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ABSTRACT 

In this paper, an improved Particle Swarm Optimization (PSO) that combines the Proportional-Integral-Derivative (PID) controller 
for positioning control in Electro-Hydraulic Actuator (EHA) system is proposed. Conventionally, PSO with single objective function 
is designed to determine the optimal parameters of the controller. However, PSO with single objective function might not solve 
the problem effectively. Hence, a Multi-Objective PSO (MOPSO) is proposed in this work. Two objective functions will be used in 
the optimization task, which includes mean error and overshoot percentage. The most popular method in MOPSO is Linear 
Weight Summation (LWS). This paper focuses on investigating the effect of different weight factors combination between mean 
error and overshoot. Time domain analysis such as overshoot percentage, steady-state error, and mean error will be used to 
analyse the positioning performance of the EHA system. The results showed that the EHA system performed better by using the 
best combination of weight factors between mean error and overshoot. 
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1. Introduction 
 

Electro-Hydraulic Actuator (EHA) system is widely used in industry due to fast response, high 
precision and the small size-to-power ratio [1]. However, the EHA system is known as a highly non-
linear system. This is mainly due to the effect of the dynamic performance, the dead zone and 
leakage, and the flow-pressure relationship of the servo/proportional valve [2]. Technically, the EHA 
system is often harnessed in the system, which requires high-performance control with high precision 
and heavy load [3].  

Several control approaches have been proposed for controlling the EHA system. However, the 
Proportional-Integral-Derivative (PID) controller is still the main choice for the industry. Unlike other 
controllers, PID has a simple structure, fast design process and robust performance in a wide range 
of operating conditions [4]. In the past study, a self-tuning fuzzy PID controller has been proposed in 
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Zheng et al., [5] for a volume control the electro-hydraulic press. It was proven that the controller 
showed the great ability to restrict the disturbance and increase the ability of the volume control 
EHA system. Another PID controller that implemented in hose-compensation strategy and valve-
compensation strategy was designed for position tracking control of hose-connected electro-
hydraulic lifting system in Hou et al., [6]. The results showed that both strategies worked effectively 
with PID controller and showed a significant improvement in tracking accuracy. 

However, it is difficult to tune the PID controller for obtaining the desired controller’s parameters. 
Traditional tuning techniques such as trial-and-error is able to achieve the optimal parameters in a 
very short period. However, the difference is not obvious and the desired performance is not 
guaranteed. Another tuning method is Ziegler-Nichols, which is one of the popular and simple 
methods. Unfortunately, this method is shown to be aggressive, and it will lead to large overshoot 
and oscillatory response [4].  

Many researchers began to use the meta-heuristic optimization algorithm to find the most 
appropriate PID controller’s parameters. Two most common optimization strategies are a genetic 
algorithm (GA) and particle swarm optimization (PSO). Nevertheless, PSO is simpler and its operation 
is much convenient as compared to GA. As compared to GA, PSO tends to converge faster in searching 
for the best solution [7].  In this paper, an improved PSO called Multi-Objective Particle Swarm 
Optimization (MOPSO) is developed for controlling the positioning of the EHA system. 

The rest of the paper is organized as follow: Section II will briefly introduce the EHA system 
modeling, followed by the proposed optimization approach in Section III. Section IV will discuss the 
implementation of the simulation and the results. Finally, conclusion and future recommendation 
are outlined in Section V. 
 
2. EHA System Modeling  
 

Figure 1 shows the physical model of the electro-hydraulic actuator (EHA) system utilized in this 
paper. The main objective in this paper is to generate the input current to adjust the position of the 
hydraulic cylinder to push the mass (M) which also attached to spring and damper to the desired 
position. The hydraulic oil will flow through the pipeline from the servo valve and the hydraulic 
cylinder. The piston in the hydraulic cylinder is then pushed by the hydraulic oil to move the mass to 
the desired position. 

