laser 
measurements of Sydney swirl burner. It was found that hydrogen enrichment results in an 
increase in the entropy generation rate of the flame. Such increase was attributed to the 
increase in heat transfer irreversibilities due to flame temperature rise.  
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1. Introduction 
 

Hydrogen enrichment is a potential technique for improving natural gas combustion systems 
for power generation and industrial applications. The addition of hydrogen enables the combustion 
system to be operated at very lean conditions which improves the fuel economy and overall system 
efficiency [1, 2, 3]. However, the combustion of hydrogen causes significant temperature rise in 
some regions of the flame [4]. This might cause a reduction in the combustion system reversible 
work which could neutralize the fuel economy gains. The Gouy–Stodola theorem dictates that for a 
given thermodynamic system, the lost work is given by: 

genorev STWW           (1) 

where revW  is the reversible (i.e. available) work, W  is the actual work, and genS  is the total entropy 
generated in the system. In general, entropy is generated due to numerous factors depending on the 
system properties such as heat transfer, viscous dissipation and chemical reaction. By considering 
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the heat and mass irreversibilities in a thermodynamic system, the local entropy generation in a two 
dimensional radial axisymmetric domain can be expressed in tensor notations as [5, 6]: 
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where the first and second terms on the RHS refer to entropy generation due to heat transfer htS  and 
viscous dissipation VS , respectively, and   is the viscous dissipation term, expressed as: 
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where u , v , and w  are the axial, radial and swirl velocity components, respectively. 
 
2. Mathematical Model and Numerical Details 
 

The governing equations and procedures of the computational approach used herein are 
explained in details in [7] and skipped here for brevity. The main difference in the mathematical 
model in the present work is the use of the  kR / turbulence model proposed by Saqr et al [8] to 
take into account the local anisotropy in swirling flows by modifying the   equation in the standard 

k  model. The model was validated for both reacting [9] and non-reacting [10, 11, 12] swirl 
dominated flows. The laminar flamelet turbulent combustion was used in conjunction with a 
presumed β-shaped probability density function to model the interaction turbulence and chemical 
reaction. The GRI3.0 chemical reaction mechanism [13] was used to compute the chemical species.  

In the present work attention is given to the changes in the local entropy generation rates due 
to hydrogen enrichment of swirl-stabilized CH4/air flame. ANSYS Fluent® was used to carry on 
the computational work, and a compiled C# User Defined Function (UDF) subroutine was used to 
compute the entropy generation based on equations (2, 3) and the reacting flow field variables. 
Figure 1 shows a schematic of the Sydney burner [14, 15] and the 2D variable density numerical 
grid used in the present work. 

 
 
Figure 1. Schematic of Sydney burner outlet plane and the computational domain which consisted 
of 9.3×104 quadrilateral cells. 
 
3. Validation of the Numerical Simulation 
 

For the purpose of validation, comparisons between the numerical solution of the reacting 
flow field in SMH1 case [16] and experimental measurements are presented in figure 2. The 
numerical solution shows acceptable agreement with the LIF measurements of flame mixture 
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fraction in figure 2(a). For the velocity field predictions, the numerical solution shows substantially 
better agreement with the LDV measurements of axial velocity component as depicted in figure 
2(b).  The numerical solution has successfully predicted the central recirculation zone characterized 
by negative axial velocity, which proves the capability of the  kR /  turbulence model to model 
complex swirling flow with recirculation. 
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Figure 2. Comparison between numerical results (line) and LIF/LDV measurements (symbols) of 
(a) flame mixture fraction and (b) axial velocity on radial lines positioned 25 mm and 20 mm, from 
the burner exit plane respectively.  
  
4.0 Effects of Hydrogen Addition on Entropy Generation 
 

4.1 Entropy Augmentation Number 
The entropy augmentation number aSN ,  is the dimensionless ratio of local entropy 

generation in two specific cases 
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entropy generation in CH4/air flame (i.e. without H2 enrichment) and in CH4-H2/air flame 
(i.e. with hydrogen enrichment), respectively. When aSN ,  is less than unity, it means that 
the addition of hydrogen resulted in a reduction of entropy, hence an enhancement of the 
system exergy. Figure 3 shows axial and radial profiles of aSN ,  for different hydrogen 
concentrations. The figure shows that the addition of H2 causes substantial rise of aSN , in 
some locations of the flame, while in other locations it causes aSN ,  to decrease. 

 
4.2 Effects on Bejan Number 

Bejan number is a dimensionless measure of the heat transfer irreversibility. It is 
computed as the ratio of heat transfer entropy generation htS  to the total entropy 
generation genS . Figure 4 shows the effect of hydrogen addition on local Bejan number on 
the axis of the flame. Bejan number exhibits sudden and sharp increase between 60 mm to 
80 mm away from the burner exit plane due to hydrogen enrichment. This indicates the 
effect of temperature rise, which drives the heat transfer irreversibility.  

 
5.0 Discussion and Conclusion 
 

In the present paper, numerical simulations of the entropy generation in turbulent swirl 
flame have been conducted. In qualitative terms, it was found that the entropy generation rate 
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increases as a result of hydrogen enrichment. Such increase was detected as sharp rises in the 
entropy augmentation number. Then, a depiction of the Bejan number showed a corresponding rise 
of the heat transfer irreversibility, which is deemed to be the cause for the increase entropy 
generation rate. Future investigations should provide more detailed insights on the characteristics of 
entropy generation patterns and extend the analysis to cover a wider range of hydrogen 
concentration. 
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Figure 3. Profiles of entropy augmentation number ( aSN , ) on (a) flame axis and (b) flame radius at 
axial distance of 55 mm. 
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Figure 4. Axial profile of Bejan number for different hydrogen enrichment ratios. 
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