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An electrically conducting free convection and mass transfer viscous incompressible 
Casson fluid bounded by two parallel non-conducting plates have been investigated in 
the presence of hall current for two dimensional case. Initially the fluid motion is 
constant at the upper plate and the uniform magnetic field is applied perpendicular to 
the plate. The lower plate is stationary and the upper plate is moving. Explicit finite 
difference method (EFDM) has been used to solve the partial coupled non-linear 
momentum, energy and concentration equations. The stability conditions and 
convergence criteria of the finite difference scheme are established for finding the 
restriction of the values of various parameters to get converse solution. The influence 
of various interesting parameters on the flow has been analysed and discussed through 
graph in details. The values of Shear Stress, Nusselt number and Sherwood number for 
both moving and stationary plates for different physical parameters have been 
investigated in the form of graphical representation. For all cases, it is accomplished 
that, shear stress, Nusselt number and Sherwood numbers are increased with the 
increase of Soret number(𝑆𝑟).  

Keywords:  
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1. Introduction 
 

The fluid flow between parallel plates by means of Couetee motion is a classical fluid mechanics 
problem that has applications in magneto hydrodynamic (MHD), power generators, MHD pumps, 
aerodynamics heating, polymer extrusion, petroleum industry, pharmaceutical process, purification 
of crude oil, fluid droplet sprays, metal forming, wire and glass fibre drawing and several others. The 
industrial applications of non-Newtonian Casson fluid flow are increasing day by day. Some fluids 
behave like elastic solids, and for those fluids, a yield shear stress exists in the constitutive equations. 
Casson fluid is one of such non-Newtonian fluids. If the shear stress magnitude is greater than the 
yield shear stress, then flow occurs. The non-linear Casson’s constitutive equation has been found to 
describe accurately the flow curves of suspensions of pigments in lithographic varnishes used for 
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preparation of printing inks and silicon suspensions. Jha and Apere [1] studied the Magneto 
hydrodynamic effect on the formation of Couette flow. Soundalgekar et al., [2] considered Hall and 
Ion-slip effects in MHD Couette flow with heat transfer in the same problem. Das and Batra [3] 
investigated Secondary flow of a Casson fluid in a slightly curved tube. Attia and Kotb [4] discussed 
MHD flow between two parallel plates with hall current. Many authors [5-10] investigated the flow 
and heat transfer of a non-Newtonian flow. Attia and Ahmed [11] analysed Hydrodynamic impulsive 
Lid driven flow and heat transfer of a Casson fluid. Sayed-Ahmed et al., [12] investigated time 
dependent pressure gradient effect on unsteady MHD Couetee flow and heat transfer of a Casson 
fluid. Afikuzzaman et al., [13-15] extended the work of Sayed-Ahmed et al., [9]’s model from different 
aspects and used explicit finite difference method (EFDM). In very recent times, different authors 
have investigated Casson fluid from different perspective [16-20]. 

Hence our main aim is to extend the work [14] in the case of two dimension problem and to 
investigate MHD viscous incompressible Casson fluid flow with hall current for different interesting 
parameters such as Magnetic parameters (𝑀), Permeability of porous medium (𝛾), Eckert number 
(𝐸𝑐), Prandtl number (𝑃𝑟), Schmidt number (𝑆𝑐), Soret number (𝑆𝑟), Grashoff number (𝐺𝑟), 
Modified Grashoff number (𝐺𝑚). The proposed model has been transformed into nonlinear coupled 
partial differential equations by usual transformation. Finally, the comparison of the current results 
with the previous [14] has been presented. 
 
2. Mathematical Formulations  
 

The fluid is assumed viscous, laminar and incompressible flows between two infinite horizontal 
plates located at hy   planes and extended from x  to  and from z  to . The lower 

plate is stationary while the upper plate moves with a constant velocity oU  (Figure 1). 

