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Internal solitary waves have been observed in oceans all over the world. This paper 
looks at the effect of rapidly varying topography on the propagation of internal solitary 
waves in the framework of the variable-coefficient extended Korteweg-de Vries 
equation. We consider internal solitary wave is propagating in a two-layer fluid system. 
Here we let the depth of the upper layer to be smaller than the depth of lower layer 
such that initially an internal solitary wave of negative polarity is generated. The 
governing equation is solved numerically using the method of lines. Numerical results 
show that under the influence of variable topography, internal solitary waves would 
fission into few smaller solitary waves, an undular bore is generated for some time 
before transforms into a radiation wave or the internal solitary wave loses its 
amplitude when propagates over a sharply varying slope.  

Keywords:  
Internal solitary waves; undular bore; 
variable topography; extended 
Korteweg-de Vries equation; topographic 
effects Copyright © 2019 PENERBIT AKADEMIA BARU - All rights reserved 

 
1. Introduction 
 

Internal solitary waves are nonlinear waves usually formed from tide-topography interaction [1], 
density-stratified fluid [2] and wind force [3, 4]. They often propagate horizontally at the interface of 
two different density layers, where each layer has different constant buoyancy density existing in the 
oceanic pycnocline (see Figure 1). 

Internal waves can be found mostly in fjords [5], straits [6], continental shelves [7- 9] and coastal 
areas e.g. in the Andaman Sea [10], Sulu Sea [11, 12] and South China Sea region [13-16]. A recent 
study in the area of northern South China Sea recorded that the amplitude of an extreme internal 
solitary wave could reach up to 240 meters with a peak velocity of 2.55 ms−1 while propagating at the 
bottom depth of 3847 meters [17]. With these characteristics of internal solitary waves, they can 
transport large tidal energy over a long distance such that they could bring substantial shocks to 
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coastal marine construction [18]. Therefore, it is important to understand the behaviour of internal 
solitary waves. 
 

 
Fig. 1. Internal wave oscillates between two different density fluid 
layers 

 
It is widely accepted that the propagation of internal solitary waves can be modelled using the 

Korteweg-de Vries (KdV) equation or KdV-type equations. The KdV equation was first used to model 
the evolution of internal solitary wave by Benney [19] and Benjamin [20] and followed by many other 
researchers [21-26]. Due to some real environmental conditions, internal waves often have a very 
small coefficient in nonlinear term with large amplitude propagating across the continental shelf area 
[27]. In order to balance the nonlinearity and dispersion effects, a cubic nonlinear term is added into 
the KdV equation [21]. Hence, the KdV equation is replaced by the extended Korteweg de Vries (eKdV) 
equation, or more commonly known as the Gardner equation. The canonical eKdV equation is given 
by 

 
𝑢𝑡  +  𝛼𝑢𝑢𝑥 +  𝛽𝑢2𝑢𝑥 +  𝜆𝑢𝑥𝑥𝑥 = 0 ,           (1) 

 
where α, β, and λ are the coefficients that describe the behaviour of the waves and x, t are the 
temporal and spatial variables respectively. When the value of these coefficients are constant, then 
Eq. (1) has a steady-state solitary wave solution which is defined by 

 

𝑢(𝑥, 𝑡) =   
𝐴

1+𝐵 cosh 𝐾(𝑥−𝑉𝑡)
 ,            (2) 

 
where 

 

𝐵2 = 1 +
6𝜆𝛽𝐾2

𝑎2 , 𝑉 =  
𝑎𝐴

6
=  𝜆𝐾2           (3) 

 
From Eq. (2), the solution of the solitary wave is characterized by the single parameter B. The 

amplitude of the solitary wave is given by 
 

𝑢(𝑥, 𝑡) =   
𝐴

1+𝐵 
              (4) 

