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Abstract – This study has demonstrated a design tool for oil spill detection in SAR satellite data using 

optimization of Entropy based Multi-Objective Evolutionary Algorithm (E-MMGA) based on Pareto 

optimal solutions. The study also shows that optimization entropy based on Multi-Objective 

Evolutionary Algorithm provides an accurate pattern of oil slick in SAR data. This is shown by 85% 

for oil spill, 10% look–alike and 5% for sea roughness using the receiver –operational characteristics 

(ROC) curve. The E-MMGA also shows excellent performance in SAR data.  In conclusion, E-MMGA 

can be used as optimization for entropy to perform an automatic detection of oil spill in SAR satellite 

data. Copyright © 2015 Penerbit Akademia Baru - All rights reserved. 
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1.0 INTRODUCTION 

Lately, oil spills in coastal zones have received much critical anxiety for the great damages 

on the coastal ecological system. Synthetic aperture radar (SAR) is proved as appropriate 

sensors for oil spill surveying for its wide-area and all-day all-weather surveillance 

potentials. Owing to its extraordinary imaging mechanism, conversely, the accuracy of oil 

spill detection is challenged by multiplicative speckle noise and dark patches instigated by 

other physical phenomena. In this perspective, dark patches not related to oil spills are 

known as look-alikes. They can be recognized to zones of low wind speed, internal waves, 

biogenic films, grease ice, wind front areas, areas sheltered by land, rain cells, current shear 

zones and up-welling zones [1]. Besides, three steps are expected to automatically detect 

oil spills in SAR images: (i) dark spot detection, (ii) dark spot feature extraction and (iii) 

dark spot classification. Various classification algorithms  for oil spill detection have  been 

utilized, including pattern  recognition  algorithms [3], spatial  frequency spectrum  gradient  

algorithms [1, 4] and algorithms based on fuzzy and neural networks [5, 6].  Consequently, 

oil spill automatic detection from SAR data requested standard algorithm to overwhelm the 

multiplicative speckle noise and look-alike phenomena effects. 

Entropy algorithm was implemented to generate accurate assessment of the optimal oil spill 

monitoring in SAR data. The entropy algorithm considers the discrimination between oil spill 

footprint and look-alikes in SAR data. Therefore, the algorithm can support the automatic 

detection of oil spill by reducing uncertainty on the basis of information produced by 

multiplicative speckle noise and look-alike phenomena effects. In this regard, Marghany [2] 
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introduced entropy as accurate algorithm for oil spill automatic detection in SAR images. 

Further, Shi et al. [7] implemented entropy texture algorithm for oil spill detection from SAR 

and optical remote sensing. They found that the oil spill pixels are smoother than the 

surrounding environment. In fact, entropy algorithm reduces the multiplicative noise from oil 

spill pixels. 

Conversely, Skrunes et al., [8] reported several disadvantages associated with oil spill 

detection using the current SAR sensors and stated that SAR sensors cannot detect the 

thickness distribution, volume, oil/water emulsion ratio or chemical properties of an oil slick. 

Instead, they recommended the use of multi-polarization observations, i.e., the data acquired 

by the RADARSAT-2 and TerraSAR-X satellites.  Minchew et al., [9] stated that the 

comparison of entropy with aerial observations indicates that the variability of the entropy 

was consistent with the variability of the oil properties suggesting that the entropy provides a 

qualitative measure of the oil characteristics.  Specifically, when there are open water and a 

thin sheen, the entropy is close to 0, but in the presence of thicker oil (e.g. emulsion) the 

entropy has values that are close to 1. In addition, quad-pol RADARSAT-2 SAR can provide 

information about oil spill thickness compared to other SAR single channel such as 

RADARSAT-1 SAR, ERS-1/2 and Terra SAR. 

