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Abstract – Much research has been done in determining constitutive models for Nonlinear 

Transversely Isotropic Solids. The strain energy functions with different types of invariants were 

developed in the past to serve some purposes. In isotropic elasticity, phenomenological strain energy 

functions with principal stretches have certain attractive features from both the mathematical and 

physical viewpoints. These forms of strain energy have been widely and successfully used in 

predicting elastic deformations. In this paper, we extend these successful principal-stretches-isotropic 

models to characterise transversely isotropic solids based on previous work. We introduce five 

invariants that have immediate physical interpretation. Three of the invariants are the principal 

extension ratios and the other two are the cosines of the angles between the principal directions of the 

right stretch tensor and the material preferred direction. This model has an experimental advantage 

and the theory is compared well with experimental data.Copyright © 2015 Penerbit Akademia Baru 

- All rights reserved. 
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1.0 INTRODUCTION 

Hyperelasticity is the capability of a material to experience large elastic strain due to small 

forces, without losing its original properties [1]. A hyperelastic material has a nonlinear 

behaviour, which means that its answer to the load is not directly proportional to the 

deformation. 

The modeling and design of hyperelastic materials consists of the selection of an appropriate 

strain energy function W  and accurate determination of isotropic, hyperelastic materials, 

therefore extending these models to include anisotropic, pseudoelastic behaviour creates 

models appropriate for biological tissues. The essential concept of this class of theory is that 

the energy density in the material can be determined as a function of the strain state. Once the 

strain-energy function W  is known, the stress state can be determined by taking the 

derivative of W  with respect to a strain measure, such as 
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ε
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∂
=

W
           (1) 

where σ  is the Cauchy (true) stress tensor and ε  is the Green strain tensor. The most 

common form used to determine stresses for the materials considered here is 

T
F

C

W
FpI

∂

∂
+−= 2σ          (2) 

where F  is the deformation gradient, C  is the left Cauchy-Green strain tensor, p  is the 

Lagrange multiplier to enforce incompressibility, and I  is the identity tensor [2]. The basic 

physical properties of biological tissue govern the assumptions that can be made in the 

formulation of a constitutive model. Many models exist that involve assuming a strain-energy 

function for the tissue. Based on observations for rat mesentery, Fung and co-workers [3] 

proposed that the strain-energy should be exponentially related to the strain. In transverse 

isotropy, the material has one preferred direction parallel to the fiber direction, and the 

responses in every direction perpendicular to the referred direction are identical to each other. 

1.1 Transversely Isotropic Model 

In general (in three dimensions), two independent invariants are sufficient to characterize the 

anisotropic nature of a transversely isotropic material model, one of which is related directly 

to the fiber stretch and is denoted by 4I . The standard reinforcing model is a quadratic 

function that depends only on this invariant. The other invariant, denoted by 5I , is also related 

to the fiber stretch but introduces an additional effect that relates to the behaviour of the 

reinforcement under shear deformations. When the deformation is restricted to plane strain 

with the fiber direction in the considered plane these two invariants are no longer independent 

[4,5]. The models in this section determine strain-energy functions based on the assumption 

of transverse isotropy and in terms of strain invariants. Transverse hyperelasticity can be 

completely described by the three strain invariants and two pseudo-invariants [2]. 

In [6], for transversely isotropic the fourth strain invariants is included in energy function, i.e. 

),,,( 4321 IIIIW . 
iλ  is denoted as principal stretches of deformation gradient F  and 

iI  is a 

function of a strain-energy function for transversely isotropic solid i.e. mitral valve tissue was 

carefully determined and verified by [7,8]. In the past, the stress deformation response was 

shown to be chiefly a function of the first invariant and the stretch in the fiber direction, 

),( 1 αIWW =            (3) 

 

Specifically, the response was modeled by a form analogous to the exponential proposed by 

[9], 

 

( ) ( )[ ]{ }13exp),( 4

42

2

11041
2

1

−−+−= IIcIccIIW                 (4) 

 

where 210 ,, ccc  are constants fit to the experimental data, and they used pseudo-invariant 

that defined in terms of the Cauchy-Green strain by [10] such as 

 
2

4 α=⋅⋅= NCNI           (5) 
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to substitute 4I  for α . The interior and posterior leaflets have slightly different responses, 

reflected by the difference in values for the three constants. The strain-energy function in 

above along with the coefficient values accurately predicts the stress deformation behaviour 

of biological tissues i.e. the leaflet tissue and also any other author such that [11-15] but not 

all their strain-energy function have immediate physical interpretation and the constitutive 

equation does not experimental friendly. 

