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The assisting boundary layer flow, heat and mass transfer have wide applications in 
engineering devices and in nature: for example, nuclear reactors, heat exchangers, 
solar receivers, atmospheric flow and lake circulation. Therefore, the numerical study 
of boundary layer flow, heat and mass transfer on Newtonian or non-Newtonian fluid 
has to be developed, as a reference to experimental works. Therefore, the 
mathematical modelling and numerical solutions of boundary layer flow, heat and 
mass transfer on magneto-hydrodynamics Casson fluid are reported in this paper. The 
model problem is subjected to the presence of mixed convection with assisting flow, 
together with the buoyant feature. The Casson fluid is assumed to flow over an 
exponentially stretching sheet, together with the exponential variations of fluid 
temperature and fluid concentration. The momentum, energy and concentration 
equations are formed as the controlling equations and written as partial differential 
equations (PDE). Subsequently, these equations were transformed into the ordinary 
differential equations (ODE) by using the similarity transformation. Finally, the ODE are 
solved numerically by bvp4c program in MATLAB software. The graphs of velocity, 
temperature and concentration profiles and the numerical values of skin friction 
coefficient, local Nusselt number and local Sherwood number are presented. These 
results are obtained due to the controlling parameter, namely as magnetic field, 
assisting flow and buoyancy ratio parameters. As a result, the increment and 
decrement of the velocity, temperature, concentration, skin friction coefficient, local 
Nusselt number and local Sherwood number are influenced by magnetic field, assisting 
flow and buoyancy ratio parameters. 
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1. Introduction 
 

Double-diffusive convection occurs in the fluid due to the combination of temperature and 
concentration gradients, and both of these components diffuse at different rates. This type of in 
convection is affected by gravity. The existence of double-diffusive convection can be observed the 
field of oceanography, astrophysics and geology. Both of these gradients are under the impact of 
gravitational acceleration of the earth. Therefore, the significant developments of double diffusive 
convection have been described in details [1-2]. Some of researchers considered the fluid bounded 
by square cavity [3-5] to explain the double diffusive natural convection. Beside this, Chen and Liu [6] 
dealed with heated cylinder submerged in a salt-stratified fluid and Kalla et al., [7] considered the 
case of shallow porous cavity with vertical fluxes of heat and mass in their study. Double diffusive 
convection in Newtonian fluid [8-11] and various types of non-Newtonian fluid [12-22] are reported 
with different conditions. These types of non-Newtonian include viscoelastic [12, 17], power-law fluid 
[13, 19], nanofluid [14, 20], viscoelastic nanofluid [15], Maxwell fluid [16] and Casson fluid [18, 21-
22].  

There are various contributions of boundary layer flow and heat transfer induced by a stretching 
sheet, to the engineering processes. One of the application is the production of glass fibre, paper and 
polymer sheet. Therefore, the study of the boundary layer flow, heat and mass transfer bounded by 
stretching/shrinking sheet are conducted [8-12, 15, 17, 20]. Moreover, Soret and Dufour effects must 
not be neglected in the process of boundary layer fluid flow with the occurrence of coupled heat and 
mass transfer. Mass transfer induced by temperature differences is known as Soret effect, whereas 
Dufour effect refers to the heat transfer caused by concentration gradient in the fluid. The research 
works that include the impacts of Soret-Dufour parameters were reported by the following 
references [8-13, 17]. Besides, magnetohydrodynamics related to the occurrence of magnetic 
properties on electrically conducting fluids. The industrial applications of magnetohydrodynamics are 
for the production of solar energy by fusion process and cooling of nuclear fission reactors. The 
significant role of magnetohydrodynamics in the properties of fluid flow, heat and mass transfer 
contributes to the development of the double-diffusive convection model [17-18, 20]. 

The central focus of the study is to examine the Casson fluid flow, heat and mass transfer in the 
presence of magnetic field, assisting flow and buoyancy ratio parameters, which is subjected to the 
exponential variation of stretching sheet. To our best of knowledge, no report has far been published 
in the literature with this investigation. MATLAB bvp4c programme is used to calculate the numerical 
data and graph. Velocity, temperature and concentration profiles for different values of mixed 
convection parameter, magnetic field parameter and buoyancy parameter are shown graphically for 
both shrinking and stretching cases. Also, effect of skin friction coefficient, local Nusselt number and 
local Sherwood number for the above parameter are presented by table. This study is chronologically 
structured as Methodology, Results and Discussion, and finally Conclusion. 
 