Furthermore, these researchers demonstrated that multi-polarization data could accurately 

discriminate between mineral oil slicks and biogenic slicks.  Incidentally, Cloude and Pottier 

[10] introduced the Cloude-Pottier entropy algorithm (H) (0 ≤H ≤ 1) which provides a 

measure of the amount of mixing between scattering mechanisms.  For a wind-roughened 

ocean surface, the scattering is dominated by a single dominant scattering mechanism, 

namely Bragg scattering (H → 0).  In the presence of an oil slick, however, the entropy 

increases (H→ 1) which is due to the increasing number of independent scattering 

mechanisms due to the damping of the small-scale Bragg waves. Nevertheless, in the region 

between imaging slick-free water and an oil slick, the entropy varied as a function of the 

properties of the oil (e.g. sheen, emulsion). 

Recently, Staples and Touzi [11] stated that the entropy cannot be obtained from single co-

polarized radar data, but requires quad-polarized data. Quad-polarized data means that the 

radar acquires two co-polarized channels (HH and VV) and two cross-polarized channels 

(HV and VH), but equally as important; quad-polarized data are phase-preserving meaning 

that the inter-channel phase difference (e.g. phase difference between HH and VV) is 

available. In contrast, Marghany [2] and Marghany and Genderen [12] claimed that entropy 

texture algorithm provides excellent performance for oil spill automatic detection from 

different single SAR data. 

Recently, Marghany (2014) utilized the Genetic algorithm (GA) as automatic detection 

algorithm for oil spill in RADARSAT-2 SAR data. Marghany [2] confirmed the work of 

Topouzelis et al. [13]. Both studies agreed that the genetic algorithm was able to extract oil 

spill footprint boundaries automatically from the surrounding pixels without using a separate 

segmentation algorithm, as was done by Skrunes et al. [8]. Consistent with Marghany [16], 

the genetic algorithm has the ability to determine the optimal number of regions of oil spill 

segmentation or to choose certain features, i.e., the size of the analysis window or selected 

heuristic thresholds. Furthermore, the GA is shown to be able to identify and remove pixels 

that do not significantly contribute to oil slick footprint in SAR data. This conclusion has 

approved the findings of Mohanta and Sethi [15]. 
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The novelty of this work is in the designing of the optimization tool for the real time oil spill 

automatic detection using Entropy-Based Multi-objective Evolutionary Algorithm without 

involving other tools such as neural network or any image processing classification tools. 

Indeed, previous studies have executed artificial neural networks [15, 16] or post-

classification techniques [2], which are considered to be semi-automatic techniques. 

Furthermore, both artificial neural networks and post-classification techniques are time-

consuming and the probability of misclassification does not always decrease as the number 

of features increases, especially when the sample data are insufficient. 

Incidentally, the main objective of this work is to minimalize the look-alike dark pixels for 

accurate oil spill automatic detection in SAR satellite data which could be involved with oil 

spill footprint detected by entropy and genetic algorithm.  The Entropy-Based Multi-objective 

Evolutionary Algorithm uses both basic and advanced operators. For illustrative purposes, the 

method has been operated onto oil spill footprint boundary shape optimization which allows 

local and global optimizations. Indeed, global optimization involves finding the optimal oil 

spill boundary shapes in SAR images. Look-alike pixels can be removed to reach the optimal 

oil spill automatic shape detection.  

2.0 METHODOLOGY 

2.1 Data Set 

In this study, RADARSAT-2 SAR data acquired by RADARSAT-2 operating in ScanSAR 

Narrow single beam mode on April 27th, 2010 are investigated for oil spill detection in the 

Gulf of Mexico (Figure 1). The ScanSAR mode provides images with very wide swaths in 

single pass of the satellite. In addition, ScanSAR data can be produced either with a single 

linear co-polarization, or with a single linear cross- polarization or with dual co- and cross- 

polarization. The satellite is equipped with synthetic aperture radar (SAR) with multiple 

polarisation modes, including a fully polarimetric mode in which HH, HH, VV and VH 

polarised data are acquired [24]. 