We proposed to form the strain-energy function of transversely isotropic solids have 

immediate physical interpretation by introduce five invariants. Three of the invariants are the 

principal extension ratios ( )3,2,10 => iiλ  and the other two are 0)(
2

11 ≥⋅=≥ eaI ζ  and 

0)(
2

22 ≥⋅=≥ eaI ζ , where 
1e  and 

2e  are any two of the principal directions of the right 

stretch tensor U . The physical meaning of 
iλ  is obvious and it is clear that )2,1( =⋅ iea i

 is 

the cosine of the angle between the principal direction 
ie  and the preferred direction a .  

 

 

 

 

 

 

 

 

 

Figure 1: Modelling for cosine of angle between the principal direction 
ie  and the 

preferred direction a  

It is hoped that strain-energy functions of transversely isotropic elastic solids which depend 

explicitly on the variables 1321 ,,, ζλλλ  and 
2ζ  may achieve the same success as strain-

energy functions of isotropic elastic solids which depend explicitly on 
21 , λλ  and 3λ . To 

obtain a specific form of the strain-energy from an experiment, it is convenient to have 

explicit and analytic expressions for the five derivatives of the strain-energy function with 

respect to its invariants. We will also show that a strain-energy function written in terms of 

the proposed variables enjoys a symmetry and orthogonal properties similar to the symmetry 

possessed by a strain-energy function of an isotropic elastic solid written in terms of principal 

stretches.  

 

1.2 Continuum Mechanics 
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We consider an elastic material for which the material properties are characterized in terms of 

a strain-energy (per unit volume), denoted ( )FWW =  and defined on the space of 

deformation gradients. This theory is known as hyperelasticity. For an inhomogeneous 

material, i.e. One whose properties vary from point to point, W  depends on X  in addition to 

F , but we do not indicate this dependence explicitly in what follows. 

For an unconstrained hyperelastic material the nominal stress is given by 

 

( )
F

W
FHS

∂

∂
== ,          (6) 

where the notation H  is defined. The tensor function H  is referred to as the response 

function of the material relative to the deformed configuration, 
rB , in respect of the nominal 

stress tensor. In components, the derivative in (6) is written 
α

α

i

i
F

W
S

∂

∂
= , which provides our 

convention for ordering of the indices in the partial derivative with respect to F . 

For an incompressible material the counterpart of (6) is 

 

1det, =−
∂

∂
= FpF

F

W
S                                 1111----         (7) 

 

where p  is the Lagrange multiplier associated with the incompressibility constraint and is 

referred to as the arbitrary hydrostatic pressure. 

The Cauchy stress tensor corresponding to (6), then to be given by 

( )
F

W
FJFG

∂

∂
≡= −1σ           (8) 

Wherein the response function G  associated with σ  is defined. As for H , the form of G  

depends on the choice of reference configuration, and G  is referred to as the response 

function of the material relative to 
rB  associated with the Cauchy stress tensor. Unlike H , 

however, G  is a symmetric tensor-valued function. For incompressible materials (8) is 

replaced by 

 

1det, =−
∂

∂
= FpI

F

W
F                                 σ         (9) 

 

2.0  Strain Energy Function with Physical Invariants 
 

Let 
X

x
F

∂

∂
=  be the deformation gradient tensor, where X  is the position vector of a material 

particle in the undeformed configuration and x  is the corresponding position vector in the 

deformed configuration. The right Cauchy-Green deformation tensor, denoted C , is given by 

FFC T=  and 
21 , II  and 3I  are its principal invariants, which are given by 

( ) ( )[ ] ( ) 2

3

22

21 detdet,
2

1
, FCICCICI ==−==       tr tr      tr             (10) 
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Let the unit vector A  define the direction of the fiber reinforcement in the undeformed 

configuration. Then, additional invariants, denoted 4I  and 5I , that couple A  and C  are 

given by 

( ) ( ) ( ) ( )ACAICAAFAFAI
2

54 , ⋅=⋅=⋅=                     (11) 

 

We extend the above principal stretches isotropic models to characterize transversely 

isotropic solids where the principal stretch ( )3,2,1=iiλ  is given by 

 

iii eUe
2⋅=λ                   (12) 

 

where FFU
T=2  and 

ie  is a principal direction of U . In this paper, all subscripts i  and j  

take the values 1, 2 and 3, unless stated otherwise. 

