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Coherent signal reception from distributed beamforming nodes of virtual antenna 

array formation requires frequency synchronization of the participating nodes. Signals 

at the target receiver are out of phase due to unsynchronized local oscillator’s (LO) 

reference signal of all the nodes in the systems. Practical cases of this problem are 

considered. In this article, a brief overview is presented of the need for the frequency 

synchronization and the resulting effect of mitigation avoidance. A variant of the 

closed-loop feedback algorithm is used to provide LO drifts information to the 

beamforming transmitters. These feedbacks are used to estimate, correct, and predict 

the nonlinear LO offsets that will result in near (0) phase offset of the received signal. 

The algorithms are implemented in software defined radio (SDR) and transmitted 

through the RF front end of devices like the NI 2920/N210 USRP.  
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1. Introduction 

  

 Software simulated approach to collaborative beamforming (CB) in wireless sensor network 

(WSN) for the purpose of steering virtual antenna beams towards a receiver have been covered in 

the literature such as [1-3] and referenced therein. The practical implementations of CB are rare, 

which is mostly due to the phase offset of signals received at the receiver. To address the latter 

problem, frequency synchronization among collaborating sensor nodes must be taken into account 

in solving the phase offset problem. 

 Radiation beam pattern from antennas of a single element are relatively wide and have directive 

gains of low values. Because of this, the need to design antennas with high directive gain becomes 

paramount. This is to enhance longer transmission range with narrower beamwidth to the desired 

                                                           
∗Corresponding author. 

E-mail address: noordini@utm.my (Nik Noordini Nik Abd Malik) 

Penerbit

Akademia Baru

Open 
Access 



Journal of Advanced Research in Applied Mechanics 

Volume 31, Issue 1 (2017) 1-15 

2 

 

Penerbit

Akademia Baru

target. The arrangement of two or more antennas with respect to their electrical properties and 

geometry for collective radiation characteristics is known as an antenna array. Except when such 

antenna arrays are treated as rotating phasors and expecting the signals to align over time at the 

receiver, optimizing their interferences constructively will improve the radiation characteristics. 

Weighting functions can be used to penalize signals (side lobes) to other unintended direction from 

the array. Optimized parameters that can improve the characteristics of the array include a) radiation 

beam pattern of each of the antenna, b) spacing between the array elements, c) their geometrical 

configuration, d) excitation amplitude of individual element, and e) the element’s excitation phases. 

Frequency and phase synchronization of sensor nodes (transmitters) for CB in real time for the past 

decade have been in the forefront of research. This is because, order of magnitude in improved signal 

strength, longer directional signal transmission, energy efficiency and node redundancy can be 

achieved when deployed in a wireless sensor network (WSN) environment. Despite all of the 

knowledge in the area of frequency synchronization, the clock frequencies of Universal Software 

Radio Peripheral (USRP) and other CB node devices are usually unsynchronized with one another. 

The problem is due to frequency instability of the local oscillators (LOs) [4-6].  As such, robust 

algorithms are needed that will be able to synchronize these offsets in frequency for coherent signal 

reception. CB with assumed cases for frequency and phase synchronization using simulations have 

been treated in [3, 7-13], where sensor nodes are coordinated for linear or circular geometric virtual 

arrangement in different meter square area for sidelobe level (SLL) reductions and controlled 

beamwidth. The work of Chang et al. [2] simulated CB and considered the relative phase and position 

of nodes to the intended receiver. Others simulated and optimized the nodes selection for CB using 

different optimization schemes [3, 7, 10, 14]. 

 Simulated cases mostly have parameters being assumed. Practical implementation of CB can 

thus be looked at under scenarios of frequency and phase offset synchronizations. The frequency 

synchronization of the local oscillator of individual nodes can be tied together in wired form [15-16] 

or wirelessly [5-6, 17-19]. Deriving the local oscillator’s signal in the wired form for the purpose of 

achieving CB from a single node negates the real essence, thus there is the need to do this wirelessly. 

 

2. Collaborative Beamforming Review 

  

2.1 Simulated Cases 

 

 The simulated cases treated the phase offset problems due to node’s position error. However, 

the frequency drifts caused by individual node’s LO is assumed to be zero (0). 