 

 
Fig. 1. Schematic diagram of the EHA system 

  
The established mathematical modeling of the EHA system by Kalyoncu and Haydim [8] is used 

in this paper. Since mathematical modeling is not the main topic in this paper, it will not discuss in 
detail in this paper. For details dynamic equations, please refer to Kalyoncu and Haydim [8].        
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The final total force produced from hydraulic actuator can be obtained in Eq. (1) which had 
included all the dynamic’s equation of moving mass, damper, and spring. 

 

     

2

1 2 2
( ) p p

p p p s s p f

d x dx
F A P P M B K x F

dt dt
          (1) 

 
In this simulation study, some of the parameters might vary from Kalyoncu and Haydim [8]. The 

EHA system parameters used in this paper have been tabulated in Table 1. 
 

Table 1 
EHA system parameters 
Symbol Description Value 

Isat Torque motor saturation current 0.02 A 
Lc Servo-valve coil inductance 0.59 H 
Rc Servo-valve coil resistance 100 Ω 
β Hydraulic fluid bulk modulus 1.4x109 N/m2 
ωn Servo-valve natural frequency 543 rad/s 
ξ Servo-valve damping ratio 0.48 
Pr Return pressure 0 Pa 
Ps Pump pressure 2.1x107 Pa 
K Servo-valve gain 2.38x10-5 m5/2/kg1/2 
Mp Total mass 9 kg 
Xs Total actuator displacement 0.1 m 
Bs Damping coefficient 2000 Ns/m 
Ap Piston area 645x10-6 m2 
Ks Spring stiffness 10 Nm 

 
3. Proposed Optimization Approach  
3.1 Proportional-Integral-Derivative Controller 

 
PID controller is the most popular controller in the industry. Figure 2 illustrates the PID controller 

structure. The top path is called the proportional path, the output of the proportional path is the 
multiplication of the error (e) and the proportional gain, KP. The second path is the integral path. The 
output of this path is the multiplication of the integral of the error (e) and the integral gain, KI. Note 
that the integral of the error is the area under the curve of the graph of error (e) versus time. Finally, 
the third path is the derivative path. The error (e) is first differentiated to get the rate of change of 
the error and then multiplied it with derivative gain, KD. All the output of these three paths is then 
added together using a summing block to become a total PID controller action and produce a control 
signal (u) to a plant or system. 

The overall PID control function can be expressed mathematically as in Eq. (2). 
 

  
0

( )
( ) * ( ) * ( ) *

t

P I D

de t
u t K e t K e t dt K

dt
          (2) 
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Fig. 1. PID controller structure 

 
The PID controller parameters KP, KI, and KD are chosen to satisfy the prescribed performance 

criteria regarding the mean error and the overshoot in the optimization process. Two desired 
objective functions are designed as shown in Eqs. (3) and (4). 

 
_ ( )mean error mean error             (3) 

 


 
max( )

( ) 100%
output input

overshoot
input

          (4) 

 
3.2 Particle Swarm Optimization (PSO) 

 
Conventional PSO is an optimization method introduced by Kennedy and Eberhart in 1995 [9]. It 

was motivated by the social behavior of organisms such as bird flocking and fish schooling to find the 
food. In PSO, the particles population is called swarm and its potential solutions are called particles. 
The particles flying around in a multidimensional problem space [10]. 

First, the initial position of a particle is initialized using Eq. (5). Each potential solution of the 
optimization problem is represented by a single particle.  

 

   min max min( )ix x x x rand             (5) 

 
where xi is the position of the particle at i order, xmin and xmax are the minimum and maximum values 
in the search space, rand is randomly generated number between 0 and 1. Then the best position 
achieved by each particle based on its own experience will set as local best, PBEST and the best position 
achieved by a group of particles in the entire swarm will be set as global best, GBEST. 

The position and velocity of each particle will change with time (iteration). The new position, xi+1 
and new velocity, vi+1 of each particle in every iteration are updated using Eqs. (6) and (7). 
 

