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Abstract — Much research has been done in determining constitutive models for Nonlinear
Transversely Isotropic Solids. The strain energy functions with different types of invariants were
developed in the past to serve some purposes. In isotropic elasticity, phenomenological strain energy
functions with principal stretches have certain attractive features from both the mathematical and
physical viewpoints. These forms of strain energy have been widely and successfully used in
predicting elastic deformations. In this paper, we extend these successful principal-stretches-isotropic
models to characterise transversely isotropic solids based on previous work. We introduce five
invariants that have immediate physical interpretation. Three of the invariants are the principal
extension ratios and the other two are the cosines of the angles between the principal directions of the
right stretch tensor and the material preferred direction. This model has an experimental advantage
and the theory is compared well with experimental data.Copyright © 2015 Penerbit Akademia Baru
- All rights reserved.
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1.0 INTRODUCTION

Hyperelasticity is the capability of a material to experience large elastic strain due to small
forces, without losing its original properties [1]. A hyperelastic material has a nonlinear
behaviour, which means that its answer to the load is not directly proportional to the
deformation.

The modeling and design of hyperelastic materials consists of the selection of an appropriate
strain energy function W and accurate determination of isotropic, hyperelastic materials,
therefore extending these models to include anisotropic, pseudoelastic behaviour creates
models appropriate for biological tissues. The essential concept of this class of theory is that
the energy density in the material can be determined as a function of the strain state. Once the
strain-energy function W is known, the stress state can be determined by taking the
derivative of W with respect to a strain measure, such as
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where o is the Cauchy (true) stress tensor and & is the Green strain tensor. The most
common form used to determine stresses for the materials considered here is

a:—p1+2F%—VCVFT (2)

where F is the deformation gradient, C is the left Cauchy-Green strain tensor, p is the

Lagrange multiplier to enforce incompressibility, and I is the identity tensor [2]. The basic
physical properties of biological tissue govern the assumptions that can be made in the
formulation of a constitutive model. Many models exist that involve assuming a strain-energy
function for the tissue. Based on observations for rat mesentery, Fung and co-workers [3]
proposed that the strain-energy should be exponentially related to the strain. In transverse
isotropy, the material has one preferred direction parallel to the fiber direction, and the
responses in every direction perpendicular to the referred direction are identical to each other.

1.1 Transversely Isotropic Model

In general (in three dimensions), two independent invariants are sufficient to characterize the
anisotropic nature of a transversely isotropic material model, one of which is related directly
to the fiber stretch and is denoted by [,. The standard reinforcing model is a quadratic
function that depends only on this invariant. The other invariant, denoted by /5, is also related

to the fiber stretch but introduces an additional effect that relates to the behaviour of the
reinforcement under shear deformations. When the deformation is restricted to plane strain
with the fiber direction in the considered plane these two invariants are no longer independent
[4,5]. The models in this section determine strain-energy functions based on the assumption
of transverse isotropy and in terms of strain invariants. Transverse hyperelasticity can be
completely described by the three strain invariants and two pseudo-invariants [2].

In [6], for transversely isotropic the fourth strain invariants is included in energy function, i.e.
W(,,1,,1,,1,). A, is denoted as principal stretches of deformation gradient F' and [, is a
function of a strain-energy function for transversely isotropic solid i.e. mitral valve tissue was
carefully determined and verified by [7,8]. In the past, the stress deformation response was
shown to be chiefly a function of the first invariant and the stretch in the fiber direction,
W=wd,,a) (3)

Specifically, the response was modeled by a form analogous to the exponential proposed by

(9],
W, 1,)=c,f exple, (1, =3)+c, (1 -1)*] -1} @)

where ¢, c,,c, are constants fit to the experimental data, and they used pseudo-invariant
that defined in terms of the Cauchy-Green strain by [10] such as

I,=N-C-N=a’ &)
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to substitute 7/, for ¢ . The interior and posterior leatlets have slightly different responses,

reflected by the difference in values for the three constants. The strain-energy function in
above along with the coefficient values accurately predicts the stress deformation behaviour
of biological tissues i.e. the leaflet tissue and also any other author such that [11-15] but not
all their strain-energy function have immediate physical interpretation and the constitutive
equation does not experimental friendly.

We proposed to form the strain-energy function of transversely isotropic solids have
immediate physical interpretation by introduce five invariants. Three of the invariants are the

principal extension ratios A4, >0(i=1,2,3) and the other two are I >{, =(a-¢,)> >0 and
1>, =(ae,)* >0, where ¢, and e, are any two of the principal directions of the right
stretch tensor U . The physical meaning of A, is obvious and it is clear that a-¢; (i =1, 2) is

the cosine of the angle between the principal direction e; and the preferred direction a .