 
For λβ < 0, there is just a single branch of solutions with the range 0 < B < 1. When B → 0, the 

solution gives a limiting flat-topped wave which amplitude is limited to −α/β, also known as “table-
top” solitary wave. When B → 1, the wave solution is small-amplitude KdV-type (sech2-profile) 
solitary wave (see Figure 2(a)).  
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For λβ > 0, there are two branches of solutions which are divided into 1 < B < ∞ and −∞ < B < −1. 
For 1 < B < ∞, the solution gives a small-amplitude KdV-type solitary wave when B → 1. When B → 
∞, the solution gives a large wave with a “sech2” profile (see the upper part of Figure 2(b)). The 
second branch −∞ < B < −1, it gives the solitary wave solution with negative polarity. When B → −1, 
it gives a limiting algebra wave with the limited amplitude value of −2α/β. The solution gives a 
negative large wave with a “sech2” profile when B → −∞ (see the lower part of Figure 2(b)) [28]. 

 

  
(a) (b) 
Fig. 2. The shape of solitary wave when (a) λβ < 0; (b) λβ > 0 

 

In real-world ocean environment, internal solitary wave always propagates on the irregular ocean 
topography, e.g. continental shelves area and continental slope region. Also, there are many types 
of coastal structures have been built near the coastal area to reduce the impact of internal waves. 
Therefore, this paper intends at the effect of the variable topography on the evolution of the internal 
solitary wave.  

In this paper, we consider internal solitary wave is propagating in a two-layer fluid system. When 
the internal solitary wave of depression propagates over a slowly changing topography, it exhibits a 
few interesting phenomena including the generation of solitary wavetrain, polarity change in the 
solitary wave, adiabatic and non-adiabatic deformations of the internal solitary wave depending on 
the nature of the slope [29]. 

The main aim of this paper is to look at the effect of rapidly varying topography on the internal 
solitary waves of depression. In Section 2, we shall present the formulation of our problem. Then in 
Section 3, we shall describe the numerical methods used to solve our problem. Then in Section 4, we 
shall present and discuss our numerical results followed by conclusion in the final section. 

 
2. Problem Formulation  
 

The appropriate mathematical model to describe the propagation of the internal solitary wave in 
a two-layer fluid system is the variable-coefficient eKdV (veKdV) equation [26], [28], [30, 31]. The 
veKdV equation has the following form 

 

𝐴𝑡 + 𝑐𝐴𝑥 −  
𝑐𝑄𝑥

𝑄
𝐴 +  𝜇𝐴𝐴𝑥 + 𝜇1𝐴2𝐴𝑥 +  𝛿𝐴𝑥𝑥𝑥 = 0        (5) 

 
Here A(x, t) is the amplitude of the solitary wave, and x, t are the temporal and spatial variables 

respectively. The coefficient c(x) is the relevant linear long wave speed and Q(x) is the linear 
modification factor, defined so that Q−2A2 is the wave action flux for linear long waves [28]. The 
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coefficients of the nonlinear and the dispersive term, i.e. μ(x), μ1(x), and δ(x) are determined by the 
properties of the basic state of the fluid. All these coefficients are slowly-varying functions of x.  

Let us consider the densities of the fluid in the upper layer and lower layer be constants denoted 
by ρ1 and ρ2 respectively. Also, consider H1 is the depth of upper layer fluid and H2 is the depth of 
lower layer fluid. The coefficients of Eq. (5) i.e. μ, μ1 and δ are defined by 

 

𝜇 =
3𝑐(𝜌2𝐻1

2−𝜌1𝐻2
2)

2𝐻1𝐻2(𝜌2𝐻1+𝜌1𝐻2)
,  

𝜇1 =  
−3𝑐

8(𝐻1
2𝐻2

2)(𝜌1𝐻2+ 𝜌2𝐻1)2
[(𝜌1𝐻2

2 − 𝜌2𝐻1
2)

2
+ 8𝜌1𝜌2𝐻1𝐻2(𝐻1 + 𝐻2)2],  

𝛿 =
𝑐𝐻1𝐻2(𝜌1𝐻1+𝜌2𝐻2)

6(𝜌2𝐻1+𝜌1𝐻2)
,             (6) 

 
where 
 

𝑐 = √ 
𝑔(𝜌2− 𝜌1)𝐻1𝐻2

2𝜌1𝐻2
  , 𝑄 = √ 

1

2𝑔(𝜌2− 𝜌1) 𝑐
          (7) 

 
We shall suppose that the upper layer of the fluid has constant depth and the depth of the lower 

layer of the fluid varies rapidly according to 
 

𝐻2(𝑥) = ℎ0 for  𝑥 < 𝑥0 and 𝐻2(𝑥) = ℎ1 for  𝑥 > 𝑥0,  
 

where ℎ0 and ℎ1 are constants. Then, we shall suppose that the initial condition for Eq. (5) is imposed 
for 𝑥 ≪ 𝑥0. The schematic of our problem is illustrated in Figure 3.  