 

Figure 1:  ScanSAR RADASAT-2 SAR of Deepwater Horizon Blowout, Gulf of Mexico. 

 

2.2 Entropy-Based Multi-objective Evolutionary Algorithm (E-MMGA) 

Two methods are involved to perform oil spill identification from RADARSAT-2 SAR (i) 

Entropy; and (ii) Entropy-Based Multi-objective Evolutionary Algorithm (E-MMGA).   
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2.2.1 Entropy Algorithm  

Following Harmancioglu [17], entropy is a quantitative computation of the information 

content of a series of data since the reduction of uncertainty, by making observations, equals 

the same amount of gain in information. Therefore, Marghany [2] stated that entropy is a 

measure of the degree of uncertainty of random oil spill footprint discrimination [12]. In a 

definition adopted from information theory [28], entropy is the numerical expression of oil 

spill footprint boundaries in SAR images. In using this concept, oil spill footprint can 

be measured indirectly based on the degree of the reduction of multiplicative 

speckle noises and uncertainty of look-alike effects. The main hypothesis is the 

oil spill footprint boundaries have larger entropy compared to the surrounding 

environment. Hence, in order to quantitatively assess the cumulative effect of uncertainty in 

oil spill footprint, entropy can be used as a metric for population diversity of oil spill 

footprint boundaries which are stored at each intersection of the column j and row i of the 

various slick areas. The uncertainty (C) associated with the oil spill pixel value of xi for a 

random variable X is given by [28]: 

1
( ) ln( ( ))i iC x p x

−=            (1) 

where pi is the probability distribution of X1 = {xi} and i is represented raw.   The expected 

value of all of the entropy (E) correlated with the random variable X is given by the following 

expression: 

1
( ) ( ) ln( ( ))i i

i

E X p x p x
−=∑           (2) 

Equations 1 and 2 express the probability of oil spill footprint boundaries and their entropy in 

raw i. Therefore, Eq. 2 can be given in two directions of raw i and column j, then the two 

dimensional entropies E(X,Y) are given as  

1
( , ) ( , ) ln( ( , ))i j i j

j i

E X Y p x y p x y
− 

=  
 

∑ ∑         (3) 

Equation 3, in other words, represents the joint uncertainty associated with oil spill footprint 

boundaries in two dimensional of SAR images. It is assumed that the random variables of oil 

spill and look-alikes footprint boundaries are independent then equation 3 can be extended as  

1 1( , ) ( ) ( ) ln( ( ) ( ) )i j i j

j i

E X Y p x p y p x p y
− − 

=  
 

∑ ∑        (4) 

Equation 4 can be extended to an n-dimensional vector of independently distributed of oil 

spill and look-alikes footprint boundaries random variables in SAR data. Hence, in this case, 

the entropy E(Z) is the sum of all of the individual SAR pixel entropies E(Xi) and can be 

expressed as  

( ) ( )
n

i

j

E Z E X=∑            (5) 
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In the case of a uniform distribution of given oil spill or look-alikes footprint boundaries, the 

entropy of given probability p(xi)=N-1 of  the number (N) of  homogenous clustering of the 

features can be calculated as   

1

ln( )
( )

N

i

N
E Z

N=

=∑            (6) 

The number of features (n) in the SAR image space solution can be estimated based on the 

upper bound on the joint entropy Eu(Z) for  oil spill or look-alikes footprint boundary 

population as                  

( ) ln( )uE Z n N=            (7) 

Based on Equations 6 and 7 the entropy metric is bounded by  

0 ( ) ( )uE Z E Z≤ ≤            (8) 

Based on Equation 8, the final entropy metric expression can be written by the combination 

of equations 6 and 7 as follows: 

