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ABSTRACT 

 Cooling Thermal Energy Storage (CTES), for large air conditioning system is becoming paramount in maintaining building comfort, 
at the expense of huge energy usage. Water based Ethylene Glycol (EG) is used as Heat Transfer Fluid (HTF) with Phase Change 
Material (PCM) nodule. EG25 of 25% concentration by volume is added into HTF so that the freezing point falls below 0.0 ͦ C, and 
PCM could solidify from liquid to store latent energy. Energy use needed to be prudent and hence, nanofluid CuO was explored for 
heat transfer enhancement to current CTES system. This paper is to compare the efficiency of heat transfer of energy storage using 
PCM immersed in EG25 solution and nanofluid CuO. Numerical approach and simulation are conducted to study the improvement 
of specific heat, latent heat and the behaviour of energy release during melting. The result obtained has proven that nanofluid, EG 
based mixture is capable of increasing thermal conductivity, enhancing heat transfer. This increases the coefficient of performance 
and overall efficiency of thermal energy storage. 
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1. Introduction 
 

Nowadays, township building is undergoing careful and detailed development by town planner. 
In the same time, building centralised air conditioning (AC) system such as District Cooling Plant to 
serve the development of vicinity area has gained much consideration, owe to its economic scale. 
According to Saidur [1], the AC system is the biggest energy consumer of a building for temperate 
country like Malaysia, accounting 57% energy usage. Thus, to reduce energy usage, cold thermal 
energy storage (CTES) is becoming a viable in large centralised AC system, as latent energy storage.  

CTES stores latent energy for use at a later time [2-3]. Figure 1 is an illustration of estimated 
current cooling load demand profile from a typical development in city centre. The latent energy 
stored during charging at nighttime is released at daytime for use. 
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Fig. 1. Estimated cooling load of typical mixed development per day 

 
The common type of CTES are ice on coil and ice ball system. For ice on coil, normally it was 

described as shell and tube construction, the coil is surrounded by heat transfer fluid (HTF) in a tank 
[4]. The outer surface of coil is in contact the phase change material (PCM) with cooling energy is 
transmitted from the coil at freezing point temperature, 0°C during charging/icing and release back 
to the coil during discharging/melting process. For ice ball system, water and nucleating agent is filled 
in an encapsulated ball nodule, called ice ball. There is plenty amount of ice balls as PCM and these 
are loaded in tank, immersed in HTF [5-8]. Recently, there have been few studies on the nanofluid 
performance CTES [9-15]. Wang et al., [14] found that by using Cu-H20 nanofluid, supercooling 
degree can be reduced and shorter freezing time was observed during cold storage process. 
Meanwhile, Ali et al., [15] in their numerical investigation lattice Boltzman method demonstrated 
that the use of nanoparticles leads to enhancement of thermal conductivity of nano-enhanced phase 
change materials (PCMs) when compared with conventional PCMs. 

The right PCM such as organic [15-18], inorganic [19-20], and eutectic [21] should be selected for 
particular energy storage applications by considered their thermal properties, physical properties, 
chemical properties, kinetic properties and economic properties. Organic material such as glycerine 
and vinyl stearate are divided into paraffin and non-paraffin type, can absorb or release large amount 
of latent heat due to the nature of the long carbon chain. Having high chemical stability, the paraffin 
PCM can be used repeatedly and is non-corrosive and non-sub cooling. However, organic PCM has 
low thermal conductivity [18]. Organic non-paraffin PCM is like paraffin but is relatively corrosive, 
more expensive and highly flammable [18]. 

Inorganic PCM is has higher latent heat per unit mass due to higher density [20]. It has higher 
heat conductivity, approximately 0.5W/m oC, less flammable, toxicity, corrosive and cheaper 
compare to organic PCM. Salt hydrate is water based mixed with inorganic salts such as CaCl2.6H2O. 
However, the salt hydrate PCM is prone to sub-cooling and phase separation. Zalba et al., [22] has 
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made classification and cited that suitable PCM is required to fit the requirement of the system as 
listed in Table 1.  