2. Methodology  
 

Consider the mathematical formulation for two-dimensional incompressible, viscous and 
electrically conducting fluid over an exponentially permeable stretching sheet with the effect of 
magnetic field. The 𝑥-axis runs along the stretching surface and the 𝑦-axis is perpendicular to it. The 
subscripts 𝑤 and ∞ at parameters 𝑇 and 𝐶 represent the situation at the stretching sheet and at the 
point far from the sheet. A transverse magnetic field is assumed to be applied in the 𝑦-axis and 
constant magnetic field is denoted by 𝐵0.  As we can see, the temperature and concentration 
gradients between the point at stretching sheet and at the point out from the fluid region are placed 
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in Eq. (2). These components denoted the existence of double-diffusion convection, in 
magnetohydrodynamics Casson fluid (since the Casson parameter 𝜔 and magnetic field 𝐵0 also 
placed in the same equation. The mathematical model of this problem are governed by continuity, 
momentum, energy and concentration equations Eqs. (1-4). These controlling equations are listed as 
below: 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0       (1) 

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜈 (1 +

1

𝜔
)

𝜕2𝑢

𝜕𝑦2 + 𝑔𝛽𝑇(𝑇 − 𝑇∞) + 𝑔𝛽𝐶(𝐶 − 𝐶∞) +
𝜎𝐵0

2

𝜌
𝑢 (2) 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2 +
𝐷𝐾𝑇

𝐶𝑆𝐶𝑃

𝜕2𝐶

𝜕𝑦2  (3) 

 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷

𝜕2𝐶

𝜕𝑦2 +
𝐷𝐾𝑇

𝑇𝑚

𝜕2𝑇

𝜕𝑦2  (4) 

              

where 𝑢 and 𝑣 are the components of velocity in the 𝑥 and 𝑦-directions, 𝜈 =
𝜇

𝜌
 is the kinematic 

viscosity, 𝜇 denotes the viscosity, 𝜌 is the fluid density, 𝑔 is the gravitational acceleration, 𝛽𝑇 is the 
coefficient of thermal expansion, 𝛽𝐶 is the coefficient of solutal expansions,𝑇  is the temperature of 
the fluid,𝐶  is concentration of the fluid, 𝜎 is the electrical conductivity, 𝛼 is the thermal diffusivity,  
𝐷 is the solutal diffusivity of the medium, 𝐾𝑇  is the thermal diffusion ratio, 𝐶𝑆 is the concentration 
susceptibility, 𝐶𝑃 is the specific heat at constant pressure and 𝑇𝑚 is the mean fluid temperature. 

The appropriate boundary conditions are: 
 

𝑢 = 𝑢𝑤(𝑥) = 𝜆𝑈0 exp(𝑥
𝐿⁄ ) ,   𝑣 = 𝑣𝑤(𝑥),    𝑇𝑤(𝑥) = 𝑇∞ +  𝑇0 exp(𝑥

2𝐿⁄ ),  

 

𝐶𝑤(𝑥) = 𝐶∞ +  𝐶0 exp(𝑥
2𝐿⁄ ), at  𝑦 = 0         (5) 

 
𝑢 → 0, 𝑇 → 𝑇∞,    𝐶 → 𝐶∞                        at 𝑦 → ∞  

     
 

 
where 𝜆 > 0 is the stretching parameter and the wall mass suction velocity is represented by 𝑣𝑤(𝑥) <

0.  The term exp(𝑥
2𝐿⁄ ) in temperature 𝑇𝑤 and concentration distribution 𝐶𝑤 are taken from the 

previous study [8-11], so that the numerical results will satisfy final boundary condition after 
substituting similarity variables.     