The material response of a transversely isotropic solid is indifferent to arbitrary rotations 

about the direction a  and by replacement of a  by a− . Following [16], such materials can be 

characterized with a strain-energy function 
eW  which depends on U  and the tensor 

aaA ⊗=  ( ⊗  denotes the dyadic product), i.e., 

 

( )AUWWe ,ˆ=                    (13) 

 

Since 

 

332211 EEEU λλλ ++=                  (14) 

 

where 
iii eeE ⊗= . We can express 

 

( ) ( ).,,,,,,
~

,ˆ
321321 AEEEWAUW λλλ=                (15) 

 

[2] has shown that the strain-energy function can be written in the form 

 

( ).,,,,, 321321 ζζζλλλfe WW =                 (16) 

 

The function fW  enjoys the symmetrical property [2] 

 

( ) ( ) ( )123123312312321321 ,,,,,,,,,,,,,,, ζζζλλλζζζλλλζζζλλλ fff WWW ==           (17) 

 

However, 3ζ  depends on 1ζ  and 2ζ , i.e., 

 

213 1 ζζζ −−=                   (18) 

 

Hence, we can omit 3ζ  from the list in Equation (16) and we then have 

 

( ) ( )212132121321 1,,,,,,,,,
~

ζζζζλλλζζλλλ −−== fe WWW             (19) 
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The commonly used invariants can be written explicitly in terms of the physical variables, 

i.e., 

 

( )2

3213

2

3

2

2

2

3

2

1

2

2

2

12

2

3

2

2

2

11 ,, λλλλλλλλλλλλ =++=++= III            

3

4

32

4

21

4

153

2

32

2

21

2

14 , ζλζλζλζλζλζλ ++=++= II                   (20) 

 

For an incompressible material 1321 =λλλ , the number of variables is reduce to 4 and we can 

express 

( ) 







== 21

21

212121 ,,
1

,,
~

,,, ζζ
λλ

λλζζλλ WWWe               (21) 

In the reference state 1, 321 ==== λλλIU , any orthonormal set of vectors can represent the 

principal directions of U . For simplicity, we let 3ea =  and it is clear that 0,1 213 === ζζζ  

in this state. To be consistent with the classical linear theory of incompressible transversely 

isotropic elasticity, appropriate for infinitesimal deformations, we must have the relations 

( ) ( ) βµ
λλ

+=
∂

∂
=

∂

∂
L

WW
40,0,1,10,0,1,1

2

2

2

2

1

2

, 

( ) βµµ
λλ

+−=
∂∂

∂
TL

W
240,0,1,1

21

2

, 

( ) ( ) 2,1,,00,0,1,10,0,1,1
22

==
∂∂

∂
=

∂∂

∂
ji

WW

jiji

     
ζζζλ

.             (22) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: 
Tµ  and 

Lµ , represent the elastic shear moduli in the ground state and β  can be 

related to other elastic constant which has more direct physical interpretation, such as the 

extension modulus. 

2.1 Stress –Strain for Biological Soft Tissues 

Using series expansion techniques, the strain-energy function can be written as 

( ) ( ) ( ) ( )323231312121

3

1

,,,ˆ,,,ˆ,,,ˆ,ˆ ζζλλζζλλζζλλζλ gggfW ii

i

e +++=∑
=

          (23) 
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where 
21

3

1

λλ
λ = , the function ĝ  has the symmetry ( ) ( )φϕϕφ ,,,ˆ,,,ˆ xygyxg = . A special 

case of (21) is augmented form 

 

( ) ( )321321321 ,,,,,,, ζζζλλλλλλ trnisoe WWW +=               (24) 

 

Where 

 

( ) ( ) ( ) ( ) ( )323121

3

1

321 ,,,,, λλλλλλλλλλ gggrW
i

iiso +++=∑
=

   

( ) ( ) ( ) ( )

