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This study investigates the combustion process of empty fruit bunches (EFB) and palm 
kernel shells (PKS) in a bubbly fluidized-bed combustion chamber. The biomass 
combustion simulation process uses a kinetic model consisting of chemical kinetic and 
hydrodynamic flow. This modelling is based on the two-phase theory in the fluidized 
bed. Where both phases in the bed are assumed that there are a mass and energy 
transfer between them. These phases include the emulsion phase and the bubble 
phase which contains solid particles. The constant temperatures throughout the 
reactor are assumed in this modelling. This study also investigates the parametric and 
effects of various parameters carried out. The experimental research shows that there 
is a change in bed diameter and has a negligible effect on combustion performance. 
The results of biomass combustion experiments with a fluidized-bed design have 
promising and satisfying results compared to several experimental studies in the 
literature. In addition, the increase in reactor temperature and a bed height of 
combustion efficiency also increased. However, the moisture of the biomass and the 
speed of the fuel entering can affect various for combustion efficiencies. Suitable 
operating conditions can produce maximum overall efficiency. 
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1. Introduction 
 

Indonesia is one of the countries that have abundant renewable energy sources in the Southeast 
Asian region. However, the utilization and available resources are still very minimal so that the 
available energy sources cannot be utilized optimally [1,2]. Existing energy sources can be utilized for 
decades to come if they can be utilized properly and can even replace dependence on fossil energy 
[3]. 

Current researchers have paid more special attention to computational methods compared to 
before. This is because the costs are cheaper and the results obtained are relatively acceptable with 
this method than the experimental methods in Mechanical Engineering with various aspects. The 
problems of oil recovery continue to increase [4–6]. In addition, chemical reactions, molecular 
dynamics, fine particle hydrodynamics [7–10] have also been discussed. Vibration analysis and 
application [11,12], spray and atomization technology [13], droplet dynamics [14,15] and Nano-fluid 
applications [16–18] have been investigated. However, some of these works are numerical studies in 
Mechanical Engineering for various aspects. Renewable energy is one of the most important aspects 
of Mechanical Engineering and certainly needs to be investigated and studied in more detail. One of 
the most important renewable energy systems in the future is biomass energy because hydrogen 
from biomass can be produced on a large scale that can contribute to the development of renewable 
energy that is environmentally friendly [19–21]. However, the high energy consumption of 
technology in producing hydrogen sourced from biomass has hampered its development so that 
technology is only limited to the laboratory scale [22–24]. The availability of biomass for energy 
production processes has two general categories such as biological and thermochemical processes. 
The various methods used in hydrogen production through biological procedures have been 
reviewed [25].  

The discovery of these procedures took place a century ago, but at the time they were discovered 
they were not included or became practical. In the thermochemical process, there are four categories 
namely; combustion, liquefaction, gasification and pyrolysis. The sustainable development, 
combustion, is not very suitable for hydrogen production. While biomass has disadvantages such as 
operating conditions are very difficult to achieve and low hydrogen production. Therefore, producing 
hydrogen from thawing is not very profitable [26–28]. Pyrolysis can be grouped into fast and slow 
pyrolysis because its main product is produced from charcoal. The pyrolysis with the slow category 
cannot be produced into hydrogen. While fast pyrolysis has a high temperature in the process, where 
biomass heating can be done without air with a fast system. This is done so that steam can be formed 
and condensed into a dark brown liquid bio-liquid. Most of the pyrolysis can be produced into 
biofuels and hydrogen production can be done directly with fast pyrolysis if it gets high temperatures 
and sufficient volatile phase periods are allowed. Moreover, hydrogen can be produced and 
enhanced by reforming steam from the reaction during the shifting gas hydrocarbon water obtained 
from water vapor and CO. The various types of suitable catalysts, heating rate, residence time and 
temperature are control parameters for the pyrolysis process. Hydrogen production, high heating 
rate, reactor phase residence time and high temperature can support the gas product needed [29–
31]. The selection of these parameters can be regulated by various reactors and heat transfer modes 
such as heat transfer in solid conductive and solid-gas convection heat. Investigation of various 
reactor features and different heat transfer has been carried out [32–34]. From various 
investigations, it can be concluded that the high heating level shown by the fluidized bed reactor 
makes it very promising to produce hydrogen sourced from biomass pyrolysis. 