  1 1i i ix x v   (6) 
 

     1
1 1 2 2( ) ( )i i i i i

BEST BESTv v c r P x c r G x   (7) 

 
where w is the linearly decreasing inertia weight, vi is the current velocity of the particle, r1, r2 are the 
random numbers that uniformly distributed in the interval 0 to 1, c1 and c2 are acceleration constants. 

In order to improve the accuracy and efficiency, a linearly decreasing inertia weight from wmax to 
wmin as shown in Eq. (8) is applied. 
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
  max min
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( )
( ) max

w w
w w iter

i
  (8) 

 
where wmax and wmin are the boundaries on inertia weight, maxiter is the maximum iteration number. 
 
3.3 Multi-Objective Particle Swarm Optimization (MOPSO) 

 
The conventional PSO was devised only to solve for single-objective problems [11]. Multi-

objective Particle Swarm Optimization (MOSPO) is an improved version of conventional PSO to 
handle multi-objective problems which mean to optimize more than one objective function 
throughout the whole optimization. Two objective functions in Eqs. (3) and (4) will be optimized using 
the proposed MOPSO in this paper.  

Among the available MOPSO methods [4], [7], [12-17], linear weight summation (LWS) approach 
or another named weight aggregation (WA) strategy is the simplest and most popular method. This 
method converts a multi-objective problem into a single fitness equation using specific or selected 
weight factors (alpha,  and beta,  ) as in Eq. (9). 

 
    ( _ ) ( )Fitness mean error overshoot    (9) 

 
where   and   are two weight factors and   1 . Higher weight value means higher priority is 

placed on the respective objective function. Mean error and overshoot values in Eq. (9) are 
normalized values of the result obtained from Eqs. (3) and (4).  

In order to obtain the optimum value of   and  , different combinations of   and   are tested 

and the output performance is shown in the next section. Table 2 shows the different combinations 
of weight values used in this paper. 

 
Table 2 
Different combinations of weight values 

Combinations 
 

Case 

Weight Values 

    

1 0.1 0.9 
2 0.2 0.8 
3 0.3 0.7 
4 0.4 0.6 
5 0.5 0.5 
6 0.6 0.4 
7 0.7 0.3 
8 0.8 0.2 
9 0.9 0.1 

 
Case 1 to case 4 shows that more weight on  , which means that more priority is put on 

overshoot. Case 5 shows equally weight factor for both   and  , and this means that mean error 

and overshoot are equally important and is taken into consideration equally during our simulation. 
Case 6 to case 9 show more weight on  , and this indicates that more priority is put on a mean error 
in our optimization throughout the whole simulation. 
 
4. Implementation, Results and Discussion 
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All the simulations are conducted using Intel (R) Core (TM) i7-4790 Processor, 16.0 GB RAM, 3.60 

GHz, Microsoft Windows 7 and MATLAB version 2016b. The EHA system model with nonlinear 
equations in Kalyoncu and Haydim [8] is designed via Simulink as shown in Figure 3.  

 

 
 Fig. 2. The structure of the EHA system model 

 
A complete control structure that includes the EHA system model and a PID controller is 

illustrated in Figure 4. An input voltage corresponding to position input (reference step input) is 
transmitted to the PID controller optimized using MOPSO technique. The input current is generated 
in proportion to the error between voltage output and the voltage input to fed into the EHA system. 
Time-domain specifications such as mean error, overshoot percentage, and steady-state error will be 
analyzed. 