C;=ave; =0 (,=qaee, {=aeg

Figure 1: Modelling for cosine of angle between the principal direction e; and the
preferred direction a

It is hoped that strain-energy functions of transversely isotropic elastic solids which depend
explicitly on the variables A,,4,,4,,¢, and {, may achieve the same success as strain-
energy functions of isotropic elastic solids which depend explicitly on A4,, 4, and A,. To
obtain a specific form of the strain-energy from an experiment, it is convenient to have
explicit and analytic expressions for the five derivatives of the strain-energy function with
respect to its invariants. We will also show that a strain-energy function written in terms of
the proposed variables enjoys a symmetry and orthogonal properties similar to the symmetry
possessed by a strain-energy function of an isotropic elastic solid written in terms of principal
stretches.

1.2 Continuum Mechanics
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We consider an elastic material for which the material properties are characterized in terms of
a strain-energy (per unit volume), denoted W =W(F) and defined on the space of
deformation gradients. This theory is known as hyperelasticity. For an inhomogeneous
material, i.e. One whose properties vary from point to point, W depends on X in addition to
F, but we do not indicate this dependence explicitly in what follows.

For an unconstrained hyperelastic material the nominal stress is given by
ow

=—), 6)
oF (

where the notation H is defined. The tensor function H is referred to as the response
function of the material relative to the deformed configuration, B,, in respect of the nominal

S=H(F)

e . . ow : :
stress tensor. In components, the derivative in (6) is written S, = T, which provides our
io
convention for ordering of the indices in the partial derivative with respect to F .
For an incompressible material the counterpart of (6) is

oW o
S=———pF, det F=1 7
3F p @)

where p is the Lagrange multiplier associated with the incompressibility constraint and is
referred to as the arbitrary hydrostatic pressure.

The Cauchy stress tensor corresponding to (6), then to be given by

_ap W
oc=G(F)=J'F F (8)
Wherein the response function G associated with ¢ is defined. As for H, the form of G
depends on the choice of reference configuration, and G is referred to as the response
function of the material relative to B, associated with the Cauchy stress tensor. Unlike H,
however, G is a symmetric tensor-valued function. For incompressible materials (8) is
replaced by

oW
o=F—-pl, det FF =1 9
F P ©)

2.0 Strain Energy Function with Physical Invariants

ox . : : . :
Let F = X be the deformation gradient tensor, where X is the position vector of a material

particle in the undeformed configuration and x is the corresponding position vector in the
deformed configuration. The right Cauchy-Green deformation tensor, denoted C, is given by
C=F"F and I,,I, and I, are its principal invariants, which are given by

1

I,=trC, 1225[(trC)2—tr(C2)], I, =det C =(det F)> (10)
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Let the unit vector A define the direction of the fiber reinforcement in the undeformed
configuration. Then, additional invariants, denoted 7/, and I, that couple A and C are

given by
I, =(FA)-(FA)=A-(cA), I,=A-(CA) (11)

We extend the above principal stretches isotropic models to characterize transversely
isotropic solids where the principal stretch A, (i=1,2,3) is given by

A =.le. -UzeA (12)

where U® =F"F and e, is a principal direction of U . In this paper, all subscripts i and j
take the values 1, 2 and 3, unless stated otherwise.

The material response of a transversely isotropic solid is indifferent to arbitrary rotations
about the direction a and by replacement of a by —a. Following [16], such materials can be
characterized with a strain-energy function W, which depends on U and the tensor

A=a® a (® denotes the dyadic product), i.e.,

W, =W(U,A) (13)
Since
U=ALE +A4,E,+1,E, (14)

where E;, = ¢, ® ¢, . We can express

W(U,A)=W(4,,4,,4,.E, . E, . E,,A). (15)
[2] has shown that the strain-energy function can be written in the form

W, =W, (4.4,.4,.¢.£,.¢5) (16)
The function W, enjoys the symmetrical property [2]

W, (4,250 25.61.65.83) =W, (A 40 45,65, 61.80) = W (A Ay, 40,850 6506 (17)
However, ¢, depends on ¢, and {,, i.e.,

é’3=1—§1—§2 (18)

Hence, we can omit ¢, from the list in Equation (16) and we then have

We :W(il’lZ’iS’gl’gz):Wf (/11,/12,/13,;1,;2,1—51 _;2) (19)
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The commonly used invariants can be written explicitly in terms of the physical variables,
1.e.,