 

 
Fig. 3. Schematic illustration of ISW propagating in 
a two-layer medium of different density over a 
rapidly decreasing depth in the lower layer region 
 

The first two terms in Eq. (5) are the dominants terms. Thus, we can make the transformation by 
introducing the following new variables [28]  

 

𝐴 = 𝑄𝑈,             𝑇 =  ∫
𝑑𝑥

𝑐

𝑥
,            𝑋 =  𝑐(𝑇 −  𝑡)  

 
On substitution of the new variables into Eq. (5) gives, to the same leading order of approximation 

where Eq. (5) holds 
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𝑈𝑇 + 𝛼𝑈𝑈𝑋 +  𝛽 𝑈2𝑈𝑋 +  𝜆𝑈𝑋𝑋𝑋 = 0,          (8) 
 
where 
 
𝑈𝑇 + 𝛼𝑈𝑈𝑋 +  𝛽 𝑈2𝑈𝑋 +  𝜆𝑈𝑋𝑋𝑋 = 0,          (9) 
 

In terms of the new variables U(X, T), we consider that H1 = 1 is constant for all T, H2(T) = h0 = 1.5 
for T < T0 and H2(T) = h1 when T > T0. 
 
3. Numerical Method 
 

In order to solve Eq. (8), we apply the method of lines (MOL). Eq. (8) is reduced into a system of 
ordinary differential equations by making an approximation to the spatial derivatives, which will be 
solved by using the fourth-order Runge-Kutta method. The MOL is an ideal method which is widely 
used by many researchers to solve the partial differential equation such as the KdV equation [32, 33], 
the eKdV equation [34, 35], forced KdV equation [36] and forced KdV-Burgers equation [37]. 

Firstly, Eq. (8) is rewritten as  
 

𝑈𝑇 =  − 𝛼𝑈𝑈𝑋 − 𝛽𝑈2𝑈𝑋 −  𝜆𝑈𝑋𝑋𝑋          (10) 
 
Then we discretize the spatial derivatives using central finite difference formulas as follows 
 

𝑈𝑋     ≈  
𝑈𝑗+1− 𝑈𝑗−1

2∆𝑋
,  

 

𝑈𝑋𝑋𝑋 ≈  
𝑈𝑗+2− 2𝑈𝑗+1+ 2𝑈𝑗−1− 𝑈𝑗−2

2(∆𝑋)3           (11) 

 
Here, j is the index that indicates the position along a spatial axis and ∆X is the increment value 

of spatial axis. Therefore, the MOL approximation of the Eq. (8) is given by 
 

𝜕𝑈𝑗

𝜕𝑇
= − (𝛼𝑈𝑗 +  𝛽[𝑈𝑗]

2
)

𝑈𝑗+1− 𝑈𝑗−1

2∆𝑋
 −  𝜆 

𝑈𝑗+2− 2𝑈𝑗+1+ 2𝑈𝑗−1− 𝑈𝑗−2

2(∆𝑋)3 ,  

  

        = 𝑓(𝑈𝑗).               (12) 

 
For the time integration, we will use the fourth-order Runge-Kutta method. The initial condition 

is taken as 

𝑈(𝑋, 𝑇 = 0) =
𝛼 (𝐵2−1)

 𝛽(1 + 𝐵 cosh(𝐾𝑋))
 ,            (13) 

 
where 
 

𝐾 = √ 
𝛼2

6𝛽λ
(𝐵2 − 1) .            (14) 

 
Here, we consider two values for B, i.e. B = 0.001 and B = 0.1 in order to generate table-top solitary 

wave and KdV-type solitary wave with “sech2” profile respectively. 
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4. Numerical Results  
 

In this section, we shall present the numerical results for of the propagation of internal solitary 
wave for two different types of varying depth region, i.e. rapidly increasing and rapidly decreasing 
depth regions.  