 Particle swarm optimization (PSO) was used to optimize the sensor distribution and phase offset 

due to unsynchronized local oscillator frequencies of the beamforming nodes in [20]. This is to steer 

the nodes towards the intended receiver while null-steering to other unintended targets. A gain of 

5dB was obtained in [20] after the algorithm converged at the 170th iteration from 6 nodes with a 

population of 50 nodes using a center frequency of 433 MHz. Nodes were assumed to be identical 

and the effect of scattering and signal reflection is assumed negligible which are not always the case 

in practical scenarios. It is also assumed a small frequency drift and with this, practical 

implementation of the proposed algorithms will have to come terms with realities. 

 Distributed beamforming from the positions of the transmitters was looked at by Barriac et al. 

[21] where common sensed information is sent to the slave transmitters that will be involved in 

beamforming. Distributed transmit/receive beamforming methods for frequency synchronization 

were assumed in order to solve the problem of phase offset and that of time synchronization of 

shared data. Simulated expected received signal power was found to be high and in partial direct 
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proportionality with the number of nodes involved in beamforming as seen in Figure 1 when phase 

errors are small. The phase errors were varied from 0.1π  to 0.4π . The concept of a topology, the 

star, was discussed where it was assumed that the slave transmitters cycling the master transmitter 

will have equal phase drift due to same distances from the master transmitter. This assumption is 

not practicable because of factors such as manufacturer’s tolerance levels of individual oscillator and 

attenuation due to different temperatures experienced by the different oscillators could make the 

phase offset large and consequently leads to undesired destructive received signal at the receiver.  
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Fig. 1. Expected received signal power vs number of nodes [21] 

 

 With the assumption of no Channel State Information (CSI) and a reliable closed-loop feedback 

from the receiver as well as zero frequency drift in all CB nodes, Alexandris et al. [22] extend the 

earlier work by Bletsas et al. [23] which view signals transmitted as rotating phasors and expects 

them to align over time. An important analysis, Bit Error Rate (BER) for SNR per transmitting antenna 

per slot for distributed beamforming nodes with zero feedback is compared to that of transmitting 

antennas deploying time division multiple access (TDMA). Lower BER was recorded up till 5dB SNR 

for the former due to beamforming capabilities. It was found that the BER later reduces afterward 

and antennas using TDMA gave lower BER with an increase in SNR. This is because diversity in term 

of reflection and multipath by individual antennas is experienced. 

 Bletsas et al. [23] and Bletsas et al. [24] which are an earlier work to Sklivanitis et al. [25] were 

based on software simulation and capitalized on the time at which the signals received from the 

beamforming transmitters at the receiver will be in phase. From the analysis, it shows that as the 

number of transmitters involved in beamforming increases, the probability of constructive 

interference reduces which is also a function of time, that is, the longer the time.  This was simulated 

for 2.4 GHz carrier frequency at a maximum of 20 parts per million (ppm) for crystal frequency skew 

giving rise to a frequency drift of 48 kHz for 3, 4, 5 and 6 CB antenna arrays. 

 All simulated cases either with frequency synchronization and/or phase offset correction are 

based on the ideal situation which is not always practicable. 

 

2.2 Practical Implementation 

 

 For literature that implemented beamforming with respect to zero phase offset among CB 

nodes, the general methods are either through open loop feedback control or closed-loop feedback 

control. The feedback is used by the beamforming antennas to 1) frequency lock their local oscillator 
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to a shared reference signal and 2) beam steer the transmitters by adjusting the phase difference in 

such a way that the signals add coherently at the receiver part. 

 Challenges of distributed beamforming were reviewed by Mudumbai et al. [26] for both the 

simulated cases and the experimental implementation. Frequency synchronization from the concept 

of fully closed-loop was explained and those of 1-bit closed-loop [27-28] and open-loop [29-30] were 

further described. Beamforming implementation through the wiring of the local oscillators to achieve 

frequency synchronization was carried out in [15-16]. The articles further emphasize the possibility 

of achieving frequency synchronization beamforming in wireless form for wireless sensor networks 

(WSNs), which is desirable. 

 Distributed beamforming with assumed frequency synchronization for phase offset correction 

using 1-bit feedback during each time slot was experimentally carried out for a set of transmitters in 

[15]. A testbed consisting of three transmitters and one receiver was formed. The frequency 

synchronization was achieved by physically connecting the local oscillator of one of the nodes to the 

rest in order to have the same reference clock signal being injected into the PLL of the rest nodes. 