 

 
Fig. 4. The control structure of EHA system model and PID controller 

 
The parameters setting of MOPSO is shown in Table 3. Each case in Table 2 runs for 5 times, and 

the average value is used for performance measurement.  
The parameters of PID controller KP, KI, and KD for each case is shown in Table 4. In each case, the 

parameters of the controller are the average values obtained from 5 runs. 
After obtaining the controller parameters using the proposed MOSPO, the controller parameters 

recorded in Table 4 are then used in the PID controller and the EHA system (shown in Figure 5) is 
simulated again. 
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Table 3 
Optimization parameters 
Symbol Description Value 

c1 Cognitive component 2.0 
c2 Social component 2.0 
N Number of populations 30 
dim Dimension 3 
maxiter Number of iterations in each optimization 50 
xmin Minimum values in search space boundary 0 
xmax Maximum value in search space boundary 30 
wmax Initial weight value 0.9 
wmin Final weight value 0.4 

 
Table 4 
Controller parameters for each case 

Case 
Controller Parameters 
KP KI KD 

1 29.1899 0.0383 0.0340 
2 29.8985 0.0311 0.1789 
3 29.7331 0.0250 0.4219 
4 29.9736 0.8924 0.1623 
5 29.9542 0.0091 0.2654 
6 29.6628 0.0082 0.0090 
7 29.6211 0.1035 0.0338 
8 29.6781 0.0017 0.4333 
9 29.8833 0.6325 0.4028 

 

 
Fig. 5. The block diagram of the EHA system with a PID controller 

 
The output performances of the EHA system are illustrated in Figure 6 and Figure 7. Figure 6 

illustrates the steady state error while Figure 7 shows the overshoot of the EHA system. The 
simulation time is 10 seconds. A 0.03 m of displacement act as the step reference input signal is fed 
into the EHA system at step time equal to 3 seconds to evaluate the position tracking performance. 
The sampling time used in the simulation in this paper is 0.001 second.  

The time-domain specifications such as mean error, overshoot percentage, and steady-state 
error are analyzed and recorded. Table 5 shows the output performance for each case of the 
combination of weight values using the PID controller parameters in Table 4. 

From Table 5, mean errors for all the cases do not show much difference. The mean error for case 

1 to case 9 are in between 0.635
 310  m and 0.908

 310  m, which are only below 1 millimeter. For 
the overshoot percentage, case 2 showed the highest overshoot percentage, which is 1.7057% while 
case 7 showed the lowest overshoot percentage, which is 0.0362%. Apart from that, case 7 showed 

a result of 1.081
 510  m in steady-state error, which is the lowest among all the cases shown in Table 

5.  
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Fig. 6. The steady-state error of the EHA system 

 

 
Fig. 7. The overshoot of the EHA system 

 
Among all the case with different combinations of weight factors in MOPSO, case 7 with the 

weight factors of 0.7 on a mean error and 0.3 on overshoot is found to be the best combination. 
Simulation results showed that under this combination, the EHA system obtained the least overshoot 
percentage and steady-state error. Therefore, it can be concluded that the mean error is more 
important or having a higher priority in selecting the optimal PID controller parameters.   
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Table 5 
The output performance of the EHA system 

Case 
Output Performance 
Mean Error (m) Overshoot Percentage (%) Steady-state Error (m) 

1 0.645  310  0.2360 6.712  510  

2 0.908  310  1.7057 33.573  510  

3 0.659  310  0.1837 5.307  510  

4 0.674  310  0.2121 6.096  510  

5 0.666  310  0.3017 8.460  510  

6 0.678  310  0.5275 13.853  510  

7 0.639  310  0.0362 1.081  510  

8 0.678  310  0.0383 1.143  510  

9 0.635  310  0.3540 9.709  510  

 
5. Conclusions 
 

This paper presents the design of an optimal PID controller for positioning control in EHA system. 
In addition, the nonlinear dynamic equations of the EHA system has been derived and explained. In 
this paper, MOPSO based on linear weight summation has been used to find optimal PID controller 
gains. Time domain analysis has been examined. Simulation results have shown that the EHA system 
performed better by using the best combination of weight factors (mean error and overshoot is 
0.7:0.3).  

In the future, different types of controllers will be considered. More advanced optimization 
techniques such as cuckoo search, bat algorithm, firefly algorithm, and grey wolf optimizer will be 
used to optimize the controller parameters. 
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