The limitation of conventional PCM is poor heat transfer rate. This is due to their low thermal 
conductivity and it is impossible to enhance the charging and discharging rate of heat flux. Also, low 
thermal conductivity would increase the time required for complete melting and solidification 
processes, decrease the energy storage capacity and yield difficult to retrieve the stored energy. For 
more than a century time, vast efforts have been done to improve the thermal conductivity of PCMs 
such as extended surface and fins, microencapsulation, bubble agitation, metal ring and metal matrix 
insertion, inserting porous media, dispersion of high conductivity particles, etc. This has motivated 
the present study to conduct a numerical approach and simulation to study the improvement of 
specific heat, latent heat and the behaviour of energy release during melting. Nanoparticle size 
contributes greatly to the thermal conductivity enhancement. Few reports have shown that thermal 
conductivity increase with decrease in nanoparticle size [23-24]. In one of the earliest research, Zeng 
et al., [25] measured the thermal conductivity enhancement of nanofluid organic phase change 
material (Ag nanoparticles dispersed in 1-tetradecanol (TD)) and found that the thermal conductivity 
of the material was enhanced as the volume fraction of nanoparticles increased. Experimental studies 
by Wu et al., [26] have shown that the total freezing time of Al2O3-H2O nanofluid with SDBS 
surfactant could be reduced by 20.5% with only 0.2wt.% of Al2O3 nanoparticles. The main goal of 
this study is to improve the performance enhancement of cold thermal energy storage system using 
nanofluid phase change materials (NFPCM).  

 
Table 1 

Classification of PCM [20 (22)]] 
Phase Change Material 

Organic Inorganic Eutectic 
Paraffin Salt hydrate Organic 
Non-paraffin Metallic Inorganic-Inorganic 
  Inorganic-Organic 

 
2. Methodology  
 

Heat transfer analysis are conducted for melting/discharging of sphere encapsulated PCM. Base 
HTF, without nanoparticles, and subsequently HTF with nanoparticles by volume fraction of 0.025 
and 0.050 with calculated properties are used to beside base HTF to simulate the potential 
enhancement of heat transfer. Copper Oxide (CuO) will be used as the nanoparticles in the 
simulation. Transient heat transfer model will be conducted during melting stage of PCM.  

3-dimensional model of one sphere encapsulated PCM contained in a metal well insulated tank. 
Water is used as PCM for the sphere and ethylene glycol of 25% concentration, EG25 is used as the 
base HTF. The model will focus on the melting/discharging of the ice PCM sphere in transient manner. 
The potential of heat transfer enhancement here is being analysed.  

Hot HTF will flow from inlet, crossing thru the sphere PCM and exit as colder HTF at outlet. During 
the crossing, the HTF is in contact with the body of the sphere and heat transfer occurred via 
conduction and convection. The cold energy of PCM is being extracted to chill the hot HTF. 

The potential enhancement of melting/discharging for sphere encapsulated PCM is being 
investigated with the following assumptions: 

i. PCM is pure water substance, homogenous and isotropic. No consideration for sub-
cooling effect. 

ii. PCM is in solid water phase for melting. 
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iii. No air pocket within the sphere encapsulated PCM to allow for expansion and 
contraction. Air and vapour phase within sphere are ignored. No buoyancy is assumed. 

iv. Initial temperature of PCM is uniform. 
v. The outer wall of metal tank is assumed to be fully insulated with no heat transfer across. 

The metallic component used is aluminium. 
vi. The sphere wall capsule is set as aluminium in lieu of blend polyolefins. 

vii. The domain is assumed to be large enough for simulation changes take place. 
viii. HTF is incompressible.  

ix. Inlet mass flowrate of HTF is constant. 
x. Inlet temperature of HTF is constant. 

xi. The HTF flowrate is accelerated by approximately 25 times to hasten the heat transfer. 
xii. The HTF flow is laminar. 