The purpose of the gasification process is to produce gas products compared to charcoal and bio-
liquid. Therefore, the gasification process is more profitable in hydrogen production than pyrolysis. 
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In addition, the solid biomass process is gasified in the presence of O2. However, the process of 
oxygen with biomass gasification has two associated disadvantages. Low hydrogen content is one of 
the weaknesses with the dilution of N2 which is sourced from the air, high CO2 emissions during the 
gasification process is also a related constraint [35]. The use of steam as a biomass gasification agent 
can be done so that losses can be reduced. In addition, other advantages can also be found in steam 
gasification. Higher-level heating can maximize the product gas produced. Moreover, the benefits of 
residence time characteristics, char efficiency and tar reduction due to steam reform. However, the 
endothermic nature of the steam gasification reaction as a whole can operate the reactor more 
precisely so that important activation energy is provided. The method required for heat input must 
use steam and air mixtures as gasification agents which can lead to losses from air gasification [36–
38]. 

In 1952, Johnson and Toomey proposed a two-phase fluidization theory in which the main 
hypothesis was divided the two phases in reactors such as emulsions and bubbles. Emulsion and gas 
phases are solid materials with a limited amount of gas present in the bubble phase [39]. The 
bubbling and assemblage bubble models found in the two-phase modes presented in 1969 have the 
most references in their fields [40]. Emulsion and bubble phases have written the conservative 
equation of the mass of the gas species. The controlled entry and exit rates of mass conservation and 
inconsistent diffusion effects for gas species at each phase need to be considered [41,42]. The 
assumption of this model is for the empty bubble phase of solid particles distributed to uniform 
species. This equation can also be considered by assuming for simplification so as to obtain a 
differential equation [43]. The conservative equations modelled on this type are considered under 
established conditions [44]. 

In this work, the process of burning empty fruit bunches (EFB) and palm kernel shells (PKS) in the 
bubbling fluidized-bed combustion chamber is investigated. The kinetic method with two phases was 
developed to simulate the combustion process with hydrodynamic parameters derived from the 
reactor flow, transport species equations and chemical reactions. There are two-phase modes for 
biomass combustion and division of the reactor into two parts solid particles are not present on a 
freeboard. The diffusion effect in this model namely; freeboard and bed. The combustion chamber 
can contain gas and solid particles, while is neglected, but it is assumed that there are some small 
solids present in the bubble phase.  
 
2. Process Modelling  
 

Kinetic models for the combustion process can provide information about the final results of 
experiments. In addition, information about the product distribution at the reactor consists of 
hydrodynamics sourced from inside the reactor. Features are very important criteria for measuring, 
designing, and optimizing parameters during the operations in a reactor [25,34–36]. This study aims 
to investigate the burning of bubbly biomass in certain operational conditions. This investigation was 
carried out using a two-phase model of the results of the development made. In addition, the effect 
on domain parameters on combustion performance was also investigated. Finally, the design of 
combustion at a certain input can be done with the algorithm of the development results. To model 
combustion kinetic, pyrolysis, chemical kinetic reaction, hydrodynamic flow behavior and mass 
conservation are considered in this study. 
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2.1 Hydrodynamic Flow 
 

The research and investigation of biomass combustion performance will use the following 
assumptions: 

a. The minimum fluidization conditions can maximize the emulsion phase. Therefore, the 
overlay fraction and velocity are always equal to the minimum fluidization conditions. 

b. The process of pyrolysis is only for a moment when the biomass enters the combustion 
chamber. Furthermore, it becomes charcoal, gas and tar. In other words, the presentation of 
pyrolysis production with this model as a limited condition because it can only be determined 
by experimental results. 

c. Pure carbon can be assumed as char, and solid particles do not disappear from the bed. 
d. Experiments for burning biomass in a fluidized bed reactor are rational [45,46]. 
e. The Freeboard reactor has no solid particles and gas velocity. This plug flow model used can 

simulate various biomass combustion processes. 
f. The volume in the bubble phase that is formed can increase with the height found in the bed. 
g. Gas species in this investigation such as CO2, CO, H2, H2O, CH4, N2, O2, and trainers. This is 

done because there are nine gases in the reactor. In addition, due to low temperatures by 
ignoring the nitrogen reaction. 

h. Meanwhile, the gas species are considered perfect. 
 
To produce the speed of channel fluid entering the combustion, the situation of the bed 

fluidization depends on the number of maximum and minimum limitations. The minimum fluidization 
speed Umf and the terminal speed Ut must be lower than the speed of the incoming channel. To 
calculate the parameters of hydrodynamics, it can use the equation below [47–49]. 
 

