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Considerable contributions are recently focused on computed tomography (CT) 
reconstruction methods. Since traditional   algorithms based on L2 norm are 
commonly used, they may degrade the resulting image instead of improving it. In this 
paper, a bounded-influence M-estimator algorithm based on lorentzian norm has 
been proposed. Using lorentzian norm for tomographic imaging reconstruction 
suppresses the outliers due to violations of the observation model while preserving 
the crispness details. Furthermore, the proposed calculation not only enhances the 
recreated picture but also upgrades the smoothness constraint where the 
regularization step is connected with a specific end goal to expel the artifacts from 
the picture occurring because of associated noise. Experimental results demonstrate 
that the suggested tomographic imaging calculation has superior robust performance 
comparing to L2 estimation with L2 regularization model.  
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1. Introduction 

 
Tomography means imaging a cross-section of an object using either reflected or transmitted 

data comes from illuminating the object from many different directions [1,2]. In computer 
tomographic imaging, reproducing an image is really generated from its projections. So, the 
reconstruction process is mathematically achieved [2].  

Tomographic images are basically generated by X-ray devices that produce X-ray penetrating 
the components of materials to expose hidden particles. There are multiple upgrades in x-ray 
technology because of advances in electronic components, for more details see [3]. Sharpness, 
contrast, and the decimation in time have been enhanced by continuous improving X-ray systems 
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[4]. Actually, viewing internal organs with precision and safety to the patient became allowable 
using the X-ray technology. Therefore, diagnostic medicine has improved to be more accurate.  

One of common reconstruction algorithms is the filtered back-projection (FBP) algorithm that 
has a high speed, particularly on dedicated hardware [2][5].  FBP weights all X-rays equally leading 
to a shortcoming. Since, X-ray tubes produce a polychromatic spectrum, beam-hardening image 
artifacts arise in the reconstruction. 

Many algebraic effective reconstruction calculations have been introduced [2]. Kaczmarz’s 
algorithm [6,7], Randomized Kaczmarz [8], Symmetric Kaczmarz [9], Component Averaging [10], 
Cimmino [11], and Landweber [12] are common algorithms that are available for training, testing, 
researching and developing. Numerous such algorithms have been introduced based on L2 
statistical norm estimation. These algorithms have a problem where they are usually sensitive to 
additive noise. So, there is a need for a robust norm which is able to deal with noisy data model in 
reconstruction calculations. 

The proposed recreation algorithm uses the lorentzian norm [13] for killing outliers [14] in the 
estimated picture. It is handled with an iterative estimation technique in minimizing a cost function. 
Moreover, lorentzian regularization is used for erasing artifacts from the final estimation and 
preserving the sharpness edges. The experimental results confirm the effectiveness of the 
suggested technique and demonstrate its advantages over other reconstruction techniques based 
on L2 norm. 
 

2. Data Reconstruction Estimation  

  
Tomographic imaging recreation has been essentially produced by received measurements 

represented as an array of variables. So, reconstruction model is desired to generate a 
reconstructed picture from projection data. 

2.1 Reconstruction Model 

A two-dimensional domain is divided into equally spaced intervals in both dimensions creating 
N cells. For each specified angle θ that is from 0 to 179 in degrees, parallel X-rays p penetrate the 
domain. If the picture is square, then the rays are distributed symmetrically around the domain 

centre. The maximum width of spread rays � = 	√2�; therefore, the number of rays p equals to 

round (√2�). 
The tomographic image consists of a discrete array of unknown variables xj, with j = {1 . . . , N}, 

i.e., the unknown factors of attenuation. The system of projections penetrating through the object 
can easily be modelled by equations of a linear system. Passing through tissue, the intensity of the 
X-ray beam is weakened according to the attenuation coefficients, xj. If the image is small, the 
solution of the corresponding low dimensional linear system of few equations can be obtained, for 
example, by Gaussian elimination. 

Figure 1 introduces a 3x3 pixel image generated by X-ray parallel beams. Nine equations are 
received with nine unknown values that can be solved exactly, as long as the physical measuring 
procedure is not afflicted with noise and no linear dependencies occur. 