  
2.1 Model Setup 
 

Ansys Fluent 16.0 is chosen as the software to run and simulate the model. The model setup is a 
simplified version, retaining much of the actual working principle. A sphere encapsulated with PCM 
is placed at the centre of the steel container as presented in Figure 2. The sphere capsule is set to 
aluminum as a substitute for the polyolefins material. The metallic tank is also treated to be 
aluminium with full insulation, adiabatic form and heat loss is negligible. The HTF is moving from the 
inlet, crossing the sphere of PCM and flowing to outlet.  

A sphere encapsulated with PCM is placed at the centre of the steel container. The description 
setup of sphere capsule is shown in Figure 2(a). Figure 2(b) shows a cut thru at the centre plane for 
viewing the whole domain. The final condition will focus on the centre-plane as it is assumed to 
represents overall average result. The domain above consists of 2 parts: HTF filled within metallic 
container and PCM within cavity of hollow sphere capsule submerged in HTF. The tank is measured 
by 120 mm x 120 mm x 120 mm while the sphere is set to approximately 97.8 mm external diameter. 
The thickness of the container wall and sphere skin thickness is set to 1.58 mm. 
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(a) Description of setup 

 
(b) Cut off section view of setup 

Fig. 2. A sphere encapsulated with PCM is placed at the centre of the steel container 
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2.2 Preparation of Mesh 
 

The prepared model from Geometry Modeler is imported into Mesh Design software packaged 
in Ansys for mesh preparation. Cut cell is utilized to generate complex geometry mesh with reduced 
time. It consists of mainly hexahedral elements, suitable to align the mesh faces according to 
curvature. In this manner, the irregularities at gap between the PCM to sphere skin and sphere skin 
to HTF are reduced and adapted as shown in Figure 3 and Figure 4. This provides regular heat transfer 
at this interfacing part. Improper meshes at interfaced zone will cause unnecessary computer 
resources used to solve discontinuities, create improper or divergence result. 

 

  
Fig. 3. Cut Cell enhances the curve and 
boundary 

Fig. 4. Cut Cell in Isometric View 

 
2.3 Grid Independent Test 
 

Grid independence test is important to be performed to determine the required size of element 
to attain correct and acceptable result without compromising further on the computing resources. 
Too fine mesh will demand much computing while meshes that are too coarse will lead to divergence 
issue or incorrect result. As the HTF wall and PCM sphere thickness are both set at 1.58mm, the 
element size at this wall/skin should be lesser than 1.58 mm to capture changes occur within. In this 
case, 0.82mm mesh element is chosen.  

Few coarser grid CFD model produces imprecise result in relative to each other. The finer grid 
CFD model produces consistent result, starting from nodes quantity of 2719727 to nodes 2924525. 
The point taken for the grid independent test is at the centre of the outlet plane, with 16.0˚C being 
the ideal theoretical value upon full release of energy content.  

Based on Figure 5, nodes quantity of 2719727 and element size of 2597905 is found to achieve 
grid independence as shown by the pointed arrow. Hence, nodes quantity of 2854954and element 
size of 2734272 fine mesh with medium smoothness and 100% relevance parameter provide balance 
between quality mesh and computing demand. The nodes and elements size in the grid independent 
test are listed in Table 2. 
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Fig. 5. Graph of independence test 

 
Table 2 
The Grid and element mesh for independence test 

Item Wall/Skin Mesh Size Nodes Elements Average Temperature (˚C) 
1 0.81 3044571 2924525 16.05 
2 0.82 2854954 2734272 16.03 
3 0.83 2719727 2597905 16.05 
4 0.85 1340069 1282638 14.75 
5 0.88 1323837 1265698 14.97 

 
2.3 Fluent Setup 
 

The completed mesh is exported to Ansys Fluent 16.0. In general, 4 core processors are selected 
for parallel processing to utilize all cores, to accelerate the simulation. Double precision is selected 
to enhance result accuracy. Next, pressure solver based, transient and gravity inclining to -Y direction 
is checked. Pressure based solver is suitable as the modeling is using low velocity incompressible fluid 
and pressure correction is solved using continuity and momentum equation. Transient setting will 
enable the analysis of heat transfer that varies with time. Gravity is enabled to allow the effect of 
direction and magnitude gravity onto the flow.  