( )3232

31312121

3

1

321321

,,,

,,,,,,,,,,,,

ζζλλ

ζζλλζζλλζλζζζλλλ

g

ggfW
i

iitrn +++=∑
=  

 

g  has the same symmetry property as ĝ  and ( ) ( )xygyxg ,, = . 
isoW  is a strain-energy 

function for an isotropic material. A special form of the augmented strain-energy done by 

Shariff [17,18]  with its isotropic base taking the Valanis & Landel model to the semi-linear 

form  

 

( ) ( ) ( ) ( )( )11
2

121
3

1,

3

1

2
3

1

2
−−+−−+−= ∑∑∑

===
j

ji

iji

i

iiTL

i

iTeW λλζζ
β

λζµµλµ           (25) 

 

for mathematical simplicity, we proposed the special form of 
eW  which is linear in its 

parameters, i.e., 

 

( ) ( ) ( ) ( ) ( )
j

ji

iji

i

iiTL

i

iTe ttsrW λλζζ
β

λζµµλµ ∑∑∑
===

+−+=
3

1,

3

1

3

1 2
2            (26) 

 

For an incompressible material, we have 

 

2

2

2

1

2121

21
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2

222

1
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ζζ
σ

λ
λσ

λ
λσ

−

⋅
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



∂

∂
−

∂

∂
=

∂

∂
=

∂

∂
=
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2

2

2

1

2121

21

232

3

2

1

3131

31
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ζζ
σ

λλ

λλ

ζζ
σ
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⋅





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

∂
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∂

∂
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−

⋅
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







∂

∂
−

∂

∂
=
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Where 0, 231312 ===⊗= σσσ     aaA  since 323121 ,, eeeeee ⊥⊥⊥ . Preferred direction is 

a  perpendicular to 3e , we have 03 =ζ  and 
12 1 ζζ −= , where 213 1 ζζζ −−= . 

The strain-energy function can be expressed as 
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          (28) 

For incompressible material , 1321 =λλλ , then 

21

3

1

λλ
λ =  . After differentiate equation (28) with 

respect to 
1λ , we will obtain: 
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Then,  
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Substitute 
21

3

1

λλ
λ =  into third terms of equation (29) we obtain: 
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Similarly integrate equation (28) with respect to 
2λ , we obtain:  
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Substitute 
21

3

1

λλ
λ =  into third terms of equation (32) we obtain: 
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For preferred direction a  parallel to 
1e  (in the direction of fiber) and preferred direction a  

perpendicular to 2e (perpendicular at the fiber direction). For equibiaxial test, λλλ == 21  and 

2
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3
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λ == . 

Therefore we obtain 
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Since 
11 ea ⋅=ζ , 

22 ea ⋅=ζ , and 33 ea ⋅=ζ , where 
1// ea , 

2ea ⊥ , 3ea ⊥ , then 11 =ζ , 

02 =ζ  and 03 =ζ  
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is parallel to the fiber direction. Similarly for 22σ  
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is perpendicular at the fiber direction. Therefore we obtain: 
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2.3 Application to Mitral Valve Leaflet 

The advantage of this model, in a triaxial test of an incompressible solid, where 

( )2121 ,,, ζζλλWWe = , the principal stretches 
1λ  and 

2λ  can be provided independently. 

The invariants 
1ζ  and 

2ζ  can be varied independently by taking different samples, of the 

same material, with different preferred directions (relative to a principal direction, a  is a 

preferred direction, 11σ  is parallel to fiber and 22σ  is perpendicular to fiber).  

                                    

Figure 3: Mitral apparatus of human                      Figure 4: Equibiaxial strain applied to  

                   heart source [19]                                                      anterior leaflet: source [8] 
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In previous work [20,21] Maple and standard least square method has been used to fit the 

theoretical curve to experimental data [6]. In this paper we use Maple 13 and Mathematica 

9,0 to determined accurate material constants after make comparison to the result of both 

methods. 

Table 1 : Typical equibiaxial stress-stretch data  11σ , 22σ and 2211 σσ −  of anterior mitral 

valve leaflet. 

