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ABSTRACT 

In general, scour is defined as erosion of loose seabed material directly around offshore structures. It is part of the component to 
be considered in the life extension of offshore facilities. Codes and standard practices have given various recommendations on the 
scour depth to be adopted during the initial design stage. Overestimation of the scour depth impacts the pile factor of safety, pile 
head displacement, and pile unity check, which relates to the economic perspective. Therefore, it is crucial to determine the 
optimum scour depth adopted in the design stage. This study was performed with the aims to investigate the significant impact of 
scour depth on the pile performance, to analyse the pile performance based on the design scour against the actual scour, and finally 
to establish the correlation between scour effect and pile performance. The outcome of this study will assist the industry, especially 
operators, in reaching the optimum design scour depth. 
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1. Introduction 

 
Fixed type platforms are called template type structures, which consist of the jacket or a welded 

space frame that is designed to facilitate pile driving and act as lateral bracing for the piles. The design 
of a pile foundation must consider all aspects of the installation and performance of the system [1-
4]. The design also should ensure that it has adequate stiffness and strength to withstand the 
expected load. The fixed steel jacket template stability founded on the piles depends on the (i) 
bearing or pull out strength, (ii) pile lateral behaviour, (iii) soil liquefaction, and (iv) risk of scouring 
[5, 6]. Due to criticality of the scour, depth prediction is crucial. Improper judgement may lead to a 
conservative and uneconomic design [7, 8].  

Scour is considered an environmental phenomenon that can impose additional forces on the 
offshore structure. Removing the seabed soils around the legs of fixed offshore structures can 
increase the internal forces of structural elements and may lead to overall instability or undesirable 
lateral movement. This phenomenon should be considered in the design through available guidelines 
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[9-11]. Scour has become a serious concern since a strong bottom current with long durations has 
been observed in many deepwater developments [12, 13]. 

Various recommendations arise from the industry-standard practices to address the local scour 
phenomenon during the design stage of the fixed jacket [14-16]. As a result of the various preliminary 
scour depth, it directly impacts the Pile Factor of Safety (FOS), Pile Head Displacement and Pile Unity 
Check (UC). To date, no comprehensive study has been conducted on the scour difference between 
actual and design scour and its impact on the pile unity check, deflection, and safety factor.  

Therefore, this paper is aimed to study the impact of pile performance based on the design and 
actual scour of fixed offshore platforms. In the next section, the development and process of scour 
formation around the legs of the platform was discussed, followed by the specific design 
consideration for the scour depth. Then, the research flowchart that illustrates the overall analysis in 
this study is presented. Finally, a comparison of pile performance is made based on the analysis of 
static in-place in consideration of design and actual scour depth. 

 
2. Model Specifications and Wave Modelling Analysis 
2.1 Scour Development 

 
Scour is the removal of seafloor soils caused by waves and currents. Such erosion can be caused 

by natural geologic processes or structural elements interrupting the natural flow regime near the 
seafloor [17, 18]. Scouring effects increase with increased flow speed, turbulence, and increased soil 
erodability [19, 20]. The two types of scour that commonly occur according to El-Reedy [21] are global 
and local scour. Global scour affects the areas of piles and usually twice the area covered by the 
platform, whereas local scour occurs around specific areas of the structure, such as piles. Figure 1 
shows the two different types of scouring that generally happen. 

 

 
Fig. 1. General Types of Scour 

 
The local scouring mechanism is the product of complex hydrodynamic processes, such as 

increasing bed shear stress and horseshoe or lee-wake vortices. On the other hand, the global trend 
can be a mixture of general flow effects, i.e. those created by individual structural elements and the 
contraction of flow, geologic changes, human activity, meandering and migration, bank erosion, or 
changes in river flow [22, 23]. It is also important to note that there are substantial overall changes 
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of the seabed triggered by natural causes, such as erosion and accumulation of sediments, which 
may lead to lowering the bed, thus raising the signs of scouring. Although it is unique to the location, 
global scouring is essential for designing the base and safety of scour [24]. However, the present 
study focused only on the local scour at the monopile base, which is the most common scour found 
in this type of substructure [25]. 