The convergence behavior of the phase angles of the nodes at the receiver was simulated as shown 

in Figure 2. Due to the feedback algorithm used and the absence of the frequency drift, the phase 

errors reduces to near zero after 500 iterations. The system is not completely wireless due to the 

wired LO’s of the CB nodes hence having same carrier frequency. 

  

 
Fig. 2. Convergence using feedback control algorithm [15] 

 

 A 9.2dB distributed beamforming gain was achieved using 1-bit feedback closed-loop in [16]. The 

frequency synchronization among the three transmitters was by direct wired form; physically tapping 

from a common local oscillator similar to [15]. When the received signal was measured, a normalized 

receive power gain of 2.747 was obtained as against expected theoretical value of 2.802. Individual 

normalize power values of 0.325, 0.158 and 0.5 for the three transmitters used in the wireless sensor 

network were measured. 

 Sklivanitis et al. [25] tries to solve the problem of frequency offset among distributed 

transmitters by assuming zero-feedback from the receiver towards the transmitters. The idea was 

validated using a testbed consisting of three embedded transmitters with highly inaccurate, internal 

clock oscillators and a software defined radio (SDR) receiver (USRP). The transmitters (iCubes which 

are custom made) were set in master-slave transmitter arrangement where merely one transmitter 

provides the beacon for frequency synchronization. The SNR for CB nodes of two transmitters gave 



Journal of Advanced Research in Applied Mechanics 

Volume 31, Issue 1 (2017) 1-15 

5 

 

Penerbit

Akademia Baru

1.5dB less than that of the ideal case (M2=6dB) for 2 CB transmitters. Continued retransmission of 

the individual transmitter’s data symbol was used to achieved both time and frequency 

synchronizations among the beamforming nodes. The extra overhead of having a dedicated master 

transmitter can be avoided if a closed-loop feedback algorithm is employed. From the experimental 

result obtained, highly unstable received SNR is noticed when the two transmitters are involved in 

beamforming. This fluctuation can be avoided if the LO parameters of the USRP devices are estimated 

and compensated for. 

 The assumptions of no specialized hardware for carrier or phase synchronization, channel state 

information (CSI) availability and zero-feedback between receiver for distributed transmitters is 

implemented in [31] which is an extension of the work reported in [25] and [23]. Beamforming based 

on zero feedback with unsynchronized carrier frequencies was implemented with SDR receiver 

(Ettus-USRP) and results in terms of bit-error-rate (BER) were validated by comparing with simulation 

cases. Two (2) carrier frequencies were used to achieve CB, 2.457 GHz for sending a beacon 

synchronization signal to the slave CB nodes from the master transmitting node and the 2.446 GHz 

for implementing CB to the USRP receiver device. Repetitive coding was used here similar to [25] on 

the CB nodes to achieve signal alignment at the receiver since no feedback from the receiver to CB 

nodes is used. The extra master transmitter was equally employed here. 

 Beamforming was achieved in [19] using three USRP as CB nodes. 1- bit closed-loop feedback 

algorithm was used for phase correction and Extended Kalman Filter (EKF) for the correction of 

frequency drift thus steering the transmitters’ beam towards the USRP receiver. Two different carrier 

frequencies were used to achieve beamforming with frequency synchronization; 892 MHz for 

sending the message with beamforming enabled to the USRP receiver and 964 MHz for 1-bit feedback 

from the receiver to the transmitters. Individual nodes where enabled and disable with received 

signal amplitude taken and compared with that of beamforming with all the three transmitters active. 

The latter showed 9 times increase in signal strength as compared to individual transmitters being 

active. External reference in the form of feedback was used for frequency synchronization and the 

average and maximum distances between the nodes where not given. Latencies in the DSP software 

and/or hardware affected the received amplitude. 