λ  1.029 1.062 1.070 1.1329 1.1370 1.152 1.164 1.173 1.1809 1.186 1.192 1.200 

11σ  
0.000 0.000 5.754 20.934 19.311 27.983 48.721 62.819 112.700 143.270 229.270 401.679 

22σ  
0.000 0.000 4.131 5.754 5.754 12.262 13.484 10.230 18.902 17.820 24.869 38.418 

2211 σσ −  
0.000 0.000 1.623 15.180 13.557 15.557 35.237 52.590 93.795 125.246 204.401 363.261 

 

Two function such as ( ) ( ) x
ef

βα
λλλλ 1−=′  for 11σ  (parallel to the fiber) and 

( ) ( )1−=′ λλλλ α
f  for 22σ (perpendicular to the fiber) are used to investigate and substitute 

into the biaxial constitutive equation. These two functions represent the ground state of the 

curve. We used Least squares Method by MAPLE 13 and Mathematica 9.0 in curve fitting to 

determine the material constants. 

3.0 RESULTS AND DISCUSSION 

3.1 Curve Fitting Methods 

Case 1: For the stretch deformation parallel to fiber (equation 35), the graph is expected to be 

an exponential curve and the polinomial ,we proposed the constitutive equation of the form 
γλαλλλλ ef )1()( −=′ gives the results as follow:    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: The graph of the curve fitting in the parallel direction to the fiber  

 

 

Stretch 
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Case 2: For the stretch deformation pependicular to fiber (equation 36) ,we proposed the 

constitutive equation of the form ( ) ( )1−=′ λλλλ α
f  gives the result as follow:    

 
 

 

 

 

 

 

 

Figure 6: The graph of curve fitting  in the direction perpendicular to the fiber  

 

Case 3: For 2211 σσ −  (equation 37), the graph is an exponential curve and the polinomial ,we 

proposed the constitutive equation of the form γλαλλλλ ef )1()( −=′ gives the results as 

follow: 

 

 

 

 

 

 

 

 

Figure 7: The graph the curve fitting for  
2211 σσ −    

 

3.1 Elastic Contants 

Since the Maple curve fitting method have limitation on the form of constitutive equation 

where is not all the parameters can be determined with the unique values, and the only value 

for the stretch deformation perpendicular to the fiber we obtain 
Tµ = 0.9988 see table 2. 

2211
σσ −



            Journal of Advanced Research in Applied Mechanics 

                                                                   ISSN (online): 2289-7895 | Vol. 5, No.1. Pages 15-29, 2015 

 

 

27 

 

Penerbit

Akademia Baru

Furthermore α and γ  have to determine with values 9 and 18 respectively. Using 

Mathematica curve fitting method is better, where all the value of parameters can be 

determined in a single process.  

Table 2: Elastic constants obtain from the curve fitting process by MAPLE 13 

Constitutive Model stress α  γ  Equation in term of 
Tµ ,

Lµ , β  

( ) ( ) γλα
λλλλ ef 1−=′  

11σ  9 18 3848.2,2643.0
2

)(2 ==+− TTL µ
β

µµ  

2211 σσ −  10 18 ( ) 2572.1
2

2 =+−
β

µµ TL  

( ) ( ) αλλλλ 1−=′f  22σ  28  9988.0=Tµ  

 

Table 2: Material constants obtain from the curve fitting process by Mathematica 9.0 

Constitutive Model stress α  γ  
Tµ  

Lµ  β  

( ) ( ) γλα
λλλλ ef 1−=′  

11σ  9 18 2.3848 0.6623 2.6491 

2211 σσ −  10 18 0.6545 1.3455 2.3821 

( ) ( ) αλλλλ 1−=′f  22σ  28  0.9988   

 

 

4.0 CONCLUSION 

From all the graphs of the curve fitting figure 5, figure 6 and figure 7 shows that the theory 

compares well to the experimental data. Elastic constants will be determined by make a 

comparison to the result from table 2 and table 3. It’s clearly that
Tµ = 0.9988 are identically 

from both tables. With the condition that the elastic constants must be unique and 
TL µµ , and 

β  must be greater than zero where 
TL µµ > . Therefore the value of the elastic constants are 

Lµ = 1.3455 and β =2.3821. We only use 
TL µµ , and β  to predict the experiment and with 

the simple form of constitutive equation in-terms of physical invariants has an advantage  to 

carry out experiments. In the near future, this constitutive model will be compared with 

various types of experiment data and with type of materials. 
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