Introducing new similarity variables: 
 

𝜃(𝜂) =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
, 𝜑(𝜂) =

𝐶−𝐶∞

𝐶𝑤−𝐶∞
,       𝜂 = 𝑦 (

𝑈0

2𝜈𝐿
)

1/2

exp(𝑥
2𝐿⁄ ),     

 

𝑢 = 𝑈0 exp(𝑥
𝐿⁄ )𝑓′(𝜂),             (6) 

 

𝑣 = − (
𝜈𝑈0

2𝐿
)

1/2

exp(𝑥
2𝐿⁄ ) [𝑓(𝜂) + 𝜂𝑓′(𝜂)]  

 
where prime indicates the differentiation with respect to 𝜂. 
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Substituting Eq. (6) into Eqs. (2 ‒ 5), the new ordinary differential equations and boundary 
conditions are obtained as below: 
 

(1 +
1

𝜔
) 𝑓′′′ + 𝑓𝑓′′ − 2(𝑓′)2 + 2𝑅𝑖 [𝑒𝑥𝑝 (

−3𝑋

2
)] (𝜃 + 𝑁𝜑) − 2𝐻[𝑒𝑥𝑝(−𝑋)]𝑓′ = 0                 (7) 

    
1

𝑃𝑟
𝜃′′ + 𝑓𝜃′ − 𝑓′𝜃 + 𝐷𝑏𝜑′′ = 0       (8) 

 
1

𝑆𝑐
𝜑′′ + 𝑓𝜑′ − 𝑓′𝜑 + 𝑆𝑟𝜃′′ = 0    (9) 

 
𝑓′(𝜂) = 𝜆,    𝑓(𝜂) = 𝑆,   𝜃(𝜂) = 1,    𝜑(𝜂) = 1              at   𝜂 = 0  
𝑓′(𝜂) → 0,    𝜃(𝜂) → 0,    𝜑(𝜂) → 0                                      as  𝜂 → ∞                                  (10) 
   

The parameters involved in this problem are mixed convection parameter 𝑅𝑖 = 𝐺𝑟/𝑅𝑒2, 
magnetic field parameter 𝐻 = 2𝜎𝐿𝐵0

2/𝜌𝑈0, thermal Grashof number 𝐺𝑟 = 𝑔𝛽𝑇(𝑇0 − 𝑇∞)𝐿3/𝜈2,  
Reynolds number 𝑅𝑒 = 𝑈0𝐿/𝜈 , dimensionless coordinate along the plate parameter 𝑋 = 𝑥/𝐿,   
length of the extended/compressed sheet 𝐿 , buoyancy ratio 𝑁 = 𝛽𝐶(𝐶0 − 𝐶∞)/𝛽𝑇(𝑇0 − 𝑇∞), 
Prandtl number 𝑃𝑟 = 𝜈/𝛼, Schmidt number 𝑆𝑐 = 𝜈/𝐷, Soret number 𝑆𝑟 = 𝐷𝐾𝑇(𝑇0 − 𝑇∞)/
𝑇𝑚𝜈(𝐶0 − 𝐶∞), Dufour number 𝐷𝑏 = 𝐷𝐾𝑇(𝐶0 − 𝐶∞)/𝐶𝑆𝐶𝑃𝜈(𝑇0 − 𝑇∞), and suction parameter is 

defined as 𝑆 = (𝑣𝑤(𝑥)/ exp(𝑥
2𝐿⁄ ) ×  √2𝐿/𝜈𝑈0) > 0. The opposing flow is when 𝑅𝑖 < 0. 

Otherwise, the positive 𝑅𝑖 indicates the case of aiding flow. 
The physical parameters of skin friction coefficient 𝐶𝑓,  local Nusselt number 𝑁𝑢𝑥 ,  and local 

Sherwood number 𝑆ℎ𝑥,  are presented as follow:  
 

𝐶𝑓 = (
𝜇

𝜌𝑈0
2) (

𝜕𝑢

𝜕𝑦
),      𝑁𝑢𝑥 = (

𝐿

𝑇𝑤−𝑇∞
) (−

𝜕𝑇

𝜕𝑦
)

𝑦=0
   ,    𝑆ℎ𝑥 = (

𝐿

𝐶𝑤−𝐶∞
) (−

𝜕𝐶

𝜕𝑦
)