I, =2,12 +/1§ +Z§, 1, =/112/1§ +/112/1§ +/1§Z§, I, =(/1112/13)2
14:/1%§1+}“§§2+}“§§3’ 15:}“?§1+}“;§2+}“g§3 (20)

For an incompressible material 4,4,4, =1, the number of variables is reduce to 4 and we can
express

~ 1
We:W(/11’227;1v§2):W(ﬂlvﬂmﬁ’;wgzj 21
1742

In the reference state U =1, 4, = 4, = 4, =1, any orthonormal set of vectors can represent the
principal directions of U . For simplicity, we let a =¢, and it is clear that {, =1,{, =¢, =0

in this state. To be consistent with the classical linear theory of incompressible transversely
isotropic elasticity, appropriate for infinitesimal deformations, we must have the relations

o*W o*wW

—I(1,1,0,0)=——(1,1,0,0)=4 ,
o 0:00.0=8 01.0.0)=au, + 8
9°W
1,1,0,0)=4u, —2 ,
8/118/12( )=4u, =24, +
9°W o°W
1,1,0,0)= 1,1,0,0)=0, i, 7=12. 22
az,.a;j( ) a;,.a;j( ) i, j (22)
X, fiber
4 a g c511/
A A A4
My | | U Mg
>022
>x1
[

1
Figure 2: x4, and u,, represent the elastic shear moduli in the ground state and S can be

related to other elastic constant which has more direct physical interpretation, such as the
extension modulus.

2.1 Stress —Strain for Biological Soft Tissues

Using series expansion techniques, the strain-energy function can be written as

W.=2 f A E)+ 84,808+ 8 (4086 + 8 (40 800 65) (23)

20



Journal of Advanced Research in Applied Mechanics
ISSN (online): 2289-7895 | Vol. 5, No.1. Pages 15-29, 2015

where A, :ﬁ the function ¢ has the symmetry g (x,y,0,9)=5(y,x,0,4). A special

1772
case of (21) is augmented form

W Wzm (//2’1’1’2’/13) trn (11’2’2’1’3’51’ §2’ §3) (24)
Where
3
(4,40 4) Zr g(A4,2,)+3(4,4,)+2(1,,4,)

i=1

W (ﬂlvﬂzvﬂs’glv§2’§3)=Zf(/1ivgi)+g(ﬂl’ﬂz’glvgz)"‘g(/11’/13v§1’é,3)+
g(ﬂz,ﬂ3,é’2,§3)

g has the same symmetry property as & and 3 (x,y)=2(y,x). W,
function for an isotropic material. A special form of the augmented strain-energy done by
Shariff [17,18] with its isotropic base taking the Valanis & Landel model to the semi-linear

form

is a strain-energy

3

WeZZ/uT (/?*i_l)z"'z(ﬂL_ﬂT)i gz i z;é' i ( j ) (25)

i=1 i=1 i,j=1

for mathematical simplicity, we proposed the special form of W, which is linear in its
parameters, i.e.,

WZﬂT V20, -,)Y ¢ Zé“é“t )1(4,) (26)

i=1 lj]

For an incompressible material, we have

ow oW oW oW A Ae, - Ae
=4 —, =1, —, =9 _ 17126 2 ’
O-ll 1 a//ll 0-22 2 8/12 2 [agl agzj /112 _ﬂé
oW oW (A e -A oW oW (A de -A
=2[a i lezq—zzeg’ G*zz[a i ]lziei;&ez’ @n
é,l 4,3 1 3 é,l é,z 1 2

Where A=a®a, 0,=0,,=0,=0 since ¢, Le,,e, Le;,e, Le,. Preferred direction is
a perpendicular to e,, we have ¢, =0 and ', =1-¢,, where {; =1-{, - ¢,.

The strain-energy function can be expressed as
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Wl o) =18 200, =) + 242 |+

1) 20 et B e v )6 B e e

rg[z;lgM)s(zz)+2§e:s(4)s(23)+2§2§3s(ﬂz>s(ﬂa)]

1
For incompressible material , 4, 4, 4, =1, then A, =

. After differentiate equation (28) with

14
respect to ll , we will obtain:

o ) 2 =)+ o ) -

/121/1 J{M +2(u, — 1)<, +§§§}+
' ' ' 1
:8|:é,1§25 (11)5(2'2)"'{14’3 [S (11)5(13)"'5(11)5 (/12){ 112 2}}"’(2{3 ( ) ( )(_ ﬂqzﬂz J:|

Then,

0,43 A+ -10)g 2 gﬂ}m{—%j[ww w2

(29)
ﬂ{mswsw+ggz(4sv<4>s<4>+4s<4> (2 { %jj LA {};ﬂj

Substitute A, = !