Several researchers have recently focused on investigating the scouring effect on the pile capacity 
[26-29]. At the early stage, scour results in soil loss around the monopiles’ foundation; hence forming 
a conical local scour hole. Consequently, it reduces the embedded pile length of the monopile 
foundation. Besides, it may influence the effective unit weight of soil, depending on the scour depth 
against the pile diameter [17, 30, 31]. This happens because changing the overburden stress around 
the monopile would change from a normally consolidated state to an over-consolidated state and 
the increasing coefficient of lateral earth pressure at rest [32, 33]. Scour decreases lateral support of 
the soil, leading to increased overall bending tension in the mound and affects the performance and 
capacity of the lateral and axial piles. Therefore, the impact of scouring on pile performance differs 
according to the type of soil [34, 35]. 
 
2.2 Scour Depth Design Specification 

 
Maximum scour depth is one of the most critical metrics for the construction of a scour-resistant 

base. The majority of formulations used to assess the predicted optimal scour depth during the 
structures’ life are of a semi-empirical type derived from experimental data [36]. However, as 
mentioned in De Vos [25], laboratory experiments and field measurements [37-39], as well as 
measurements in prototype scour holes [40, 41], indicate a good agreement between the empirically 
expected scour depths and the prototype scour depths. Furthermore, scour depth estimation is 
generally different for both cohesive and non-cohesive sediments. According to the PETRONAS 
Technical Standard (PTS), a foundation or jacket shall be designed for a minimum of 900 mm or one 
pile outside diameter, whichever greater [16]. In comparison, ONGC adopted 1.5 times pile diameter 
or the depth computed in the approved geotechnical report [9]. As a minimum requirement, 1.5 
times pile diameter should be considered in the platform design [11]. Table 1 below shows the 
comparison of design scours depth adopted based on various standards of practice. 

 
Table 1 
Scour depth recommendation 

No Standard Scour depth [mm] 

1 PETRONAS Technical Standard PTS 11.22.02 Unless otherwise specified, the foundation/jacket shall be 
designed for a local scour of a minimum of 900 mm or one 
pile outside diameter. 

2 ONGC Structural Design Criteria Part 1 The minimum scour depth around jacket leg/piling shall be 
the greater than 1.5 times the diameter, or depth 
computed/stated in approved geotechnical reports. 

3 SHELL Standard Engineering Specification SES 
10.1 

Unless otherwise specified, the foundation/jacket shall be 
designed for a local scour of a minimum 900 mm or one 
pile diameter or actual jacket bottom can diameter 
(whichever is higher). 

4 Saudi Aramco Design and Construction of 
Fixed Offshore Platforms SAES-M-005 

Platform design shall consider the effects of scouring. A 
minimum local scour of 1.50 times the pile diameter shall 
be used to present scourable seabed materials. 
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3.  Methodology 
3.1 Research Flowchart 

 
The research flowchart shown in Figure 2 describes the process of investigating the scouring 

effect on the pile performance. First, data collection and model preparation was obtained according 
to the original design of the platform with consideration of scour depth design specification. Then, in 
parallel, the static in-place analysis was done based on measured scour depth of operational platform 
after five years based on the existing data and model preparation. In the end, a comparison was made 
for the result of pile performance in consideration of scouring design depth according to the standard 
specification, and actual scour depth based on measurement after five years. 

 

 
 

Figure 2: Research Flowchart 
 

 
3.2 Static In-place Analysis 

 
A static in-place analysis is a structural analysis used to model the action of the structure as similar 

as possible to the reaction of structure during its service. The typical list of information required 
before the static in-place analysis can be conducted includes: 

i. SACS computer model. 
ii. Design basis. 

iii. Previous static in-place report. 
iv. Latest underwater inspection report. 
v. Drawings (AFC or as-built). 

 
This analysis is to investigate the structures’ global credibility against untimely failure. Under the 

ultimate limit state system (ULS), the characteristic capacity is normally taken as the first yield or 
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buckling portion. Ultimate limit state (ULS) criteria are mentioned in various codes that specify 
structural strength and stability requirements for tubular jacket members to avoid yielding and 
buckling. The static analysis calculates displacements, strains, stresses, and reaction forces under the 
effect of applied loads. When loads are applied to a body, the body deforms, and the impact of loads 
is transmitted throughout the body. In addition, the external loads cause internal forces and 
responses to equilibrate the body. 

