Stirring Enhances Removal of Oil by Kapok Fiber

Check Shyong Quek1,a, Norzita Ngadi1,b, Mohd Abbas Ahmad Zaini1,c, Seeram Ramakrishna2,d

1Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
2Centre for Nanofibers and Nanotechnology, National University of Singapore, Singapore

aqk_cs@yahoo.com, bnorzita@cheme.utm.my, cabbas@cheme.utm.my, dseeram@nus.edu.sg
Introduction

• Kapok fiber, high oil absorption capacity owing to high hollowness and natural hydrophobic property
• inexpensive and is readily available
• low water pickup, very lightweight, excellent buoyancy facilitates retrieval
• Reusability of material up to 15 cycles, environmental-friendly
• sustainable approach to control water pollution
Objectives of Paper

• highlight efficiency of kapok in removing oil greatly enhanced by mechanism of stirring
• suggest reasons for such enhancement
Materials and methods

• **Materials.** Kapok purchased from “Farmers’ Market” in Larkin, Johor Bahru, and palm oil “Labour” brand from local supermarket, “Giant”, in Taman Suria, Johor Bahru.

• **Preparation of kapok fiber.** Raw kapok fiber cut, as best as possible, into uniform shape of cube measuring 0.5 cm x 0.5 cm x 0.5 cm.
Measurements of oil absorption capacity

- Palm oil mixed with 500 mL of distilled water in 1000 mL beaker for 15 min at 100 rpm using 5 cm magnetic stirrer
- Palm oil used varied from 20 to 200 g
- Then, 0.50 g kapok fiber (absorbent) added to oil/water mixture, left with stirring at 300 rpm for 30 min at room temperature, about 30 °C.
• After that, sample removed from beaker using small flat spatula and weighed.
• Sample left in oven overnight at 105 °C
• Water and oil content determined next day by weighing and using following equations
Equations

• \(W_w = W_t - W \). \hspace{1cm} (1)

where \(W_w \) is weight of water absorbed in absorbent (g), \(W_t \) is weight of wet absorbent with oil (g) and \(W \) is weight of dry absorbent with oil (g).

• Amount of oil absorbed determined thus:

\[W_o = W - W_i. \hspace{1cm} (2) \]

where \(W_o \) is amount of oil absorbed (g) and \(W_i \) is initial weight of absorbent (g).
Oil absorption capacity of absorbent determined and calculated by equation:

\[Q = \frac{W_o}{W_i} \] \hspace{1cm} (3)

where \(Q \) is oil absorption capacity of absorbent calculated as grams of oil per gram of absorbent.
Results and discussion

Fig. 1: Oil absorption capacities of the absorbent relative to the amount of oil used.
• Absorption dramatic when mechanism of stirring involved
• far surpasses even performance of various modified kapok fibers with no stirring
• oil absorption capacity in study exceeded 200 g per g of absorbent (Fig. 1)
• Thus, stirring mechanism very valuable method to ensure full potential of raw kapok being utilized
Reasons for Dramatic Performance

• Enhanced penetration of oil into lumen of kapok fiber and interstices within fibrils of kapok fiber as stirring increases number of collisions between oil molecules and kapok fiber.

• Stirring exposes the finer and coarser fibrils which in turn, creates much larger surface area for contact with oil molecules.
• Enhanced penetration and much larger surface area provide improved saturation of oil within the fiber leading to dramatic performance
• But performance dropped when more than 120 g of oil used due to disintegration of kapok fiber and occurrence of “coagulation” made it impossible to recover all oil-filled kapok fiber.
• Therefore, results obtained when amount of oil used greater than 120 g definitely not accurate
• For 20 to 120 g, graph is linear and if extrapolated, straight line will pass through origin indicates these results are very accurate.
Absorption of Water

Fig. 2: Amount of water absorbed relative to the amount of oil used.
• Amount of water being absorbed miniscule proved raw kapok fiber preferentially absorbed oil

• up to 100 g oil used, graph considerably linear and if extrapolated, straight line will pass through origin. As mentioned earlier and from Fig. 1, results obtained up to 120 g would be accurate
• Sharp decline in amount of water absorbed when 120 g of oil used
• this point doesn’t follow preceding trend
• reason is that the 0.50 g of kapok fiber reached maximum saturation of oil when 120 g of oil was used
• where almost all available space in lumen and interstices within fibrils, and surface area accessible were used for the absorption of oil
• Thus, very little space available for absorption of water which explains for sharp decline
• indicator that absorbent reached maximum saturation point for oil absorption
• Knowing maximum oil absorption capacity of absorbent will help us determine amount of absorbent to be used when amount of oil contaminant is known
• hence, avoiding wastage and facilitating transportation
• very little amount of water absorbed makes method a very viable one.
Conclusion

• kapok fiber performed to its fullest potential when mechanism of stirring involved
• oil absorption capacity more than 200 g/(g of absorbent)
• abundant, environmental-friendly, its application would be a sustainable approach
• also be highly effective to control water pollution