 Distributed beamforming on a gnu-radio software-defined radio for phase and frequency 

estimation and correction (algorithms) using wireless nodes was implemented by [17]. 1-bit closed-

loop feedback algorithm for implementing distributed beamforming was carried out on USRP devices 

serving as nodes. The receiver node was able to handle LO frequency drift of up to 9 kHz due to its’ 

±10 ppm tolerance when considered for carrier frequency centered at 900 MHz. Unlike in [19], a 

dedicated node named as the master was used for providing a clock reference signal to other slave 

nodes hence not making the entire system wireless. This is to militate against noise if the receiver 

were to be used for this purpose. Also, unlike in [19, 31], three carrier frequencies at 964 MHz, 892 

MHz and 964 MHz ± 200 kHz were used for the master beacon signal to slave nodes, distributed 

beamforming signal to the receiver and 1-bit feedback signal from the receiver to the beamforming 

nodes, respectively. Similarly, just like [19], latencies in the DSP software and/or hardware affected 

the received amplitude. 

 The master-slave architecture was used in [18] with EKF for frequency synchronization correction 

and prediction (update) at the slave nodes and 1-bit feedback for phase offset adjustment all due to 

the high LO offsets. Two SDR platform hardware (Ettus-USRP) were used as distributed transmitting 

slave nodes. To solve the problem of phase offset among nodes, three (3) different frequencies were 

used; the reference LO with a carrier frequency of 964 MHz from the master node, the beamforming 

carrier signal (892 MHz) from the slave nodes and the feedback carrier frequency (964 MHz ± 75 kHz) 

from the receiver USRP. The measured received amplitude sum of the individual transmitters is equal 
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that of the beamforming transmitters. The difference in setup between [18] and [17] is in the 

feedback carrier signals, (964 MHz ± 75 kHz) for [18] and (964 MHz ± 200 kHz) for [17]. [6] unlike [17-

19] did specify the distances between CB nodes (20 cm) and that between the CB nodes and the 

receiver (2 m). This shows that CB nodes and the receiver are limited to short distance coverage and 

much is still need to be done about it. It is worthy to note that in all the literature that used USRP as 

the CB and receiver node, 10 ppm is the drift tolerance of the devices. This is good for the CB nodes 

but will definitely have a reduced effect on the SNR at the receiver. Thus it is better to use those with 

a lower tolerance (2.5 ppm) though at the expense of the highly efficient software filtering codes. 

 A standalone reference clock emitter device for providing synchronized frequency to all CB nodes 

was developed in [5] and named as AirClock Emitter. For the device to work, a recipient device that 

will be incorporated into all CB nodes was equally developed to receive the common referenced low 

signal that will serve as input to individual node’s PLL.  This way, the carrier frequencies will be 

synchronized and phase offset will be eliminated. The device was tested for three different 

experiments; distributed MIMO, distributed rate adaptation for wireless sensor and pilotless OFDM. 

For all the three cases, the AirClock emitter sends two beacon signals separated by 10 MHz frequency 

(which is the standard for external reference) and the recipient device applied a band pass filter to 

extract the 10 MHz signal and feeds it into the PLL of each node. It was observed that between two 

adjacent collaborating nodes, 0.4 Hz and 0.5 Hz and, 0.11 Hz and 0.34 Hz are the median and 95th 

percentile carrier frequency offset at carrier frequencies of 2.4 GHz and 900 MHz, respectively. The 

problem with this setup is the extra cost of the Airclock emitter and recipient devices which will also 

undesirably increase the energy consumption of the entire system. The distance between CB nodes 

and the receiver was equally not mentioned. 

 
Table 1 

Summary of Frequency synchronization in Distributed Beamforming 

Reference Strength Setback Feedback scheme 

[32] • Beamforming gains are in the 

order N2/N = N, where N is the 

number of beamforming 

nodes.  

• Frequency and timing 

synchronization of all nodes is 

assumed. 

• Phase synchronization of the 

received signal is done offline. 

 

• No feedback. 

[33] • Precise time synchronization 

between receiver and 

transmitting nodes is not 

required. 

• Additional transmitted 

synchronization signal to the 

receiver from the 

beamforming nodes is not 

required.  

 

• The algorithm has not been 

validated on any testbed. Fully 

based on software simulation. 

• Time division multiple access 

(TDMA) was employed which will 

require more time slot. 

• No feedback. 

[15] • No frequency offset among 

beamforming nodes. 

• The feedback channel is wired. 

• LO of all beamforming nodes are 

physically connected from a 

dedicated master transmitter 

thereby not making the setup 

cost effective. 

• Custom hardware design which is 

neither extendable nor usable. 