( )1

, ,

1 1

0 ( ) ln ( ) ln( )
n N

i j i j

j i

p p n Nβ β −

= =

 
≤ ≤ 

 
∑ ∑         (9) 

where ,( )i jp β is the probability distribution for oil spill footprint backscatter ,( )i jβ in raw and 

column of SAR data. If  
,( )i jβ   is stated as the continuous oil spill backscatter variations that 

stick to the probability density function of ,( )i jf β , the conditional entropy can be expressed 

in the form of conditional probability density function 1 2( )f β β  of two given continuous 

random variants of radar backscatter 
1( )β  and 

2( )β . Thus the concept of conditional 

probability density function 1 2( )f β β [20] can be estimated by 

1 2 1 2 1 2 1 2( ) ( , ) ln (( )E f f d dβ β β β β β β β
+∞

+∞

−∞
−∞

= −∫ ∫                               (10) 

where 1 2d dβ β  is the interval change of oil spill and look-alikes footprint backscatter, 

respectively.  

Marghany [2], Staples and Rodrigues [11], Marghany and Genderen [12] and Lee [28]  

proved the efficiency and validity of the entropy on oil spill detection in SAR data. However, 

this approach requires range of threshold procedures to discriminate between oil spill 

footprint quantities and surrounding environment. Therefore, multiplicative speckle noise is 

not totally vanished. In this prospective, Multi-objective Optimization algorithm can involve 

in entropy metric [27] to preserve the diversity among different solution to minimize the 

influence of look-alikes and multiplicative speckle noise. 
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2.2.2   Entropy-Based Multi-objective Evolutionary Algorithm (E-MMGA) 

E-MMGA provides the advantage of preserving the diversity of solution set [27] and solving 

the multidisciplinary of oil spill uncertainty of random oil spill footprint discrimination in 

SAR data. The approach of this study is to deal with entropy of oil spill detection as multi-

objective Genetic Algorithm (GA). Following Coello et al. [21], multi-objective optimization 

(MOP) has already been successfully adopted into the engineering fields. In general, MOP 

consists of n decision variable parameters, k objective functions and m constraints [14]. 

Multi-objective Optimization [22, 27] aims at conducting optimization for a range of 

functions as follows [27]: 

1 2Minimize  ( ( ), ( ),......., ( ))T

mF f f fβ β β=
�

                 (11) 

Subject to 1 2( )E Iβ β ∈ ∈Ω                    (12) 

where I is SAR data and Ω  is the definition domain of functions or the feasible region in 

space decision. In this research, two objectives are considered. One is oil spill backscatter and 

the other is sea surface, ship, lookalikes, and land backscatters. The definitions of entropy of 

oil spill and non- oil spill footprint boundaries are given as follows: 

1. Entropy of oil spill footprint boundaries ( max( )E β )is the variation of maximum entropy 

max( )E β  which contains oil spill footprint boundaries i.e. max( )E β = { }1 2max ( , ,..., )kE β β β ; 

where ( )ijE β  denotes the entropy of oil spill boundaries in i and j directions 

kijij ,...,2,1, =∀ . 

2. The total entropy of oil spill footprint boundaries ( ( )ijE β∑ ) is the sum of entropy of the 

surrounding oil spill environment in SAR data. Then the Pareto optimal solutions are applied 

to retain the discrimination of oil spills entropy diversity and surrounding entropy 

environment.  

Let
0 1 2( , , ) ( )SARE Eβ β β β∈ , and ( )SARE β  is feasible entropy in the whole SAR image, while 

0β  is called the Pareto optimal solution in the minimization problem for identification of oil 

spill pixels. If the following conditions are satisfied [22]: 

(i) If 
1( ( ))f E β  is said to be partially greater than 

2( ( ))f E β , i.e. 

1 2( ( ) ( ( )), 1, 2,...,i if E f E i nβ β≥ ∀ = and 
1 2( ( )) ( ( )), 1, 2,...,i if E f E i nβ β> ∃ = , 

then 
1( )E β  is said to be dominated by (

2( )E β . 

