Antitumoral Properties of Xanthones from Mangosteen (Garcinia Mangostana L.) Hull

Cheok Choon-Yoong*1, Chin Nyuk-Ling2

1 Department of Chemical and Petroleum Engineering, Faculty of Engineering, UCSI University, Lot 12734, Jalan Choo Lip Kung, Taman Tayton View Cheras, 56000 Kuala Lumpur, Malaysia
2 Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

1. Introduction

Mangosteen (Garcinia mangostana L.), is a large tropical evergreen tree from the Guttiferae family with a straight trunk, and it takes almost 6 to 7 years to cultivate before it fruits [1]. The fruit comprises of 25-29% of edible flesh, 60-65% of hull, and 6-10% of seed [2]. Its sweet and mild sour delicious pulp are the contributing factors for its popularity among the tropical fruits. Mangosteen has become an economically important species in recent decades since it is popular to Western Europe and United States most probably because of its pharmaceutical properties discovery, especially antitumoral [3-4].

As reported by World Health Organization, cancer is the leading cause of death worldwide and accounted for 7.6 million deaths (around 13% of all deaths) in 2008 [5]. Mangosteen is the local seasonal fruit of Malaysia, which the delicious pulp is a target by local but the deep reddish purple hull (exocarp) is disposed as waste. The hull which contains bioactive compounds of xanthones has been widely discovered having various pharmaceutical properties. Among the xanthones, \(\alpha \)-mangostin is the most extensively discovered having inhibition capabilities against various cancer cells. This paper discusses the recent discoveries and research trend of antitumoral properties of \(\alpha \)-mangostin on various
cancer cells. The γ-mangostin and other xanthones which have been proven as potential anticancer agents are also highlighted.

2. The α-Mangostin

The most abundant xanthone found in mangosteen hull is the α-mangostin [6-7]. α-mangostin is one of the earliest naturally occurring xanthone isolated from mangosteen hull using gas chromatography [8]. Numerous studies have revealed that the α-mangostin not only possesses properties of antioxidant, anticancer, anti-inflammatory, anti-allergy, antimicrobial, and antiparasitic, it also has potential for anti-obesity and treatment of Alzheimer’s disease [9]. Within the many pharmaceutical properties, its antitumor capabilities against various cancer cells have been extensively researched in recent decades. Fig. 1 illustrates recent scientific findings of antitumor properties of α-mangostin against various cancer cells. Approximately 25% of previous studies have proven the inhibition capabilities of α-mangostin against colon cancer cells as shown in Fig. 1. Its inhibition effects on other cancer cells such as breast cancer, leukemia, skin cancer, prostate, bone, lung, brain, pancreatic, head and neck have also been investigated and discovered.

![Fig. 1. Recent discoveries of antitumoral properties of α-mangostin on various cancers](image)

Fig. 2 demonstrates the trend of antitumor properties discovery of α-mangostin from 2000 to 2014. The earliest finding on antitumor properties of α-mangostin were on leukemia [10-11] and colon [12-13] cell lines from 2003 to 2005. For the period from 2006 to 2010, α-mangostin’s inhibition effects against breast cancer [14-16], prostate [17], and lung [18] was reported. Most recently from year 2011 to 2014, the finding of α-mangostin’s inhibition for cancer cells have extended to bone [19], brain [20], skin [21-23], pancreatic [24], head and neck [25], apart from breast cancer [26-27]. It is noteworthy that α-mangostin has been extensively discovered its inhibition ability against colon cancer cell lines [28-29] for a decade.
3. The γ-Mangostin and other Xanthones

The γ-mangostin is another xanthone derived from mangosteen hull and for its widely studied pharmaceutical property. It appears as a pale yellow powder after isolation with a thin layer chromatography [30]. The γ-mangostin isolated from mangosteen hull has been discovered to have antitumoral property against leukemia [10, 31], breast cancer [14], skin [21], and colon cancer [28, 32].

Further to this, the 1,3,6,7-tetrahydroxy-2,8-(3-methyl-2-butenyl) xanthone and epicatechin that were studied and tested in vitro also showed good cytotoxicities against human breast and colon cancer cells [33]. Both have been suggested as potential anticancer agents [33]. Other two newly identified xanthones, the tetrahydroxanthone and garcimangoxanthone were revealed to exhibit in vitro cytotoxicity against human lung cancer, pulmonary carcinoma, and hepatoma [34]. More recently, xanthone of 8-deoxygartanin derived from mangosteen pericarp has been discovered having cytotoxicity against skin cancer [21].

4. Conclusion

Cancer, as the leading cause of death worldwide in recent decades, has triggered the quest of plant materials which contain potential antitumoral properties to combat the disease. The α-mangostin derived from mangosteen has natural occurring bioactive compounds which is anti-cancer. The recent research trend on the discovery of this compound provides an insight for scientists or researchers to further explore its inhibition capabilities against more cancer cell lines.
References