 

 
Fig. 1. Geometrical configuration of boundary layer 

 

The upper and lower plates are kept at two constants temperature respectively T2 and T1 with 
T2>T1 and concentration c2 and c1 with c2>c1. The fluid is acted upon by a constant pressure gradient, 
a uniform suction from above and injection from below which are applied at 0t . A uniform 
magnetic field is applied in the positive y-direction and is assumed undistributed as the induced 
magnetic field is neglected by assuming a very small magnetic Reynolds number. The Hall Effect is 
taken into consideration and consequently a z -component for the velocity is expected to arise. The 
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uniform suction implies that the y-component of the velocity v0 is constant.  
Thus, the fluid velocity vector is given by 
 

kji wovuv               (1) 

 
By using generalized Ohm’s law, the MHD free convection and mass transfer fluid flows are 
governed by the following equations. 
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Energy equation 
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The corresponding boundary conditions are 
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The non-dimensional variables that have been used in the governing equations are 
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Using these above dimensionless variables, the following dimensionless equations have been as 
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The corresponding non-dimensional boundary conditions are 
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2.1 Shear Stress, Nusselt and Sherwood Number 
 

From the velocity field, the effects of various parameters on Shear Stress have been studied. The 
dimensionless Shear stress for moving and stationary wall respectively is given by; 
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The dimensionless Nusselt number and Sherwood number at the moving wall and stationary wall is 
respectively given by; 
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where, 

m
T and 

m
C are the dimensionless mean value temperature and dimensionless mean value 

concentration respectively. 
 
3. Numerical Solution 
 

To obtain the difference equations the region of the flow is divided into a grid of lines parallel to 
X and Y axis where X -axis is taken along the plate and Y -axis is normal to the plate. It is considered 

that the plate of height is )100(maxX  i.e. X  varies from 0  to 100  and regard )2(maxY  i.e. Y  varies 

from -1 to 1. There are 140m  and 140n  grid spacing in the X  and Y directions respectively as 
shown in Figure 2. Hence the constant mesh size along X and Y directions respectively. 

 
Fig. 2. Two dimensional finite difference grid spaces 
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The boundary conditions with the finite difference scheme are 
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Here the subscripts i  and j  designate the grid points with X  and Y  coordinates respectively and 

the superscript n  represents a value of time, tnt   where ......2,1,0n  . The numerical values of 

the Shear stresses are evaluated by five point approximate formula. Also the numerical values of 
Nusselt number and Sherwood number are calculated by five point approximation and trapezoidal 
numerical integration rule. The stability conditions of the method are 
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 and the convergence criteria 50.0rP 

50.0cS  which are not shown for brevity. 
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4. Results and Discussion 
 

To obtain the steady-state solutions, the computations have been carried out up to dimensionless 
time 0t   to .20  The results of the computations, however, show little changes in the above 
mentioned quantities after dimensionless time 5t  . Thus, the solutions for dimensionless time 5t 

are essentially steady-state solutions. To observe the physical situation of the problem, the steady-
state solutions have been illustrated in Figure 3 to 6. 

The influence of magnetic parameter, M  on the primary velocity, the secondary velocity are 
presented in Figure 3 and 4 respectively. It is shown from Figure 3 and 4, the primary velocity U  
decreases where the secondary velocity W   increases with the increase of M . 

The effect of Magnetic parameter M  on shear stress, temperature distributions and 
concentration distributions are presented in Figure 5 to 9 respectively. It is observed that shear stress 
decreases in Figure 5 and 6 with the increase of M . The temperature distributions   are decreased 
while concentration distributions C  found minor decreasing effects at the rise of M  which are 
illustrated in Figure 7 and 8 respectively. 
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Fig. 5. Shear Stress at moving plate for different 
values of Magnetic parameter at 0.5t   
 

Fig. 6. Shear stress at stationary plate for different 
values of Magnetic parameter at 0.5t   
 

Fig. 3. Primary velocity versus Y at different values 
of Magnetic parameter at t=5.0 

Fig. 4. Secondary velocity versus Y at different values 
of Magnetic parameter at t=5.0 
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The influence of Magnetic parameter M on nusselt number, and sherwood number are 

illustrated in Figure 9 to 12 respectively. It is observed that nusselt number and sherwood number 
profiles for both plates are decreased with the increase of M . Such type of behavior is occurred due 
to moving and stationary plates. 
 