𝑦=0
                 (11) 

 
Substituting Eq. (6) into Eq. (11), then we get 

 

𝐶𝑓√2𝑅𝑒𝑥𝑒𝑥𝑝 (
−3𝑋

2
) = 𝑓′′(0),       𝑁𝑢𝑥√2/𝑅𝑒𝑥𝑒𝑥𝑝 (

−𝑋

2
) = −𝜃′(0),   

 

𝑆ℎ𝑥√2/𝑅𝑒𝑥𝑒𝑥𝑝 (
−𝑋

2
) = −𝜑′(0)                  (12) 

 

The final stage of methodology is by performing numerical calculation on the system of 

exponentially ordinary differential equation together with the boundary conditions Eq. (10) using 

MATLAB programming. The results are represented in the form of graphs and tables, showing the 

effect of the controlling parameters namely as magnetic field, assisting flow and buoyancy ratio. 
 

3. Results and Discussion 
 

The system of exponentially ordinary differential equations Eqs. (7) to (9), together with the 
boundary conditions Eq. (10) are solved numerically using MATLAB programming (namely as MATLAB 
bvp4c). The accuracy of our numerical method is reached by comparing numerical data obtained, 
with another numerical method as showed in Table 1. Table 1 shows the comparison of skin friction 

coefficient 𝐶𝑓√2𝑅𝑒𝑥𝑒𝑥𝑝 (
−3𝑋

2
) , local Nusselt number 𝑁𝑢𝑥√2/𝑅𝑒𝑥𝑒𝑥𝑝 (

−𝑋

2
) and local Sherwood 
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number 𝑆ℎ𝑥√2/𝑅𝑒𝑥𝑒𝑥𝑝 (
−𝑋

2
) between current data and with shooting method. This technique is 

developed in Maple software, by converting the Eqs. (7)-(9) into an initial value problem. The fourth-
order Runge–Kutta integration scheme is applied to solve the initial value problem. The values for 
𝑓′′(0), −𝜃′(0) and −𝜑′(0) are required to perform the shooting technique, together with the 
predicted highest boundary layer thickness 𝜂. Generally, both of the methods (Maple and MatLab) 
have to produce numerical results which satisfy final boundary conditions Eq. (10). As a conclusion, 
the present values are in good agreement with the different numerical technique. Therefore, the 
good comparison proves that our bvp4c MATLAB is applicable to use for providing subsequent 
findings in this paper.  

The numerical solutions obtained from this article are dual. They are labelled by the first solution 
(solid line), and the second solution (second line). However, there is only one solution which is stable 
and physically reliable. Besides, another solution is unstable and not physically occur in actual state 
in fluid. Therefore, stability analysis is used to select the most stable solution among multiple 
solutions. However, we did not perform the calculations of stability due to the restrictions of paper 
pages. In this article, the stable solution is recognized by the pattern of velocity, temperature and 
concentration variations against boundary layer thickness. The stable solution always following the 
conditions at the boundary Eq. (10), with minimal existence of minimum or maximum peaks. In this 
article, the stable solution is declared as the first one. The MATLAB program declares the uniform 
variation as first solution, otherwise it will be labelled as the second one. Besides, second solution is 
denoted as unstable, not physically reliable and rejected.  

The velocity, temperature and concentration profiles for different values of 𝐻 are depicted in 
Figures 1-3. The values of the fluid velocity at a point near the stretching sheet for the both solutions 
show that the velocity is the lowest when the value of 𝐻 = 1. Velocity profile reduces due to the 
increment of magnetic parameter. The effect of magnetic parameter is to increase the Lorentz force. 
Consequently, an augmentation of the Lorentz force opposes the flow and the velocity of the fluid is 
decreased. The temperature profile for the first solution when the sheet is stretched (Figure 2) 
presents the improvement by addition rate of magnetic parameter 𝐻. The rate of the fluid 
temperature for the first solution in Figure 2 are continuously decrease until they reach the zero 
value. The rate of concentration for the first solution in Figure 3 is the highest, for the highest 𝐻. It is 
clear from Figures 2 and 3 that an increase in the magnetic field increases the thickness of thermal 
and concentration boundary layer. This means that as the magnetic parameter increases, the 
temperature and concentration profile also increases. The decrement of the magnitude of velocity 
rate in the boundary layer, due to the effect of magnetic field induces the increment of the fluid 
temperature and concentration. 