Minimum fluidization velocity 𝑢𝑚𝑓 =  
𝜇𝑔 (√27.22+0.0408𝐴𝑟−27.2)

𝑑𝑝𝜌𝑔
       (1) 

 

Terminal velocity 𝑢𝑡 =  𝑑𝑝  [
4(𝜌𝑝− 𝜌𝑔)

2
 𝑔2

225𝜌𝑔𝜇𝑔
]

1

3

          (2) 

 

Diameter of bubble after distributor 𝑑𝑏𝑚 = 0.652 (
𝜋

4
 𝑑𝑡

2 (𝑢𝑜 −  𝑢𝑚𝑓))
0.4

      (3) 

 

Diameter of bubble maximum 𝑑𝑏𝑜 = 0.00376(𝑢𝑜 −  𝑢𝑚𝑓)
0.4

       (4) 

 

Diameter of bubble in reactor 𝑑𝑏 =  𝑑𝑏𝑚 + (𝑑𝑏𝑜 −  𝑑𝑏𝑚)𝑒
−

0.3𝑧

𝑑𝑡        (5) 
 

Volume of bubble fraction 𝛿𝑏 =  
𝑢𝑜− 𝑢𝑚𝑓

𝑢𝑏− 𝑢𝑚𝑓
          (6) 

 

Velocity of bubble 𝑢𝑏𝑟 = 0.711(𝑔. 𝑑𝑏)0.5  
𝑑𝑏

𝑑𝑡
< 0.125        (7) 

 

Emulsion considering 𝑢𝑏𝑟 = [0.711(𝑔. 𝑑𝑏)0.5] 1.2 𝑒𝑥𝑝 (−
1.49𝑑𝑏

𝑑𝑡
) 0.125

𝑑𝑏

𝑑𝑡
< 0.6     (8) 
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Velocity of bubble in bed 𝑢𝑏 =  (𝑢𝑜 −  𝑢𝑚𝑓) +  𝑢𝑏𝑟         (9) 

 

Factor of transfer between bubble and emulsion 𝐾𝑏𝑒 =  
0.11

𝑑𝑏
                 (10) 

 
This study uses biomass fuels such as oil palm midribs (OPM), palm empty fruit bunches (EFB) and 

palm kernel shells (PKS). This biomass fuel is tested on a specially designed fluidized bed as shown in 
Figure 1. This fluidized-bed design can also be used for burning biomass from composite palm oil and 
others. 
 
2.2 Mass Conservative Equations for Species 
 

The kinetic model used in the reactor can produce a wide variety of species with the conservation 
of species mass. Thus, the settlement of solid and gas species from a conservative mass equation can 
be solved at the bottom and when on a freeboard. 

 
a. Two-phase model bed fluidizing 
 

This process is assumed to be a steady state, while its diffusion effect is ignored. Figure 2 can be 
assumed in the equation for the conservative mass of the emulsion and bubble as below. 
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Fig. 1. Design Fluidized-bed for biomass combustion 

 
The term from the equation above is the rate of change of mass represented by the right-hand 

side for each phase with adjusted convection? The first of these terms starts from the left side so 
that it can represent the rate of change in mass in each phase of the emulsion and bubble and at the 
end that is where it remains in the equation. Therefore, the resulting chemical reaction can represent 
the rate of change in mass in phase. For the equation of the conservative char, mass is shown in Eq. 
(13). Changes in the concentration of carbon are functions for the conservation of mass and non-
homogeneous reactions to charcoal in completing the emulsion phase. 
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Z + ΔZ

Gas-Out for emulsion phase

Gas-In for emulsion phase  
Fig. 2. Two-phase model bed fluidizing 

 
𝜕(𝛿𝑏𝑢𝑏𝐶𝑖,𝑏)

𝜕𝑧
=  − 𝐾𝑏𝑒 𝛿𝑏 (𝐶𝑏,𝑖 −  𝐶𝑖,𝑒) + 𝛿𝑏  ∑ 𝑣𝑗𝑖𝑟𝑖𝑔−𝑔                   (11) 

 
𝜕(𝛿𝑏𝑢𝑏𝐶𝑖,𝑏)

𝜕𝑧
=  − 𝐾𝑏𝑒 𝛿𝑏 (𝐶𝑏,𝑖 − 𝐶𝑖,𝑒) + (1 − 𝛿𝑏) ∑ 𝑣𝑗𝑖𝑟𝑖 + 

(1− 𝛿𝑏) (1− 𝜀𝑚𝑓)

𝜀𝑚𝑓
 ∑ 𝑣𝑗𝑖𝑟𝑖𝑠−𝑔𝑔−𝑔               (12) 

 
𝜕𝐶𝐶

𝜕𝑧
=  

1

𝑢𝑐
 ∑ 𝑣𝑗𝑖𝑟𝑖𝑠−𝑔                        (13) 

 
b. Freeboard 
 

Solid particles with low concentration and low gas velocity in the freeboard section in this 
simulation can adjust the flow process in the modelling. In this case, mass diffusion for gas species as 
in the mass conservation Eq. (14). It is assumed that ug is the speed of gas in a freeboard. 
 