The imaging system can be described as 

� = �	 + �	,                                                                             (1) 

where A is an M x N weighting matrix, n is the additive noise, and M is the whole number of 
projection rays b in all directions. Each weight reflects the relation between the area that is 
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illuminated by the beam and the pixel entire area. The exact solution of the previous equation (1) is 
reshaped as a vector x. the ith element of b is 

� =	∑ ����� ,���� 									� = 1,⋯ , ������� !. #                                                         (2) 

 

 

     Fig. 1. 3×3 unknown pixels exposed to X-ray parallel beams 

 
Then, we can solve Eq. (1) using iterative algebraic approach. The methods, which use iterative 
strategies to solve the previous equation, usually start with an initial image, x

(0), a sequence of 
images, { x(1), x(2), . . . }, is calculated iteratively that converges to the desired tomographic picture. 
In the first step, a forward projection, 
 
��$! = �	�$!,                                                                             (3) 

 
of the n

th image approximation x
(n) is determined. The projection, b

(n) , determined in the n
th 

forward projection should be compared with the actual measured projection, b. The comparison 
between the determined and the measured projection yields correction terms that are applied to 
the n

th image approximation, x
(n) , resulting in the (n+1)th image approximation. This process is 

iteratively repeated such that with another forward projection, the projection b(n+1) is determined. 
Using norm estimators, the solution of Eq. (1) can generally be found by the minimization problem 
in Eq. (4), where ρ(·) is the error norm. 
 	% = ArgMin	,-��	 . �!/                                                                (4) 
 

2.2 L2 norm Estimator 

 
For L2 norm estimators  
 -�0! = ‖0‖22                                                                            (5) 

 
Using this estimator with Eq. (4) yields the following minimization problem 
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	% = ArgMin	,‖�	 . �‖22/                                                                (6) 
 

The L2 norm is very sensitive to outliers because the influence function increases gradually 
linear and without bound [13]. The L2 norm function and its influence function are shown in Figures 
2(a) and 2(b), respectively. 

 

                         (a)                                    (b)                                      (c)                                    (d) 

Fig. 2. Various norm and influence functions (a) L2 norm, (b) L2 norm influence function (c) 
lorentzian norm, and (d) lorentzian norm influence function 

 

3. Reconstruction with Regulation  

 
The reconstruction process is an ill-posed inversion process because the system matrix A 

consists of small singular values. Therefore we need to add an additional term for regularization. 
Also, regularization is used to get rid of artifacts in addition to enhance convergence. Rewriting the 
cost function of Eq. (4) after adding the regularized term 
 	% = ArgMin	,-��	 . �! + λ ∙ γ�	!/                                                          (7) 
 
where γ(·) is a regularization function producing the same dimension as the projections column, 
and λ is a regularization parameter scalar used to control the regularization process. 

For L2 norm estimator with L2 Regularization, Eq. (7) has been rewritten as 
 	% = ArgMin	,‖�	 . �‖22 + λ ∙ �6	!2/                                                        (8) 
 
After using Newton’s approach to solve the reconstruction problem in Eq. (8), each-iteration of this 
algorithm consists of 
 

	%�78�! = 	%�7! 	. 	9: 8	;∙<:9= 8	;∙<=                                                                  (9) 

 
where -: , -= , 	γ,: γ=  are the first and second derivatives of data error norm and regularization function 
respectively. 
 

4. Proposed Robust Algorithm  

4.1 Robust lorentzian norm estimator 

 
For lorentzian norm estimators  
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-�0! = log @1 + �
2 ABCD

2E                                                                            (10) 

 
where T is a constant that controls outlier threshold. Using this estimator with the minimization 
problem in Eq. (5), is able to solve the reconstruction problem, where the robust error norm ρ(·) is 
applied ,element by element, on the error. Lorentzian norm is designed to overcome the problem 
of outliers by setting a bounding limit at which its influence function reaches zero after exceeding 
this limit. Lorentzian norm works as; L2 norm for small error, and L1 norm for larger error. 
Therefore, lorentzian norm was able to have the benefits of L1 and L2 norms while avoiding their 
drawbacks. Lorentzian norm and its influence function are shown in Figure 2(c) and 2(d), 
respectively. 