On the model, the energy activated as the focus is on heat transfer. Melting/solidification model 
is selected, employing on enthalpy-porosity technique, with mushy zone constant 100000 set as 
default. During melting, the liquid fraction increases from 0 to 1. 

The flow nature of the 3 cases is checked using Reynolds Number (Re) formula as  
 

Re
vD


                 (1) 

 
It was found out that the Re is less than 2000, and the flow of HTF is laminar. Further, Laminar is 

chosen so that turbulence form of equations is not activated, as the flow solution is not critical 
considering the analysis of end result. 

The Nusselt Number (Nu), ratio of convective to conductive heat transfer is given as 
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hL

Nu
k

                 (2) 

 
The Stefan Number (Ste) is the ratio of sensible heat to latent heat, given as    

 

L

TcThCp
Ste

)( 
              (3) 

 
The heat transfer, fluid flow for PCM with nanoparticles in HTF is described by the following 
conservation equation as described by M. Aurienma et al., [27]. 
 
𝜕⍴

𝜕𝑡
+ ∇. (⍴Ū) = 0             (4) 

 
𝜕

𝜕𝑡
(⍴Ū) + ∇. (⍴ŪŪ) = ∇. P + ⍴ḡ + ∇. τ + Ḟ          (5) 

 
𝜕

𝜕𝑡
(⍴𝐻) + ∇. (⍴Ū𝐻) = ∇. (K∇T) + 𝑆            (6) 

 
The HTF is using ethylene glycol as material with the modified properties as listed in Table 3. The 

purpose of the properties is to condition the properties like having nanoparticles blended with 
respective volume fraction in EG as nanofluid. 
 
Table 3 
The calculated properties for base and nanofluid 

Heat Transfer 
Fluid and its 
Constituents 

Density, ρ 
(kg/m3) 

Viscosity, µ 
(Pa-sec) 

Cp 
(J/kgK) 

K  
(W/m-K) 

β, (1/K) L (J/kg) Pr 
Fusion 
Point (°C) 

Solid CuO 
NanoParticle 

6,510.00 0.0000 540.00 18.000 0.000000 0 0.00 0.0 

Basefluid with 
EG25, volfrac = 
0.000 

1,039.00 0.0042 3,483.50 0.456 0.000610 234,668 32.06 -4.0 

Basefluid with 
EG25, 
Nanofluid, 
volfrac = 0.025 

1,175.78 0.0045 3,076.06 0.489 0.000526 202,185 28.15 -4.0 

Basefluid with 
EG25, 
Nanofluid, 
volfrac = 0.050 

1,312.55 0.0048 2,753.54 0.523 0.000459 176,473 25.14 -4.0 

 
From Brinkman [28], the density of the nanofluid is derived from  

 
𝜌𝑛𝑓 = (1 − ∅)𝜌𝑓 + ∅𝜌𝑠,            (7) 

 
While the viscosity of the nanofluid is determined using 
 

𝜇𝑛𝑓 =
𝜇𝑓

(1−∅)2.5,              (8)  
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The heat capacities are obtained from 

 

(𝜌𝑐𝑝)
𝑛𝑓

= (1 − ∅)(𝜌𝑐𝑝)
𝑓

+ ∅(𝜌𝑐𝑝)
𝑠
    

(𝜌𝛽)𝑛𝑓 = (1 − ∅)(𝜌𝛽)𝑓 + ∅(𝜌𝛽)𝑠,           (9) 

 
The effective thermal conductivity of the nanofluid is calculated using 

 
𝑘𝑒𝑓𝑓 = 𝑘𝑛𝑓,𝑜 + 𝑘𝑑,                       (10) 

 
where the thermal conductivity of the nanofluid is given by Wasp EJ et al., [29] as  
 

, 2 2 ( )

2 ( )

nf o s f f s

f s f f s

k k k k k

k k k k k





  