The velocity, temperature and concentration profiles for different values of 𝑅𝑖 are depicted in 
Figures 4, 5 and 6, respectively. The values of the fluid velocity in Figure 4 at a point near the 
stretching sheet for the both solutions show that the velocity is the lowest when the value of  𝑅𝑖 =
0.5. From Figure 5 when the value of 𝑅𝑖 = 0.5 , the value of temperature is the highest for the first 
solution while in second solution the value of temperature is the lowest.  When the point near the 
stretching sheet for the value of 𝑅𝑖 = 0.5, the maximum peaks exist for the first solution shown in 
Figure 6. The variation of concentration profile against 𝜂 for the second solution (in Figure 6) shows 
a decrement, to reach minimum peak. Further, it increases continuously. 

The graph of velocity, temperature and concentration profiles are shown in Figures 7-9. These 
graphs are drawn for various values of 𝑁. When 𝑁 = 4, the momentum boundary layer thickness is 
the highest for the both solutions at a point near the stretching sheet (Figure 7). This figure presented 
the addition in velocity in the first solution, due to the addition of 𝑁, and for small 𝜂.  The variation 
of temperature profile (Figure 8) are continuously decreased until they reach the limit point. The 
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values of the fluid temperature for the second solution show that the temperature is the highest for 
the lowest value of 𝑁.  The concentration is decreased (Figure 9) by the increment of 𝑁.   and for the 
first solution. Figure 9 shows that the existences of the positive peaks for the first solution at point 
near the stretching sheet and the negative peaks exist for the second solution. These negative peaks 
are increased as the value of 𝑁 increases.   

It is clear from Figures 4 and 7 that velocity distribution is increased for the increment of mixed 
convection parameter 𝑅𝑖 and buoyancy ratio parameter 𝑁. This is due to the fact that higher rate of 
mixed convection parameter is caused by a greater buoyancy effects. Therefore, the fluid flow is 
accelerated and the instantaneous velocity increases. Figures 5-6 and 8-9 show that the temperature 
and concentration decrease with increasing values of mixed convection parameter 𝑅𝑖 and buoyancy 
ratio parameter 𝑁. When parameter 𝑅𝑖 (i.e. buoyancy effects) increase, it contributes to the 
increment of the convection cooling effect. As a result, the temperature and concentration reduce.   

The tabulation of skin friction coefficient, local Nusselt number and local Sherwood number for 
the impact of parameters 𝐻, 𝑅𝑖 and 𝑁 is presented in Table 2.  It can be seen from Table 2 that the 
increment values of 𝐻 cause the values of skin  friction coefficient number, local Nusselt number and 
Sherwood number become decrease for the first solution. Second solution shows that the values of 
skin friction coefficient number and local Nusselt number decrease but the values of local Sherwood 
number increase due to increasing value of 𝐻. Table 2 also shows that the first solution always had 
an increment for the skin friction coefficient, the local Nusselt number and the local Sherwood 
number caused by the effect of increasing parameter 𝑅𝑖. Moreover, second solution only had an 
increment in skin friction coefficient and the local Sherwood number which are affected by the same 
parameter. The effect of parameter 𝑁 is to increase the values of skin friction coefficient number, 
local Nusselt number and local Sherwood number for the first solution. However, the impact of 
parameter 𝑁 for the second solution is to enhance the values of the skin friction coefficient number 
and the local Nusselt number. A decrement in the values of the Sherwood number observed in 
second solution due to an increment in the values of 𝑁. 