𝜕(𝑢𝑔𝐶𝑖)

𝜕𝑧
= ∑ 𝑣𝑗𝑖𝑟𝑖𝑔−𝑔                        (14) 

 
c. Solving method 
 

For solving the presented system of equations, a computational code was developed. The 
flowchart of the generated model can be seen in Figure 3. The silica is considered to be sand particles 
to the bed reactor and biomass composite as a feed. Silica sand and biomass composites are shown 
in Table 1. 
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Fig. 3. Flowchart of calculation procedure 

 
Table 1 
The characteristics of silica sand particles and rice husk [50–52] 
Silica sand particle’s  Diameter (mm) Density 

(kg/m3) 

Silica sand particles 150-450 2650 

Rice husk humidity Approximate analysis 
(mass percentage) 

12.10 

volatile matter percentage (dry)  70.36 
carbon percentage (dry)  15.07 
ash percentage (dry) 14.57 
C Element analysis (mass 

percentage based on 
dry) 

39.78 
H 4.97 
O 40.02 
N 0.46 
S 0.2 

 
3. Results  
 

The biomass combustion reactor has a standard operating temperature. This setting presents a 
minimum operating temperature of 600oC. Because pyrolysis is assumed to have a velocity with inlet 
fuel. Moreover, the maximum temperature operated at the reactor is 900oC. This is made higher than 
the number of particles in the bed to accelerate the melt and heavier particles are formed quickly 
which stick together so that the hydrodynamic properties of the bed can be changed. The heating 
value of the gas with respect to the equality constellation which is different from the temperature 
and the combustion agent is shown in Figure 4. Based on Figure 4, the temperature increases with 
increasing heating value. However, the heating value is negatively affected by the equality ratio. A 
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30% increase in heating value when burning using oxygen as a burning agent. These results show as 
expected.  
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Fig. 4. LHV for different temperature using air and O2 as combustion agents 

 
Combustion efficiency to different equality ratios, temperatures and combustion agents is 

illustrated in Figure 5. The amount of temperature increases indicates that efficiency can be directly 
affected. However, increasing the equality ratio can increase efficiency initially and subsequently 
decrease. This can be explained by looking at and paying attention to the definition of efficiency. This 
is the heating value and function of the output gas flow rate. This multiplied parameter has caused 
an increase in the initial period; however, in its continuation, the decreasing effect predominates in 
the heating value. The maximum efficiency for combustion EFB with an equality ratio level of 0.31 
and its quantity to be 0.73 is recorded at 900oC. Combustion using oxygen on the other hand 
maximum efficiency with an equivalent ratio of 0.33 and a quantity of 0.83 is also recorded at 900oC. 

The heating value of the gas against various equal ratios of combustion agents and increasing 
humidity is shown in Figure 6. Increased biomass humidity has reduced the heating value, this is due 
to the increased amount of water vapour in the produced gas and the reduced molar fractions such 
as H2, CH4, and CO. Combustion of EFB biomass, in this case, uses oxygen, where humidity has 
increased by 14% from 2% and the heating value of 11% and 16% can decrease, respectively. The 
combustion efficiency of various equality ratios, combustion agents and humidity values is illustrated 
in Figure 7. Where these results indicate that the percentage of increased biomass humidity can 
cause the efficiency of cold gas in the reactor to decrease. The reduced EFB biomass and oxygen are 
0.18 and 0.21, respectively. 
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Fig. 5. Combustion efficiency for RE using air and O2 as combustion agents 
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Fig. 6. LHV for different RE using air and O2 as combustion agents 
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Fig. 7. Different RE outputs use air and O2 as combustion agents 

 

Species interactions can also be affected by the hydrodynamic flow and heat between the base 
material and the fuel that moves. Hydrodynamic flow can affect the volume in the bubble phase and 
the level of the emulsion and bubble phase and their subsequent growth. The value of the heated 
gas produced and the efficiency of the combustion agent against the inlet speed for different 
combustion agents are shown in Figure 8. The increased speed of the combustion agent can reduce 
the value of heating efficiency. It can be stated that as speed increases, fuel operating time in bed is 
not enough. In other words, the time available has decreased. Therefore, the reactor efficiency and 
the existing heating value can be reduced. 