 

• 1-bit feedback 

algorithm. 
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Table 1 

Summary of Frequency synchronization in Distributed Beamforming 

Reference Strength Setback Feedback scheme 

[16] • Beamforming distance of 1.5 

meters between transmitting 

nodes and receiver was 

achieved. 

 

• The feedback channel is wired. 

• Custom hardware design which is 

neither extendable nor usable. 

• 1-bit feedback 

algorithm. 

[25] • Zero feedback channel. 

• Less system complexity in the 

beamforming nodes. 

• Takes considerable time for 

phasors of transmitted signals to 

align as no synchronization 

method is used. 

• Custom transmitter hardware. 

• The extra cost of maestro 

transmitter for packet 

synchronization of the 

beamforming nodes.  

 

• No feedback. 

[18-19] • All wireless implementation of 

beamforming channel, 

synchronization channel and 

feedback channel. 

 

• Suffers from software latency 

which leads to drops in measured 

receiver amplitude. 

• 1-bit feedback 

algorithm. 

[17] • All wireless implementation of 

beamforming channel, 

synchronization channel and 

feedback channel. 

• Suffers from software latency 

which leads to drops in measured 

receiver amplitude. 

• Modified Costas feedback loop 

use for frequency locking. 

• Extra cost for having a dedicated 

master transmitter. 

• Increase time slot and 

multiplexing complexity because 

three frequencies are used. 

• 1-bit feedback 

algorithm. 

[6] • All wireless implementation. 

• Extended Kalman Filter for 

tracking of LO frequency 

offset. 

• Reusable SDR DSP blocks 

• Suffers from software latency 

and hardware lags which lead to 

drops in measured receiver 

amplitude. 

• 20 cm for the distance between 

transmitting nodes. 

• 2 m for the distance between 

transmitting nodes and receiver. 

 

• 1-bit feedback 

algorithm. 

[31] • Validation of non-coherent 

zero-feedback with no carrier 

frequency synchronization by 

employing repetitive coding 

and interleaving. 

• Custom build hardware 

(Sklivanitis and Bletsas, 2011) as 

transmitting nodes. 

• A significant amount of time is 

needed for signal alignment at 

the receiver. 

• The extra cost of maestro 

transmitter for packet 

synchronization of the 

beamforming nodes.  

 

• No feedback. 

[5] • Development of hardware 

emitter and recipient 

• Custom frequency 

synchronization devices. 

• No feedback. 



Journal of Advanced Research in Applied Mechanics 

Volume 31, Issue 1 (2017) 1-15 

8 

 

Penerbit

Akademia Baru

Table 1 

Summary of Frequency synchronization in Distributed Beamforming 

Reference Strength Setback Feedback scheme 

frequency and phase 

synchronization device. 

• The extra hardware overhead is 

not cost effective. 

[34] • Considered random nodes 

distribution of arbitrary size. 

• Use non-parametric kernel for 

phase offset correction. 

• Only simulation was used to 

validate the use of the method 

for CB nodes with phase offset. 

• No feedback. 

[35] • Optimizes the 1-bit feedback 

algorithm which penalizes 

side lobes from beamforming 

nodes. 

• Based on simulations with 

assumed negligible network 

latency and shared message 

signal. 

• 1-bit feedback 

algorithm. 

[36] • Cost effective energy 

consumption and less 

synchronization time. 

 

• Based on simulations with 

assumed shared message signal. 

 

• 1-bit feedback 

algorithm. 

[29] • Use of channel reciprocity to 

achieve distributed 

beamforming with the 

receiver with minimal 

coordination. 

• The extra overhead of master 

transmitter which in turn 

increase system complexity 

when open-loop carrier 

synchronization is used. 

 

• No feedback. 

[20] • PSO algorithm was used for 

the optimization of phase 

offset correction and sensor 

positions. 

• Both beamforming cases were 

considered, that is, 

distributed beamforming and 

null forming. 

 

• Effect of signal scattering and 

reflection is assumed negligible. 

• Finite frequency drift is assumed. 

• No feedback. 

[37] • Arbitrary time gaps in-

between data/beacon 

transmissions can be inserted 

for transmitters and receiver 

communication in practical 

scenarios.  

• Half-duplex transmission and 

reception. 

• 1-bit feedback 

algorithm. 

[22] • Validate beamforming in the 

presence and absence of 

unsynchronized oscillator 

frequencies and receiver 

feedback. 