 
4.1 Rapidly Increasing Depth  

 
In this subsection, we let the depth of the lower layer to be rapidly changing according to the 

following 
 

𝐻2(𝑇)  =  {
1.5 ∶ 0 ≤ 𝑇 < 500,
1.7 ∶ 𝑇 ≥  500,         

 

 
Numerical simulations show that the initial internal solitary wave for both table-top solitary wave 

and KdV-type solitary wave disintegrates into two or more smaller internal solitary waves of the same 
polarity immediately as it propagates over the sharp step and followed by a small radiation wave 
behind it (see Figures 4 – 7). The size of the internal solitary wave generated after the slope is 
different from each other. This phenomenon is known as the fission of soliton [21]. This is because 
the coefficients α(T), β(T), and λ(T) in Eq. (8) make a rapid change from the value α0, β0, and λ0 in the 
T < T0 region to a new value α1, β1, and λ1 in the T > T0 region. The solitary wave solution in the region 
T < T0 region is given by  

 

𝑈 =
𝛼0 (𝐵2−1)

 𝛽0(1 + 𝐵 cosh(𝐾𝑋))
 ,           (15) 

 
where 
 

𝐾 = √ 
𝛼0

2

6𝛽0λ0

(𝐵2 − 1) . 

 
After T0, the solitary wave enters the new constant depth region without change. However, the 

solitary wave solution Eq. (15) is no longer a solution for Eq. (8) when it enters new region at T > T0, 
which has new constant coefficients α1, β1, and λ1 in Eq. (8). As the result, the internal solitary wave 
fissions into N solitons and trailed by an oscillatory tail.  

 
When B = 0.001, we have a table-top solitary wave of negative polarity or depression table-top 
solitary wave before the slope. The limiting amplitude of the table top solitary wave is given by 

 
𝑈0 ≈  −0.0909. 

 
The first solitary wave generated after the slope is also a table-top solitary wave with new limiting 

amplitude  
 

𝑈1 ≈  −0.1257. 
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Fig. 4. 2D plots of a table-top solitary wave of negative polarity propagating 
over a rapidly decreasing slope 

 

 
Fig. 5. 3D plot of a table-top solitary wave with negative polarity propagates over 
a rapidly decreasing slope 

 

 
Fig. 6. 2D plots of a KdV-type solitary wave of negative polarity propagating over 
a rapidly decreasing slope 
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Fig. 7. 3D plot of a KdV-type solitary wave of negative polarity propagating over a 
rapidly decreasing slope 

 
4.2 Rapidly Decreasing Depth 

 
For rapidly decreasing depth, there are three different cases to be considered depending on the 

depth of the lower layer after the slope. First, we consider two cases, i.e. 
 

a) The depth of the lower layer is smaller than the depth of the upper layer 
 

𝐻2(𝑇)  =  {
1.5 ∶ 0 ≤ 𝑇 < 500,

ℎ1 = 0.7 ∶ 𝑇 ≥  500.         
 

 
b)  The depth of the lower layer is equivalent to the depth of the upper layer 

 

𝐻2(𝑇)  =  {
1.5 ∶ 0 ≤ 𝑇 < 500,

ℎ1 = 1.0 ∶ 𝑇 ≥  500.         
 

 
These two cases involve polarity change in Eq. (8), i.e. the sign of the coefficient α changes from 

negative, α < 0, to a positive value, α > 0, as it propagates over the sharp step. As a result of the 
sudden polarity changes in Eq. (8), the initial internal solitary wave of negative polarity becomes an 
initial disturbance to generate an undular bore of positive polarity riding on a pedestal. An undular 
bore is a nonlinear wavetrain connecting two different basic flow states and exhibits solitary wave of 
the leading edge and linear wave at the trailing edge [38-41]. This is clearly shown in 2D plots (see 
Figure 8 and Figure 9) and the 3D plots (see Figure 10 and Figure 11). 