  
                      (11) 

 
The latent heat of the nanofluid is evaluated using 

 
(𝜌𝐿ℎ)𝑛𝑓 = (1 − ∅)(𝜌𝐿ℎ)𝑓 ,                      (12) 

 
The material of ice-water is set for PCM. f is the liquid fraction during the phase change, which 

varies between zero for solid and one for liquid and is provided as below: 
 

𝑓 = {

0, if 𝑇 < 𝑇𝑠
𝑇−𝑇𝑠

𝑇𝑙−𝑇𝑠
,  if 𝑇𝑠 < 𝑇 < 𝑇𝑙

1, if 𝑇 > 𝑇𝑙

                      (13) 

 
where respective temperature is ultimately set as 
Solidus temperature, Ts  = -4.0˚C,  
Liquidus temperature, Tl  = 0.0˚C 
 

Selecting with differential temperature between solidus and liquidus temperature of less 1.0˚C 
yields instable result. This is consistent with the findings by Aniruddha Chatterjee [30], citing that 
temperature different less 3K and below poses instability result. And in real application, the 
temperature of full charged PCM during initial stage is -4.0˚C. 

The density of ice water is different, changing according to temperature. Being liquid at 4.0˚C, it 
has density of 1000.0 kg/m3, while in solid, the density reduces to 916.0 kg/m3. Hence, it is altered 
using under piecewise-polynomial equation with the following base input. 

 
8 5 6 4 4 3 3 2 3 3

,

4 2 2 3

,

( ) 2 10 . 4 10 . 2 10 . 9.5 10 . 5.5 10 . 1000.4 (kg/m )

( ) 8 10 . 17.03 10 . 916.48 (kg/m )

w atm

i atm

P t t t t t t

P t t t





    

 

          

     
               (14) 

 
The previous equation was adopted from calculation routines by Otero et al., [31]. Similarly, the 

specific heat of ice and water is 2108.0 J/kg.˚C and 4188.0 J/kg.˚C respectively. And the specific heat 
change during phase change of solid and liquid water. The same calculation routines by Otero et al., 
[31] for PCM is taken and keyed into piecewise-polynomial basing the following: 
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8 6 5 5 4 4 3 3 2 2

,

,

( ) 4 10 . 10 . 8 10 . 14.3 10 . 36.48 10 .

                     6.7732. 4253.4 (J/kg. C)

( ) 7.78. 2115 (J/kg. C)

w atm

i atm

C P t t t t t t

t

C P t t





            

 

 

                 (15) 

 
Cell zone conditions are set with the material as per Table 4 below. The selection of material will 

be based on the properties fixed as per intent. As WALL and PCMWALL is boundary skin and required 
for heat transfer across, and aluminium exhibit excellent heat transfer characteristic, the choice is 
left as default. However, the WALL of the tank is insulated with negligible heat flux across. 
 

Table 4 
Cell zone conditions 

Part Material Setting Description 

PCM Fluid, Ice Manual select, others remain unchanged 
HTF Fluid, Ethylene Glycol Manual select, others remain unchanged 
WALL Solid, Aluminium Set by default, exhibit heat transfer 
PCMWALL Solid, Aluminium Set by default, no heat transfer 

 
Boundary conditions are defined in the following Table 5. The mass flow rate is calculated from 

flowrate at the inlet of pipe and the average distributed over plane area of the steel tank in actual 
condition but have been hastened by approximately 48 times to reduce computation time. Further, 
this velocity is still within the laminar region.  

Setting the outlet to outflow is unsuitable as it assumes full developed flow with zero flux. 
Pressure outlet is more appropriate as back pressure or reversed flow exists within the tank domain 
and outlet is restricted to pipe carrier diameter. The wall is set to zero flux, assuming it is fully 
insulated with negligible heat transfer.  