1772

into third terms of equation (29) we obtain:

oW _ e B
0 =4, 5= A ) a2 =)0, + 5 07

%f(3{ﬂf+20%—ﬂrﬂ}+g§f]k

(30)
ﬁ[glgzﬂ'ls'(/il)S(/%z)"';1;3(/11S'(ﬂ1)5(23)_13S(/11)S'(ﬂs))‘i';24/3/135(12)5'(/13)]
Similarly integrate equation (28) with respect to 4,, we obtain:
o = 20 =) B 2 e ) = | 2l B+
o :uT:uL:uT222 &ﬂé'uf ﬂLﬂT323 3
(D

ﬁ{ggsmn«m%sm)sw( e %}gg[ s <4>+suz>sv<4>(— ﬂjﬂzm
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AW _ e _ B
0= S Ao ) 20, 1), + 27

zzf'(@)(—ﬂw[ur 20, 1,)¢, +§§§}+ 32

§1;2]’2S(ﬂ’1)s'(2’2)+ éVl;Sﬂ'zs(ﬂ'l)s'(ﬂG)[_ /11)»2}+

gzga[ﬂzs'(/ﬂiz)s(ﬂa)*'ﬂzs(ﬂz)s'(ﬂa)[ 1 JJ

Al

Substitute A, =

into third terms of equation (32) we obtain:

On :ﬂ’Zf'(ﬂz){uT +2(ﬂL _lLlT);Z +§;22}_

ﬂ[;1§2/12S(/11)s'(/12)— ;1§3}“3S(}“1)5'(}“3)+ Ne (ﬂzs'(lz)s(}“3)_}“35(/12)S'(/13 ))]

For preferred direction a parallel to e, (in the direction of fiber) and preferred direction a

perpendicular to e, (perpendicular at the fiber direction). For equibiaxial test,4, =4, =4 and

11
A= =—.
Y R

Therefore we obiain
=4y + 20, =)+ 7|

() e 2 =) + 2 3] o
£,8,25 (2)s (1) + ;lgg(ﬂs'(ﬂ)s(%j—(%Js(ﬂ)s'(%n—
o)

Since {,=a-e,, {,=a-e,, and {,=a-e,, where alle, ale,, ale,, then { =1,
¢{,=0and {,=0

o) =/1f'(/1)[ﬂr +2(u, _ﬂr)"'ﬁ:l_(%jf( : j:ur

2 ra
o)\ =y {ﬂf'(ﬂ)— (/Hf(%ﬂ - ﬂf‘(ﬂ){Z(m ~ M)+ g} : (35)
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is parallel to the fiber direction. Similarly for o,,

oo =) 20, )05 4 B 2 -
(2]
;azs(z)s'(z)—g;}uz]z3s(zl)s'uz]+

cofwmn{3) (23]

o = Wiy ~( 55 ) {5

B

2)\x
1 1 ’ (0
= MUy {}Lf' (2)- (?] f'(?ﬂ
is perpendicular at the fiber direction. Therefore we obtain:
010 =4 () 20, ~ 1)+ 5 |
(37)

0, =0, +/1f'(/1){2(ﬂL _ﬂT)Jrg}

2.3 Application to Mitral Valve Leaflet

The advantage of this model, in a triaxial test of an incompressible solid, where
W, =W (4,,4,.¢,,¢,), the principal stretches A, and A, can be provided independently.
The invariants ¢, and ¢, can be varied independently by taking different samples, of the
same material, with different preferred directions (relative to a principal direction, a is a
preferred direction, o, is parallel to fiber and o,, is perpendicular to fiber).

pasterior
leaflet
annulus |
\ |

chordae
tendnae

— Pasallel to Fiber, Anaytical
— Parpendicular 1o Fiber, Analytical -
o Pasallel to Fiber, Experimental [
o Perpendecutar 1o Fiber, Expenimental 1
o Pasallel to Fiber, Numencal 1
n  Perpendicutar to Fiber, Numesic al °

Stress [kPa)
~LEEEEEEEES

le‘l‘t BT 11 115 12
: paplary Stretch [
veniricle: muscles 11

Figure 3: Mitral apparatus of human Figure 4: Equibiaxial strain applied to
heart source [19] anterior leaflet: source [8]
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In previous work [20,21] Maple and standard least square method has been used to fit the
theoretical curve to experimental data [6]. In this paper we use Maple 13 and Mathematica
9,0 to determined accurate material constants after make comparison to the result of both
methods.