• Longer time for rotating phasors 

to align and quickly misaligns 

afterward. 

• Based on simulation 

• No feedback. 

 

3. Synchronization Techniques 

 

 Collaborative beamforming requires that all nodes have the same carrier frequency and a 

perfectly controlled signal phase with respect to the desired receiver. Traditional or conventional 

antenna arrays use physical means to access a common signal source that ensures that all elements 

involve have the same signal. For complete CB in a wireless network scenario, nodes should be fully 

wireless and therefore need to employ data sharing and beamforming algorithms. 

 In choosing methods for frequency synchronization and phase offset correction among CB 

nodes, factors such as time of algorithm convergence, system complexity due to design variable at 

both ends (transmitters and receiver) and flexibility in terms of expanding the network all need to be 
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considered and taken care of. The above sometimes cannot be achieved at the same efficiency level 

simultaneously as there has to be a tradeoff between them while prioritizing for efficiency and 

reliability. 

 The two (2) broad synchronization methods that are generally used for beamforming are; a) 

Open-loop synchronization method - where the interaction is more among the transmitting CB nodes 

when compared to the receiver node and b) Closed-loop synchronization method - where the 

interaction is basically between the receiver and the beamforming nodes. 

 

3.1 Open-loop Master-Slave 

 

 This method was first proposed by [29] where a dedicated node named as the master node 

among the other transmitter nodes sends out a beacon to other slave transmitting node at a 

reference frequency to be locked up to. This shared referenced frequency is used by the CB nodes 

for frequency synchronization. The receiver also sends an unmodulated carrier broadcast to the CB 

nodes for estimating and correcting or adjusting their carrier phases for coherent constructive signal 

alignment at the receiver. Three-time slots are normally employed which are for; master beacon 

(frequency synchronization), receiver to CB nodes beacon (phase offset correction) and the CB signal 

(message) to the receiver. The process is repeated continuously as LO of CB nodes drift over time if 

not corrected thus reducing the number of interaction between transmitters and the receiver when 

compared to the closed-loop method but increase the interaction among the CB nodes with extra 

hardware overhead. 

 

3.2 Closed-loop Full-Feedback 

 

 Tu et al. [38] is among the earliest to use closed-loop feedback for controlling the phases of 

antennas that form a virtual array. The receiver sends a beacon signal to the CB nodes which bounce 

back to the receiver so that it can measure the propagation delay and calculated each nodes’ phase 

adjustment for retransmission. Each CB node then adjusts its phase based on the estimate received 

and transmits the required message collaboratively with neighboring nodes to the receiver. A 

drawback to using the fully closed-loop feedback is that the receiver node must detect all signals sent 

by the CB nodes. 

 A 0 or 1-bit feedback is sent from the receiver to the CB nodes informing them of whether the 

last or current received signal strength (RSS) received is higher and therefore they should discard and 

retain that which gave the higher RSS. 1-bit signifies that a particular phase should be retained and 

used for the next CB signal transmission for constructive phase alignment and 0-bit for otherwise. 

The initial phases of the CB nodes are random but mostly manually provided in practical cases. These 

initial values are based on best-tested readings (this will have to be run for quite a number of trials) 

obtained from experimental runs before the actual experiment starts. Each 0 or 1 being sent to the 

CB node for phase correction serves as a single iteration and the process is repeated until 

convergence is achieved or other stopping criteria are reached. In most cases, an iteration of five 

times the number of CB nodes provides values above the needed threshold gains depending on the 

initial population of the algorithms [27]. Due to the slow convergence of the 1-bit algorithm 

theoretically, [39] and [40] came up with algorithms that converge faster than those of [27] named 

the 2-bit and 3-bit feedback systems which use a higher number of bits. In [39], a 2-bit algorithm was 

used to enable faster convergence of beamforming nodes in a simulated environment with 600 

nodes. The result on an average general term, when compared to those of the 1-bit and its improved 

version, gave an RSS of 37.9% and 29.7% improvement though with the trade-off of reduced number 
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of participating beamforming nodes. In [39], while the first bit serves the purpose of notifying the 

beamforming nodes which phase gave the highest RSS so as to maintain it, the second bit detects the 

position of the mobile receiver. The 2-bit algorithm will always give a combination of four possible 

states, with two states each for static and mobile receiver conditions. In each of these states, the 

new RSS is either accepted or discarded. If discarded then the last best RSS will be used for 

beamforming and the algorithm continues until a stopping criterion is achieved. Since this is a 

simulated case, it was assumed that there is no frequency drift in each of the beamforming nodes. 