 
Table 1 
The comparison with shooting method for various values of ω and H when ω=100, Ri=0.5, Sr=2.0, 
Db=0.03, X=0.1, λ=1, Sc=1, N=0.5, Pr=1, S=2.5 
 
Solution 

 
𝐻 

𝐶𝑓√2𝑅𝑒𝑥 × 𝑒𝑥𝑝 (
−3𝑋

2
) 𝑁𝑢𝑥√2/𝑅𝑒𝑥 × 𝑒𝑥𝑝 (

−𝑋

2
) 𝑆ℎ𝑥√2/𝑅𝑒𝑥 × 𝑒𝑥𝑝 (

−𝑋

2
) 

(a) (b) (a) (b) (a) (b) 

First 

0.5 -2.68915  -2.68916  2.94868 2.94869 -2.64919 -2.64918 

1 -2.94117 -2.94117 2.93502 2.93501 -2.66278 -2.66278 

1.5 -3.16702 -3.16701 2.92340 2.92340 -2.67369 -2.67368  

Second 

0.5 -4.18403 -4.18403 3.10758 3.10757 -2.99277 -2.99277 

1 -4.44169 -4.44168 3.14122 3.14122 0.93555 0.93554 

1.5 -4.64893 -4.64893 3.44751 3.44750 3.40391 3.40391 

(a) Current values, (b)   Values obtained by shooting method 
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Fig. 1. Velocity profile for different values of H 

 

 
Fig. 2. Temperature profiles for different value of H 

 

 
Fig. 3. Concentration profiles for different value of H 
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Fig. 4. Velocity profile for different values of Ri 

 

 
Fig. 5. Temperature profile for different value of Ri 

 

 
Fig. 6. Concentration profile for different value of Ri 
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Fig. 7. Velocity profiles for different value of N 

 

 
Fig. 8. Temperature profiles for different value of N 

 

 
Fig. 9. Concentration profiles for different value of N 
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Table 2  
The values of skin friction coefficient, local Nusselt number and local Sherwood number due to the effect of 
parameters 𝐻, 𝑅𝑖 and 𝑁 

Parameters Values 
𝐶𝑓√2𝑅𝑒𝑥 × 𝑒𝑥𝑝 (

−3𝑋

2
) 𝑁𝑢𝑥√2/𝑅𝑒𝑥 × 𝑒𝑥𝑝 (

−𝑋

2
) 𝑆ℎ𝑥√2/𝑅𝑒𝑥  × 𝑒𝑥𝑝 (

−𝑋

2
) 

First 
solution 

Second 
solution 

First 
solution 

Second 
solution 

First 
solution 

Second 
solution 

𝐻 
0.6 
0.8 
1 

-2.24482 
-2.35792 
-2.46571 

-3.55708 
-3.70017 
-3.88426 

2.97580 
2.96950  
2.96361 

2.89334 
2.90050 
2.73122 

-2.61965 
-2.62615 
-2.63212 

-2.31887  
-1.48953  
-0.04634 

𝑅𝑖 
0.5 
0.8 
1 

-2.94117 
-2.65316  
-2.46571 

-4.44169  
-4.05712 
-3.88426 

2.93502 
2.95254  
2.96361 

3.14122  
3.00205  
2.73122 

-2.66278 
-2.64382 
-2.63212 

0.93555  
-0.49706 
-0.04634 

𝑁 
0.5 
1 
4 

-2.46571 
-1.97500 
0.56325 

-3.88426  
-3.17300 
-0.28188 

2.96361 
2.99533 
3.13401 

2.73122  
2.93917 
3.05900 

-2.63212 
-2.59654  
-2.45916 

-0.04634  
-1.83899 
-2.38784 

 
4.   Conclusions 

 
The magnetohydrodynamics casson fluid flow, heat and mass transfer in the presence of assisting 

flow and buoyancy ratio parameters are reported. From the graphs and tables, following conclusion 
are listed as below: 

I. Fluid velocity of the first solution is enhanced due to the increment of mixed convection 
and buoyancy ratio parameters. In addition, minimum peak arises in the velocity graphs for 
the small 𝜂 on the second solution. 

II. The impact of magnetic field parameter is to increase the rate of fluid temperature and 
concentration of the first solution. The temperature and concentration is highest at the wall 
(𝜂 = 0).  

III. The increment values of skin friction coefficient, local Nusselt number and local Sherwood 
number on the first solution are influenced by the augmentation of parameters Ri and N.   
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