(ii) If there is no ( ) ( )SARE Eβ β∈  s.t.  ( )E β  dominates 
0( )E β , then 

0( )E β  is the Pareto 

optimal solutions for identifying entropy of oil spill footprint boundaries 
max( )E β . 

Following Marghany [22, 24], the optimization of oil spill detection from SAR data using 

entropy based MOEA E-MOEA, the entropy of oil spill footprint boundaries must be coded 

into a Genetic Algorithm syntax form i.e. the chromosome form. In this problem, the 

chromosome consists of a number of genes where every gene corresponds to a coefficient in 
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the nth-order surface fitting polynomial as given by.  

2 2

0 1 2 3 4 5( , ) ( )n

m
f i j E i j i ij j jβ β β β β β β= + + + + + + +…                 (13) 

where ( )E β [0,1…..m] are the entropy parameter coefficients that will be estimated by the 

genetic algorithm to approximate the minimum error for entropy of oil spill  discrimination 

from the surrounding environment. i and j are indices of the pixel location in the image 

respectively, m is the number of coefficients (Figure 2). 

 

Figure 2:  Coding scheme of  the coefficients of the nth-order surface fitting polynomial into 

the chromosome syntax form. 

 

Then the weighed sum to combine entropy of multiple objectives into single objective is 

given by [24] 

1 1 2 2( ( )) ( ( )) ( ( )) (( ))n nf E w f E w f E w f Eβ β β β= + +⋅⋅⋅+                 (14) 

where 
1 2( ( )), ( ( )), ..., ( ( ))nf E f E f Eβ β β are the objective functions and 

1 2, ,..., nW W W  are the 

weights of corresponding objectives that satisfy the following conditions. 

1......

,...,2,10

21 =+++

=∀≥

n

i

www

niw
                   (15) 

Once the weights are determined, the searching direction is fixed. To search Pareto optimal 

solutions as much as possible, the searching directions should be changed again and again to 

sweep over the whole solution space. Therefore the weights have to be changed again and 

again. The weights consist of random numbers and they are generated as the following way 

[22]: 

ni
rrr

r
w

n

i

i ,...,2,1,
21

=∀
+⋅⋅⋅++

=                   (16) 

where 1 2, ,..., nr r r  are random numbers within (0,1). Solutions searched through the changing 

directions are collected in a set. Then the definition of Pareto optimal solution is applied to 

determine which solutions in the set are Pareto optimal. The step repeats in every generation 

in E-MOGA. To determine the diversity of entropy of multi-objectives which is mostly more 

than two objectives for instance, oil spill, look-alikes, rough sea, and low wind zone, compute 

the distance from a given footprint center to its nearest neighbouring boundaries. This can be 

computed by the following equation adopted from Zhou et al., [23]: 
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1

1

1

( ( ), ) ( , )

( ( ), ) ( )

m

ijk I

m

ijk

d E d I d

d E m d

β

β

= ∈Ω

−

=

Ψ = Ω + Ω − ×

 Ω + Ω −
 

∑ ∑

∑
                 (17) 

 

There are m solutions 
1( ),................, ( )mE Eβ β sorted by an objective in SAR space data, 

1 1,..........., md d − are the edge distances between adjacent different oil spill and look-alike 

footprint boundaries and  Ω is set of solutions regarding oil spill or look-alikes footprint 

boundaries, and 

1
( ) , ( ) ( )

( ( ) , )   ( ( ) ( ( )m i n
j j i

i j

E E E

d E F E F E
β β β

β β β
∈ Ω ≠

Ω = −
               (18) 

( )

1
( ( ) , ) .

E

d Ed
β

β

−

∈ Ω

−
Ω∑= Ω

                   (19) 

E-MMGA is run until there is no further improvement in the entropy value (i.e., entropy is 

maximum), and then it is stopped. The solution of the overall problem is obtained by taking 

the non-dominated frontier of the points in the grand pool of the last E-MMGA iteration. 