Equally, the algorithm has not been reported for usage in a practical scenario as of date. 

 RSS taking the order of quadratic relation was recorded in [40] when a 3-bit feedback algorithm 

was used for beamforming in a simulated case. While the first of the three bits is used for received 

RSS, the last two bits are used for direction of motion of the receiver with respect to the transmitting 

nodes. A zero (0) for the exclusive OR ( ) combination signifies that the receiver is stationary and the 

other two combinations that produced a 1 signifies either the receiver is moving towards the 

transmitters or vice versa. This 3-bit just like 2-bit counterpart has not been practically tested and 

might come with an overhead of algorithm complexity. 

 

4. Processes in the Transmitters and Receiver Nodes 

 

 Frequencies of LO of beamforming nodes are expected to drift off their carrier frequency over 

time and also, the phases of the received signal at the receiver terminal tend to be out of phase even 

if the beamforming nodes are frequency synchronized. Therefore, there is a need to estimate and 

correct this offsets (frequency and phase) at the transmitting end though with the help of feedback 

message from the receiver node. Compensating for the frequency drift,  , in the beamforming nodes 

and adjusting the phases,  , of the signal such that they can be steered toward an intended receiver 

are the two basic processes taking place in the CB nodes. Depending on the extent of frequency drift 

on each node, this can be compensated for in SDR. The Ettus N210 with no discipline oscillator has 

drifts of up to 2.5 ppm. This means that for 900 MHz and 2.4 GHz, it is expected that drifts will seldom 

exceed 2.25 kHz and 6 kHz respectively. If Octoclog-G synchronization device which has 25 ppb 

(without GPS antenna connection) is used with the USRPs, then lower drifts not more than 22.5 Hz 

and 60 Hz respectively are expected for the same frequencies above. These are 100% reduction each 

in the ratio of frequency drift when the Octoclock-G is being used. That means the device can serve 

as a good candidate for benchmarking of frequency synchronization algorithm. The only setback will 

be if the drift is more than 2.5 Hz for every 1 MHz and 1 GHz for without and with the Octoclock-G, 

respectively which is always the practical case. 

 Because of the extra device overhead that is inherent with using the open-loop frequency 

synchronization method, the close loop method is sometimes used despite the noise that might be 

incurred from it due to feedback from the receiver. Gaussian minimum shift keying (GMSK) which is 

popularly used in global system for mobile communication (GSM) can be used to mitigate this noise. 

The GMSK has a constant envelope and the capacity to reduce sideband power which leads to out-

band interference reduction in adjacent frequency channels [41]. GMSK is a type of minimum shift 

keying (MSK) with no phase discontinuity and uses Gaussian low pass filter for shaping the waveform 

as against sinusoidal filter in MSK. 

 GMSK modulation was used in [42] for parameter estimation of complex signals. These 

estimated parameters are a prelude to frequency synchronization of beamforming nodes. This noisy 

estimates can serve as an input to the EKF of Figure 3. 

 EKF are often used as against the ordinary Kalman filter due to the non-linearity of the frequency 

drift problem. Feedbacks bits are periodically sent from the receiver to the CB nodes containing 
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information about frequency and phase offsets that gave a particular RSS and whether the nodes 

should keep their carrier frequencies and phases that gave the best RSS or compensate for them. The 

phase offset process adjusts the phase of each CB node based on the feedback from the receiver. 

The receiver node employs a 1-bit feedback algorithm. The other process is the time synchronization 

of the CB nodes. The time of arrival (the duration) of feedback packets from the receiver can be 

estimated and added to a predefined delay time that will be the same in all the CB nodes before the 

message are send to the receiver jointly. 

 Frequency division multiple access (FDMA) can be employed if only a single nodes’ information 

needs to be sent to the receiver. For cases where different sensed data from all the CB nodes need 

to be sent, then time division multiple access (TDMA) alongside FDMA should be used. 