Comparison of the efficiency and heating value of the bed is illustrated in Figure 9. The height 
that increases directly has an effect on the heating efficiency value. However, the changes that occur 
are not too significant. Increased altitude, carbon conversion and increased residence time were 
recorded so that the amount of gas obtained then increased. The value of the heating efficiency 
shows the effect on the diameter of the bed as shown in Figure 10. The results can be concluded that 
the diameter of the bed becomes a very dominant parameter in combustion. Combustion using 
oxygen and an increased layer of diameter can cause a small increase in the efficiency and heating 
value. This can be due to the increasing diameter so that the process of bubbles and coagulation that 
rarely joins can be delayed. Thus, the contraction between the particles and the fuel used can be 
affected. 
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Fig. 8. LHV efficiency for gas outlets and gasifiers by using air and O2 as combustion agents 
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Fig. 9. LHV for specific bed heights for outlet gas and gasifier output using air and O2 as 

combustion agents 
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Fig. 10. The result combustion for gasifiers by using air and O2 as combustion agents 

 
The value of the heating efficiency shows the effect on the diameter of the bed as shown in Figure 

10. The results can be concluded that the diameter of the bed becomes a very dominant parameter 
in combustion. Combustion using oxygen and an increased layer of diameter can cause a small 
increase in the efficiency and heating value. This can be due to the increasing diameter so that the 
process of bubbles and coagulation that rarely joins can be delayed. Thus, the contraction between 
the particles and the fuel used can be affected. The efficiency and heating value of the different bed 
particle diameters are shown in Figure 11. By changing the diameter of the bed particles in these four 
cases the efficiency and heating values initially increase, however, then continue to decrease. These 
results indicate that the diameter of 150 to 200μm hydrodynamic conditions are given optimal and 
have the best interaction between the bed particles and fuel in the reactor. 

The gas molar fraction of the difference inequality constellations is shown in Figure 12. The 
increase in nitrogen and oxygen due to the ratio of air to fuel is also increasing. It is assumed that 
oxygen is consumed during the process and all that is left is nitrogen at the end and H2, CH4, and CO 
which decrease with increasing equality ratios. However, the air used remains constant for CO2 to 
increase when combustion uses oxygen. In addition, an increase also occurred in H2O for both cases. 
The ratio of equality increases as the number of oxygen increases. Therefore, the oxygen used can 
take place more quickly and produce more CO2 and H2O. While the reaction on oxygen consumption 
to consume H2, CH4, CO and molar fraction has decreased. Combustion using EFB biomass can reduce 
the molar fraction of CH4, while the heating value such as CH4, H2, CO and the heating value of the 
resulting gas becomes reduced. The results of this study are a continuation of the analysis of the 
utilization of biomass for power plants that have been done previously [53]. The results of research 
on biomass burning have also been done before [53–55]. The pre-treatment and hydrolysis process 
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for the production of POME-based biogas with evaluation through the application of hydrolytic 
enzymes, cellulose and lipases has also been carried out [56]. Where the results reported that about 
66.67% more free fatty acids (FFA) than treatment without using POME. 
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Fig. 11. Efficiency of gas combustion using air and O2 as combustion agents 
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Fig. 12. The result combustion for RE by using air and O2 as combustion agents 
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4. Conclusions 
 

This experimental study of the process of burning palm empty fruit bunches (EFB) and palm kernel 
shells (PKS) is bubbling fluidized beds. The use of kinetic models aims at the simulation process. From 
the results of this experimental study, several conclusions can be drawn as follows: 

i. Oxygen used as a combustion agent can increase combustion efficiency and heating value. 
ii. Reactor temperature which increases directly can affect combustion efficiency and heating 

value. 
iii. The equality ratio is increased initially, increased efficiency, and then reduced. However, the 

equivalence ratio shown is poor to the heating value of the gas output. 
iv. The increased humidity can reduce heating efficiency and value. Therefore, using a dryer is 

considered more appropriate. 
v. The diameter of the reactor is ignored because it has an effect on combustion performance. 

However, the height of the reactor that increases can cause efficiency, carbon conversion and 
heating value to increase. 
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