3.0 RESULTS AND DISCUSSION 

The Entropy and E-MMGA are trained on four RADARSAT-2 SAR Scan Narrow Beam 

(SCNB) data, whereas the dark spots were identified and examined. The Scan Narrow 

Beam (SCNB) images contained the confirmed oil spills that occurred 70 km from the coast 

of Louisiana in the Gulf of Mexico.  In the RADARSAT-2 SAR Scan Narrow Beam (SCNB) 

data that were acquired at the time, the rapid growth of the oil slick footprint from April 27, 

2010 to May 5, 2010 could be clearly seen (Fig. 3a). Figure 3b shows that crude oil extended 

across 19,112 square miles (49,500 km2) of the Gulf. Additionally, it is precious to note that 

the oil slick spun in a counter-clockwise direction due to the influence of the loop current of 

Gulf Stream. Nevertheless, the RADARSAT-2 SAR data did not indicate that the oil-slick 

footprint coincided with the loop current in the Gulf of Mexico. In fact, the oil slick was one 

due to the disconnection of the loop current in the Gulf of Mexico [24].  Furthermore, Figure 

3 shows the variation in the average backscatter intensity along the oil slick footprint. The 

average backscatter intensity was damped by -30 dB to -5 dB and decreased over time as the 

oil slick footprint gradually increased (Figure 4).  Besides, the sea surface roughness has the 

highest backscatter values of -10 dB than oil spill footprint pixels.  

Consistent with Marghany [25] and Trivero et al., [25], oil spills change the roughness of the 

ocean surface to smoothness surface which appear as dark pixels as compared to the 

surrounding ocean [1, 3, 8]. Consequently, the speckle caused obstacles in dark patch 

identifications in SAR data [12-14]. Additionally, the wind speed recorded on April 27 2010 

was ranged between 7 to 10 m/s [24]. Besides, the measured reductions of backscattered 

radar power at C-band could be impacted by instrumental limitations, i.e. by the fact that the 

backscattered radar power reaches the noise floor [25]. 
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Figure 3: RADARSAT-2 SAR Scan Narrow beam SCNB data in (a) April 27th, and (b) in 

situ crude oil. 

 

Figure 4 shows the entropy algorithm result. Clearly, the oil spill footprint has lower entropy 

value of 1.5 as compared to sea roughness and land. The land has the highest entropy value of 

3.5 and sea roughness has entropy value of 2.7. Indeed, non-Bragg scattering exists on land 

as backscatter becomes depolarized [1, 25]. Additionally, entropy algorithm has identified oil 

spill footprint boundaries by entropy value of 3.3.  However, land entropy and oil spill 

footprint boundary have close entropy. In fact, entropy represents the randomness of 

scattering mechanism.  According to Marghany [2] entropy is a measure of uniformity in 

SAR image. In general, the entropy is a measure of variability or randomness because the 

concentration of the backscatter changes in relatively few locations would be non-random 

essentially. 

 

Figure 4: Entropy result for oil spill footprint. 

 

Figure 5 shows the output result of E-MMGA. Clearly, E-MMGA is able to produce four 

different segmentation boundaries. Besides, Figure 6 shows that the thick oil spill footprint 

has the highest E-MMGA value of 2 than medium and light oil spill. This is mainly because 

each multi-objective function in E-MMGA tends to bias its population towards the extreme 

edges of the Pareto frontier. This confirms the work done by Gunawan et al. [27].  Compared 

to entropy algorithm, E-MMGA is able to identify the look-alike footprint boundaries and 

discriminate accurately between, oil spill and look-alikes, and surrounding sea surface. E-

MMGA can accurately identify the morphological boundary of oil spill and is assigned by 

different segmentation layer in Scan Narrow beam SCNB data satellite. In fact, the Entropy-

Multi-Objective Evolutionary Genetic Algorithm (E-MMGA) provides a set of compromised 

solutions called Pareto optimal solution since no single solution can optimize each of the 

(a) 
(b) 
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objectives separately. The decision maker is provided with the set of Pareto optimal solutions 

in order to choose solution based on the decision maker’s criteria. This sort of E-MMGA 

solution technique is called a posteriori method since decision is taken after searching is 

finished. This confirms the work done by Coello et al. [21]. In this context, the Pareto-

optimization approach does not require any a priori preference decisions between the 

conflicting of oil spill, look-alike, land, and surrounding sea footprint boundaries. 