The PCM and HTF are automatically classified as interior by CFD software. Meanwhile, coupled 
are set by default for the following interfacing parts: 

i. HTF and wall,  
ii. HTF with PCM sphere skin, 

iii. PCM sphere skin with PCM, 
 

Table 5 
Boundary condition 

Part Setting Properties 

Inlet Mass flow inlet 
Mass flow rate, ṁ = 0.01010kg/s 
Inlet temperature = 12.0 ˚C 

Outlet Pressure outlet Backflow temperature = 12.0 ˚C 
PCM / HTF Interior Set by default 
Interfaces Coupled Set by default 
Walls Boundary wall Heat flux is negligible 

 
On the solution solver algorithm, SIMPLEC is selected over SIMPLE due to its robustness and 

quicker converged solution. SIMPLEC scheme is used to solve the momentum and continuity 
equation. Coupled is not chosen as this modeling employs segregated solution scheme. PISO 
advantages shines if the model is highly skewed and with complicated and odd shape. Discretization 
for other related properties are as followed in Table 6. 
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Table 6 
Solution method condition 

Properties Setting 

Gradient Green-Gauss Node Base 
Pressure PRESTO 
Momentum Second Order Upwind 
Turbulent Kinetic Energy Second Order Upwind 
Turbulent Dissipation  Second Order Upwind 
Energy Second Order Upwind 
Transient Formulation Second Order Implicit 

 
Green-Gauss Node Base averaging scheme produces better accuracy for unstructured meshes. 

PRESTO is used to provide better accuracy via interpolation of pressure gradient compare to second 
upwind. 

Under solutions control all the settings are left unchanged. Solution initialization is done via 
hybrid mode with 10 iterations rather than standard mode. It is solving Laplace equation to 
determine pressure and velocity variables under programmed condition. Under this condition, using 
hybrid mode produces faster convergence result. Meanwhile standard initialization may be used give 
better controlled environment by putting desired initial value. 

The temperature of PCM zone is patched to -4.0˚C so that PCM initial temperature starts at to -
4.0˚C before simulation is performed. 
 
3. Results and Discussion 
3.1. Preliminary Results 
3.1.1 Validation 
 

The computations were performed for three cases. The first case was the base HTF, the second 
case was HTF with nanoparticles of 0.025 (by volume fraction) and last case was HTF with 
nanoparticles of 0.050 (by volume fraction).  

The Reynolds Number (Re) used was calculated from Eq. (1) with mass flow rate of 0.01010kg/s, 
diameter of 0.12 m and viscosity of 0.0042kg/m.s. The Re was found to be within 29.5 to 33.5. 
Laminar model was selected since the value of Re was below than 2000.  

The Nusselt number (Nu) obtained from Eq. (2) for this model is in a good agreement and 
proportionally to the Re.  As Re decreases with the increase nanoparticles, the Nu decreases as well. 
Nu is based on the 21.50 w/m2K, with diameter of 0.12m and thermal conductivity of 0.46W/m.K. Nu 
for these cases are 5.56 to 2.49, respectively. 

Meanwhile, Stefan Number (Ste) was 0.075 for sensible heat to latent heat ratio of PCM was 
calculated using Eq. (3). 

The blue contour indicates solid region is phasing towards lighter blue, green, yellow and finally 
with red spot during melting are presented in Figure 6. Figure 6(a) is the result of temperature 
contour for base HTF. Whereas, Figure 6(b) is the result from previous work [32]. As can been seen 
from figures, the graphical temperature contour results from Figure 6(a) shows in a good agreement 
with the previous work [32] from Figure 6(b).  However, there is only a slight difference for the time 
duration.  
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(a) Base HTF: Typical temperature contour, at T=24.0s 

 

 
(b) Temperature contour Paraffin as PCM at T= 23.4s [31] 

Fig. 6.  Comparison of melt fraction and temperature contour 

 
3.2 Melting Fraction and Temperature Contour 
 

Figure 7 shows that at T = 6.0 s, PCM ice starts develops a layer of liquid at the inner interfacing 
part of sphere, indicated with vague light blue. This is important for nanofluids with volume fractions 
of 0.025 and 0.050. However, this process is relatively slow, as confirmed by ElGhnam et al., [34], 
because of the thin layer of fat and therefore, conventional heat transfer is not effective at this time. 