The only problem with using a lorentzian norm in the cost function, as a measurements data 
constraint, is the starting iterations where the data error is very large. This could make the result 
diverge because the lorentzian is a non-convex function. We can overcome this problem by 
adopting an initial guess of the data using L2 or any other convex function only for the starting 
iterations. We can also control the constant T of Eq. (10) such that the maximum absolute residual 
of data measurements is T√2 to ensure that the initial estimates contains no outliers and the 
lorentzian estimator starts with convex approximation. 
 

4.2 Lorentzian norm estimator with lorentzian regularization 

 
Combining lorentzian regularization with lorentzian norm estimator produces 
 	% = ArgMin	,-��	 . �! + λ ∙ F�6	!/,                                                             (11) 

 

-�0! = log @1 + �
2 ABCD

2E,         F�0! = log G1 + �
2 H B

CIJ
2K 

 
where T and Tg are constants that control outlier thresholds for data constraint and smoothness 
constraint respectively. After using Newton’s approach to solve the reconstruction problem in Eq. 
(11), each-iteration of this algorithm consists of 
 

	%�78�! = 	%�7! 	. 	9: 8	;∙<:9= 8	;∙<=                                                                         (12) 

 

-:�0! = 2B
2CL8BL 			,										-= �0! = 2�2CLMBL!

�2CL8BL!L   ,          F: �0! = 2B
2CIL8BL 			,										F= �0! =

2�2CILMBL!
�2CIL8BL!L 

 

5. Results and Discussion  

 

The proposed calculation is applied on a well-known Shepp and Logan "head phantom" image. 
This image represents a cross section of the human head with X-ray tomography which is 
commonly used in testing the reconstruction algorithms. The image is described by ten ellipses with 
different parameters, as shown in Figure 3. 
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Fig. 3. Shepp and Logan 
"head phantom" image  

To be able to differentiate between the commonly used L2 norm method and our proposed 
robust algorithm, these methods are applied with the same pattern of random noise. Adding Noise 
to the received measurement projection values affects the resulting images quality since it 
degrades the reconstruction process, so we need to add the regularization part to the 
reconstruction problem as seen in Eq. (7). 

Note that, the initial starting guess used in the first iteration was a vector of zeros. Although this 
starting guess doesn’t ensure solution convergence when using our robust algorithm for data 
constraints, because lorentzian is a non-convex function, but this problem can be solved by 
controlling the threshold T√2 of the lorentzian funcTon to be equal or greater than any possible 
data measurement error to ensure the convexity of our model. Furthermore; the proposed 
algorithm uses updated regularization parameter λ that increases gradually linear to ensure the 
regularization effect doesn’t resist or slow down the reconstruction process in the starting 
iterations, since the starting guess was a vector of zeros. 

After 300 iteration using 768 parallel rays for each 5 degrees of a noisy 256 × 256 parallel beam 
tomography problem with 5% AWGN level, The results for the traditional L2 norm regularized with 
L2 smoothness constraint and the robust data constraint regularized with lorentzian smoothness 
constraint are shown in Figures 4(a) and 4(b) respectively. From these results and from the Peak 
Signal to Noise Ratio curves shown in Figure 4(c), we find that our robust algorithm is significantly 
better than L2 for both data and smoothness constraints. 

    

                                          (a)                                              (b)                                                             (c) 

Fig. 4. Reconstructed images (with PSNR) from noisy measurements (5% AWGN) using; (a) L2 
norm for both data and smoothness constraints, and (b) Lorentzian norm for both data and 
smoothness constraints. (c) PSNR of L2 and lorentzian norms in both data and smoothness 
constraints 
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6. Conclusion  

 

The computed tomography reconstruction algorithms that depend on L2 norm estimators have 
a shortage as reconstruction techniques. So we proposed a robust technique based on lorentzian 
norm. The proposed algorithm can handle both data and smoothness constraints and produces 
better results than traditional methods. The experimental results show our proposal superiority 
over the other techniques especially in the regularization part since it enhances the reconstruction 
process without modification the outlier differences between neighbour pixels preserving the 
crispness, high frequency, of the reconstructed image. 
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