Furthermore, Pareto-optimal points have form Pareto-front as shown in Figure 6 in the multi-

objectives function of the Scan Narrow beam SCNB data. 

 

Figure 5: E-MMGA solution for oil spill discrimination in Scan Narrow beam SCNB data. 

 

Figure 6: Oil spill footprint Category by E-MMGA.  

 

Entropy-Multi-Objectives Evaluation Genetic Algorithm (E-MMGA) which is based on the 

Pareto optimal solutions provides excellent discrimination of oil spill footprint boundaries. 

This can be confirmed by the receiver–operator characteristics (ROC) curve (Fig. 7). In this 

regard, the existing of weight sum of objective function converts a conflicting multi-objective 

problem of oil spill and surrounding sea feature objectives. This can be seen in ROC curve 

where oil spill has an area difference of 85% which is larger than look-alike and sea surface 

areas. Furthermore, p probability of 0.0005 is another proof for excellent of E-MMGA for oil 

spill detection. This study shows a great performance as compared to previous work done by 

Marghany [22, 24].  This is because Pareto-front contains the Pareto-optimal solutions and in 

the case of continuous front, it divides the pixels objective function space into two parts, 

which are non-optimal solutions and infeasible solutions. In this regard, it improves the 

robustness of pattern search and improves the convergence speed of MOEA. This confirms 

the work of Yudong et al., [26]. 



            Journal of Advanced Research in Applied Mechanics                                 

                                                                          ISSN (online): 2289-7895 | Vol. 9, No. 1. Pages 1-14, 2015 

 

 

11 

 

Penerbit

Akademia Baru

 

Figure 7: ROC for oil spill discrimination using E-MMGA. 

 

On the word of Gunawan et al. [27], E-MMGA is able to preserve diversity and converge as 

fast as most of the single-level approaches (which are expected to be more efficient but less 

practical for large-scale problems of multidisciplinary nature). Besides, it improves overall 

quality of solutions by explicitly optimizing the entropy index at every system-level iteration, 

and then using this information to make the search process bias towards obtaining a solution 

set with maximum diversity [27].  

4.0 CONCLUSSION 

This study has demonstrated work to optimize the oil spill footprint detection in synthetic 

aperture radar (SAR) data.  Therefore, Entropy-based Multi-objective Evolutionary 

Algorithm (E-MMGA) was implemented with Scan Narrow beam SCNB data satellite during 

the oil spill event along the coastal water Gulf of Mexico. Besides, Pareto optimal solution is 

implemented with E-MMGA to minimize the difficulties of oil spill footprint boundary 

detection because of the existence of look-alike in SAR data. The study shows that the 

implementation of Pareto optimal solution and weight sum in E-MMGA generated accurate 

pattern of oil slick. Furthermore, thick oil spill has the highest value of 2 E-MMGA than thin 

and medium spills. The E-MMGA is able to preserve the morphology of oil spill footprint 

boundaries i.e. thick, medium, and light. In addition, the receiver –operational characteristics 

(ROC) curve confirmed accurately the performance of E-MMGA with 85% oil spill 

detection, 10% for look-alike and 5% for surrounding sea surface boundary identification. In 

conclusion, E-MMGA is considered as an excellent algorithm to discriminate oil spill from 

look-alikes and also to identify thick oil spill from thin one.    
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