Table 1 : Typical equibiaxial stress-stretch data o,,, 0,,and o,, —0,, of anterior mitral
valve leaflet.

2 1.029 | 1.062 | 1.070 | 1.1329 | 1.1370 | 1.152 1.164 1.173 1.1809 1.186 1.192 1.200
O—11 0.000 | 0.000 | 5.754 | 20.934 | 19.311 | 27.983 | 48.721 | 62.819 | 112.700 | 143.270 229.270 | 401.679
o, 0.000 | 0.000 | 4.131 | 5.754 5.754 12.262 | 13.484 | 10.230 | 18.902 17.820 24.869 38.418
O—11 _ O—22 0.000 | 0.000 | 1.623 | 15.180 | 13.557 | 15.557 | 35.237 | 52.590 | 93.795 125.246 204.401 | 363.261

Two function such as Af(1)=A(A1-1)"e” for o, (parallel to the fiber) and

Af(A)=A*(A-1) for o, (perpendicular to the fiber) are used to investigate and substitute

into the biaxial constitutive equation. These two functions represent the ground state of the
curve. We used Least squares Method by MAPLE 13 and Mathematica 9.0 in curve fitting to
determine the material constants.

3.0 RESULTS AND DISCUSSION
3.1 Curve Fitting Methods

Case 1: For the stretch deformation parallel to fiber (equation 35), the graph is expected to be
an exponential curve and the polinomial ,we proposed the constitutive equation of the form

Af (L) = MA —1)* e” gives the results as follow:

m L
i — Parallel to fiber, theory
: 0 Parallel to fiber, Experimental
300 -
Tu i
o
L [’}
105 110
Stretch

Figure 5: The graph of the curve fitting in the parallel direction to the fiber

25




Journal of Advanced Research in Applied Mechanics
ISSN (online): 2289-7895 | Vol. 5, No.1. Pages 15-29, 2015

Case 2: For the stretch deformation pependicular to fiber (equation 36) ,we proposed the
constitutive equation of the form Af’(1)=A%(1—1) gives the result as follow:
m —

— Pependicular to fiber, Theory

e Pependicular to fiber, Experimental

105 110 LI 120

Gy 10+

S0+

Stretch

Figure 6: The graph of curve fitting in the direction perpendicular to the fiber

Case 3: For o,, —0,, (equation 37), the graph is an exponential curve and the polinomial ,we

proposed the constitutive equation of the form Af’(1) = A(A—1)%e”gives the results as
follow:

wl | — 6,0, ,Theory

mf | 0 O;=0p  Experimental

1179y ¢

108 i 113 11

Stretch

Figure 7: The graph the curve fitting for o, —0,,

3.1 Elastic Contants

Since the Maple curve fitting method have limitation on the form of constitutive equation
where is not all the parameters can be determined with the unique values, and the only value
for the stretch deformation perpendicular to the fiber we obtain g, = 0.9988 see table 2.
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Furthermore @ and ¥ have to determine with values 9 and 18 respectively. Using

Mathematica curve fitting method is better, where all the value of parameters can be
determined in a single process.

Table 2: Elastic constants obtain from the curve fitting process by MAPLE 13

Constitutive Model | stress a | 7 | Equationintermof u,,u,,p
o 9 | 18 | 2(u, —,uT)+§:0.2643, My =2.3848

A (A)=AHA-1)"e?

IS

0, — 0, 10 | 18 | 2(u, —p, )+ =12572

A (A)=(1-1)4" o, 28 U, =0.9988

Table 2: Material constants obtain from the curve fitting process by Mathematica 9.0

Constitutive Model | stress a /4 y7e U, B

o, 9 18 2.3848 0.6623 2.6491
A(A)=AA-1) "

o, -0, 10 18 | 0.6545 |1.3455 |2.3821
HA)=-0r | oy 28 0.9988

4.0 CONCLUSION

From all the graphs of the curve fitting figure 5, figure 6 and figure 7 shows that the theory
compares well to the experimental data. Elastic constants will be determined by make a
comparison to the result from table 2 and table 3. It’s clearly that x, = 0.9988 are identically

from both tables. With the condition that the elastic constants must be unique and g, , ¢, and
S must be greater than zero where u, > u, . Therefore the value of the elastic constants are
4, =1.3455 and £=2.3821. We only use x,,u,and S to predict the experiment and with
the simple form of constitutive equation in-terms of physical invariants has an advantage to

carry out experiments. In the near future, this constitutive model will be compared with
various types of experiment data and with type of materials.
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