At Figure 15, where T = 12.0s, the layer at the sphere inner surrounding become clearer, melting 
at slightly above temperature of 0.0˚C, forming a liquid ring for both PCM bathed in nanofluid. Now, 
the main mechanism of heat transfer is influenced convection. The base HTF starts to develop clear 
ring liquid near the inner sphere surface, while nanofluid HTF shows clearer melt area. Convection 
mechanism is further enhanced. The HTF with nanoparticles appear to have larger melted layer. 



Journal of Advanced Research in Applied Mechanics  

Volume 62, Issue 1 (2019) 16-32 

28 
 

 
(a) Base HTF 

 

  
(b) 0.025 by volume fraction of nanoparticles 

HTF 
(c) 0.050 by volume fraction of nanoparticles 

HTF 

Fig. 7. Melt fraction and temperature contour at T= 6.0 s 
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(a) Base HTF 

 

  
(b) 0.025 by volume fraction of nanoparticles 

HTF 
(c) 0.050 by volume fraction of nanoparticles 

HTF 

Fig. 7. Melt fraction and temperature contour at T= 12.0 s 

 
3.3 Heat Transfer Performance 
 

The average enhancement of heat transfer is listed in Table 10. As can be seen from the table, 
the average enhancement of heat transfer for 0.025 by volume fraction of nanoparticles HTF is 
15.45%. While the nanoparticles HTF with 0.050 of volume fraction is 15.29% compared to the base 
HTF. Based on these results, it can be observed that it is not a significant improvement in the future. 
At T=30.0s, the improvement is seen significant, with 65.0% and above enhancement over the base 
HTF. The average melt fraction is 46.0% – 47.0% compared to the base HTF which is only 28%. 

One of the limitations is that the increase in nanoparticles has increased the viscosity of the liquid 
to 0. 0048 Pa.s and therefore the movement of particles is limited to make heat transfer useful. As a 
result, lower melting fraction is expected. However, these results have a good agreement with the 
previous work [27]. 
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Item 
Time 
(s) 

Liquid Frac 
(BaseHTF) 

Liquid Frac 
(0.025 VolFrac) 

Liquid Frac 
(0.050 VolFrac) 

Enhancement % 
using 0.025 VolFrac 

Enhancement % 
using 0.050 VolFrac 

1 0 0.00 0.00 0.00 0.00 0.00 

2 6 0.09 0.11 0.09 25.64 0.24 

3 12 0.09 0.12 0.09 30.43 -2.95 

4 18 0.17 0.17 0.23 5.02 42.14 

5 24 0.26 0.24 0.33 -6.73 25.13 

6 30 0.28 0.47 0.46 70.25 65.37 

7 36 0.49 0.51 0.51 3.80 4.28 

8 42 0.56 0.56 0.57 -0.78 1.66 

9 48 0.56 0.63 0.57 11.45 1.79 

Average enhancement (%) 15.45 15.29 

 
4. Conclusions 
 

The present study was conducted to evaluate the performance enhancement of cold thermal 
energy storage system (CTES) using nanofluid phase change materials. Heat transfer analysis is 
conducted for the melting/discharging of sphere encapsulated PCM. Base HTF, without 
nanoparticles, and subsequently HTF with nanoparticles by volume fraction of 0.025 and 0.050 was 
used to simulate the potential enhancement of heat transfer. Copper Oxide (CuO) was used as 
nanoparticles in the simulation. A transient heat transfer model will be conducted during the melting 
stage of PCM. One of the more significant findings to emerge from this study is that the thermal 
conductivity of PCM immersed in the EG25 solution was slightly enhanced by employing the CuO 
nanoparticle.  

However, these findings are limited using the addition of nanoparticles by volume fraction of 
0.025 and 0.05 only. Therefore, it is important to consider for determining the appropriate 
concentration to enhance the performance of CTES. Further research is needed to account for the 
varying nanoparticle concentration in order to control the charging and discharging of PCM energy. 
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