 

5. Kalman Filter (KF) 

 

 Depending on the demodulation scheme (similar scheme should be used for modulation) that 

will be employed for phase offset correction, a filter is required to correct and predict the frequencies 

that will result in zero phase offset at the receiver. The Kalman filter is a set of mathematical equation 

(that is recursive) that estimates the state of a linear system, that is, it can estimate the past, present 

and future states of a system at every time step. But when the process in question is of the non-linear 

type as is the case with the USRP LOs’ drifting over time even after being synchronized during 

beamforming, then a non-linear filter is required. 

 The EKF (a non-linear filter) is a filter that linearizes the non-linear system about its current mean 

and covariance [43]. Detail work on the EKF is given in [44-45]. A comparison of the EKF and 

unscented Kalman filter (UKF) for virtual reality application was analyzed by [46] based on 

performance and computational overhead. The two filters had same performance scale with the EKF 

having lesser computational overhead. Contrary to [46], the UKF showed better performance in the 

four different simulation cases in [47]. This is to say that the performance and computational 

overhead of these two filters depend on the application it is being used on. 

 

5.1 Formulation of Problem 

  

 Consider a non-linear system describe by a set of stochastic difference and measurement 

equations for the CB nodes offsets [47]; 

  ( )1k k k
x F x w

+
= +             (1) 

  ( )k k k
z h x v= +             (2) 

where ( )k
F x   and ( )k

h x  are the process and observation non-linear functions with k  being the 

previous time steps in the process function. 
k

w  is the process noise vector that is assumed to be 

drawn from the zero mean multivariate normal distribution with covariance ( ); ~ 0,
k

Q w QN . 
k

v   is 

the measurement noise vector assumed to be zero mean Gaussian white noise with covariance 

( ); ~ 0,
k

R v RN . 
1k

x
+

  and 
k

z   are the State and Observation vector. 

  [ ] 0              0    T T

k k k k k j
E w E w w Q E w w for k j = = = ≠           (3) 

  [ ] 0                  0    T T

k k k k k j
E v E v v R E v v for k j = = = ≠           (4) 

The process noise and measurement noise are uncorrelated with their initial state vector (say X�) as 

well as the random noise themselves, that is; 

  
0

0      T

k
E w X for k= ∀              (5) 
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0

0      T

k
E v X for k= ∀              (6) 

  ( )0        T

k j
E w v for k and j  = ∀            (7) 

 

5.2 Method of Solution using EKF 

 

 The LO phase and frequency offsets of each of the CB node [48] from the receiver feedback is 

modeled by [ ],
T

k k k
x φ ω=   with 

k
ω   as 2

k
fπ   [6]. The feedback rate, T  , in the transition matrix,  

1

0 1

T
F

 
=  
 

can be fixed or dynamic. If fixed, then the receiver node is expected to be stationary and 

dynamic if it is in motion with respect to the CB nodes. Taylors series was used to expand the ( )k
F x   

and ( )k
h x  functions based on the two-state model of [49]. The forecast State and forecast error 

covariance of the system termed as the time update (predict equations) and those of the 

measurement updates for the system is shown in Figure 3. Note that the initial estimate for the 

process noise covariance matrix, Q , measurement noise covariance matrices, R , and the state 

update matrix F   were inputted before the first iteration run. In [50-51] the Q   matrix was calculated 

to be 
0.0250 1

1 42

 
 
 

  after using the direct spectrum method to calculate the white frequency and 

random walk frequency noises.  

  

 
Fig. 3. Frequency and phase prediction with EKF [6] 

 

6. Conclusion 

 

 This article has presented a review on the frequency synchronization in distributed beamforming 

nodes. The literature showed the improvement timeline of simulation cases of synchronization based 

on an ideal situation to practical implementation with parameters that are non-linear. Earlier work 

on the frequency synchronization has setbacks of wired feedback channels, custom hardware for the 

CB nodes that might not be compatible with another standard, distance limitation of neighboring CB 
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transmitters and that to the receiver. For those setup with the non-feedback scheme, its takes longer 

time for rotating phasors to align which quickly misaligns afterward. Other limitations are in the use 

TDMA which extends the overall convergence time of the algorithm being use and a non-cost 

effective use of dedicated devices for providing a reference signal to each CB transmitter’s oscillator. 

Also, some of the frequency synchronization algorithms suffer from software latency which leads to 

drops in measured received amplifier. 
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