 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 

 

The effect of Soret number rS on primary velocity, secondary velocity and shear stress are 

presented in Figure 13 to 16 respectively. The primary velocity U  and secondary velocity W  are 

increased with the increase of rS which are shown in Figure 13 and 14. 
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Fig. 7. Temperature versus Y at different values of 
Magnetic parameter at 𝑡 = 5.0  
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Fig. 8. Concentration versus Y at different values of 
Magnetic parameter at 𝑡 = 5.0  
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Fig. 9. Nusselt number at moving plate for 
different values of Magnetic parameter at 0.5t   
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Fig. 10. Nusselt number at stationary plate for 
different values of Magnetic parameter at 

0.5t   
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The shear stress profiles both in upper and lower plates are increased with the increase of rS

which are shown in Figure 15 and 16 respectively. The effect of Soret number rS  temperature 

distributions and concentration distributions are presented in Figure 17 and 18 respectively. Both the 

temperature and concentration distributions are increased with the increase of rS . Such type 

behaviour is occurred due to thermal diffusion ratio. 
 
 
 
 
 
 
 

 

Fig. 11. Sherwood number at moving plate for 
different values of Magnetic parameter at 0.5t   

 

 

Fig. 12. Sherwood number at stationary plate for 
different values of Magnetic parameter at 0.5t   
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Fig. 13. Primary velocity versus Y at different values 
of Soret number at 𝑡 = 5.0  

Fig. 14. Secondary velocity versus Y at different 
values of Soret number at 𝑡 = 5.0  
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The nusselt number and Sherwood number profiles both in upper and lower plates are increased 

with the increase of rS which are shown in Figure 19 to 22 respectively. Such type behaviour is 

occurred due to thermal diffusion ratio. 
Finally, a comparison of the present steady-state results with the published results of 

Afikuzzaman and Alam [14] has been discussed. The accuracy of the present results is qualitatively 
similar but quantitatively good in case of all the flow parameters (Figure 23). 
 
 
 
 
 
 
 

Fig. 15. Shear Stress at moving plate for different 
values of Soret number at 𝑡 = 5.0  

Fig. 16. Shear Stress at stationary plate for different 
values of Soret number at 𝑡 = 5.0  
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Fig. 17. Temperature versus Y at different values of 
Soret number at 𝑡 = 5.0  
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Fig. 18. Concentration versus Y at different values 
of Soret number at 𝑡 = 5.0  
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(a) (b) 

Fig. 23. Comparison of Sherwood number for moving plate (a) Afikuzzaman and Alam work [14] (b) 
Present work  
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Fig. 19. Nusselt number at moving plate for 
different values of Soret number at 𝑡 = 5.0  

Fig. 20. Nusselt number at stationary plate for 
different values of Soret number at 𝑡 = 5.0  
 

Fig. 21. Sherwood number at moving plate for 
different values of Soret number at 𝑡 = 5.0  
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Fig. 22. Sherwood number at moving plate for 
different values of Soret number at 𝑡 = 5.0  
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5. Conclusions 
 

MHD Viscous Incompressible Casson Fluid Flow with Hall Current under the action of mass 
transfer by using explicit finite difference method (EFDM) has been taken into consideration. The 
physical properties are graphically discussed for different values of corresponding parameters. It is 
identified that, Hall term affects the primary velocity component and gives rise to another velocity 
component known as secondary velocity. The time at which temperature distributions reaches its 
steady state increases with increasing the 𝑚. The primary velocity, secondary velocity, temperature 

distribution and concentration distributions increase with the increase of rS  while it decreases with 

the increase of M .The shear stress increases both upper and lower plate with the increase of rS but 

decreases with the increase of M . The Nusselt number increases both upper and lower plate with 

the increase of rS but decreases with the increase of M . The Sherwood number increases both 

upper and lower plate with the increase of rS but decreases with the increase of M . 
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