 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 58, Issue 2 (2019) 224-236 

232 
 

 

  

(a) (b) 
Fig. 8. 2D plots of (a) table-top solitary wave and (b) KdV-type solitary wave propagating over a rapidly 
increasing slope where h1 = 0.7 

 

  
(a) (b) 

Fig. 9. 2D plots of (a) table-top solitary wave and (b) KdV-type solitary wave propagating over a rapidly 
increasing slope where h1 = 1.0 

 

   
(a) (b) 

Fig. 10. 3D plots of (a) table-top solitary wave and (b) KdV-type solitary wave propagating over a rapidly 
increasing slope where h1 = 0.7 
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(a) (b) 

Fig. 11. 3D plots of (a) table-top solitary wave and (b) KdV-type solitary wave propagating over a rapidly 
increasing slope where h1 = 1.0 

 
On a large time-scale, the undular bore transforms into a linear wave due to the diminishing 

pedestal. As the result, the amplitude of leading solitary wave in the undular bore is decreasing over 
time. In other words, the internal solitary wave disperses as it propagates over the slope. Here, we 
only present the amplitude variations for table-top solitary wave (see Figure 12). The result is 
different if the slope is slowly varying. When the depth of the lower layer is smaller than the depth 
of the upper layer, a train of solitary waves of positive polarity is generated when the internal solitary 
waves of negative polarity are propagating over a slowly changing slope for both table-top and KdV-
type solitary waves [29]. 
  

  
(a) (b) 

Fig. 12. Amplitude variation of the leading solitary wave in undular bore for (a) h1=0.7; (b) h1=1.0 for table-
top solitary wave 

 
Next, we consider the depth of the lower layer after the slope is greater than the upper layer. The 

depth profile is described by 
 

𝐻2(𝑇)  =  {
1.5 ∶ 0 ≤ 𝑇 < 500,

ℎ1 = 1.2 ∶ 𝑇 ≥  500.        
 

 
Unlike previous cases, we do not observe any polarity change here. From the numerical 

simulations, we observe that both table-top and KdV-type solitary waves transform into a new table-
top solitary wave and followed by a radiation wave behind it (see Figures 13 – 15). The amplitude of 
the initial internal solitary wave decays and reaches a new limiting amplitude after the slope, which 
is given by 
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𝑈1 ≈  −0.03641.  
  

  
Fig. 13. 2D plots of a table-top solitary wave with negative polarity propagating over a rapidly increasing 
slope where h1 = 1.2 

 

  
Fig. 14. 2D plots of a KdV-type solitary wave with negative polarity propagating over a rapidly increasing slope 
where h1 = 1.2 
 

 

  
(a) (b) 

Fig. 15. 3D plots of (a) table-top solitary wave and (b) KdV-type solitary wave propagating over a rapidly 
increasing slope where h1 = 1.2 

 
5. Conclusions 
 

In this paper, we have simulated the evolution of internal solitary wave over a sharply changing 
regions. If the depth of the lower layer is increasing rapidly, then the internal solitary wave fissions 
into several solitary waves of different sizes and of the same polarity. For the case when the depth 
of the lower layer is decreasing rapidly, the transformation of the internal solitary wave depends on 
the depth of the lower layer after the slope. If there is a polarity change, then the internal solitary 
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wave will act as a disturbance and generates an undular bore. However, the expansion of undular 
bore could not be supported over time due to the diminishing pedestal. Therefore, on a large time-
scale, the undular bore transforms into a radiation wave. This observation is different from the case 
where the topography is changing slowly. Here we do not observe a generation of solitary wavetrain 
of positive polarity when the polarity changes. If there is not polarity change, the amplitude of the 
internal solitary wave decreases and produces a radiation wave. If the amplitude of the transformed 
internal solitary wave reaches the new limiting amplitude after the slope, then a table-top solitary 
wave would be generated. These results serve as a useful insight for the construction of underwater 
structures or buildings near the shores to prevent the impact of internal solitary waves on these 
structures. 
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