 Reddy and Swamidas [5] reported that Structural Analysis Computer Software (SACS) had been 
used. The primary output from the model includes the total load on the structure, typically expressed 
as base shear, displacement of the deck, and the load’s moment and deformations in individual 
members. Scour is considered by removing the overburden pressure over the scour depth, and local 
scour is accounted for by neglecting axial and lateral resistance [7]. Figure 3 below describes the 
procedure to conduct the static in place analysis with pile-soil interaction.   

 

 
 

Figure 3: Static Linear Analysis with Pile-Soil Interaction Procedure. 
 
Scour is one of the components and considerations to assess the foundation design under in place 

conditions. First, the prepared computer model was run by using the design scour value adopted, 
followed by the next run with the latest scour value from underwater inspection. Pile penetration 
factor of safety is defined as a ratio between ultimate pile capacity and maximum axial load (Equation 
1). The factor of safety should not be less than the specified value in Table 2. The pile unity check was 
calculated using Equation 2: 

 

 𝐹𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑆𝑎𝑓𝑒𝑡𝑦 =  
𝑄𝑢𝑙𝑡

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐴𝑥𝑖𝑎𝑙 𝐿𝑜𝑎𝑑+𝑃𝑖𝑙𝑒 𝑠𝑒𝑙𝑓𝑤𝑒𝑖𝑔ℎ𝑡
     (1) 

 
where Qult is the pile geotechnical capacity 

 

𝑓𝑎

0.6𝐹𝑥𝑐
+

√𝑓2𝑏𝑥 + 𝑓2𝑏𝑦

𝐹𝑏
≤ 1.0 

    (2) 
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where, Fxc stands for critical local buckling stress, Fb is the allowable bending stress, while fbx and 
fby are bending stress in x- and y-direction, respectively. 

 
Table 2 
Pile Penetration Factor of Safety 

Load Condition Factor of Safety 

Design environmental conditions with appropriate drilling loads 1.5 

Operating environmental conditions during drilling conditions 2.0 

Design environmental conditions with appropriate producing loads 1.5 

Operating environmental conditions during producing operations 2.0 

Design environmental conditions with minimum loads (for pull-out) 1.5 

 
 
3.3 Structural Modelling and Platform Data 

 
The test structure used in this study was a 4-legged pile of fixed offshore platforms located at 

Peninsular Malaysia water. The pile diameter of the jacket was 1372 mm in a water depth of around 
75.7 m. The platforms’ design service category was wellhead, and the unmanned category of the 
design safety factor. Figure 4 provides a visual representation of the structural model. 

 

 
Figure 4: 3-Dimensional View of the Wellhead Platform 
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4.  Results and Analysis 
 
Linear static in-place analysis with pile-soil interaction due to scour was performed on the test 

structures. The design of scour depth used in compliance with the PTS 11.22.02 guideline 
corresponded to the actual measured scour depth, as shown in Table 3. The pile-soil input was 
updated according to the measured scour depth, in which Case A complied with the standard 
requirement and Case B was the actual measurement. Three load combinations under operating 
conditions were considered, which were a longitudinal, quarterly and diagonal axis, namely JOAM (0 
degrees), JOBM (45 degrees) and JOCM (90 degrees). 

 
Table 3 
Scour Depth Case Study 

Case Description Scour Depth (mm) Ratio (Case B/A) 

A 
Design scour depth. Maximum of 900 or 

1.0*1372=1372 mm 
1372 

 
0.284 

B Actual measured 390 

 
By considering the values of forces and moment on the pile’s head and soil curves, pile load on 

shaft was determined. A summary of base shear (BS) and overturning moment (OTM) for the jacket 
with scour depth 390 mm, and 1372 mm was presented in Table 4. The analysis results showed that 
both base shear and overturning moment increased when the scour depth rose. 

 
Table 4 
Summary of Base Shear and Overturning Moment about Mudline 

Scour depth 390mm 1372mm Responses ratio 

Wave and 
current 
direction 

Base 
Shear 

(kN) 

 

Overturning 
Moment 

(kN-m) 

Base 
Shear 

(kN) 

Overturning 
Moment 

(kN-m) 

𝐁𝐒𝟑𝟗𝟎

𝐁𝐒𝟏𝟑𝟕𝟐

 
𝐎𝐓𝐌𝟑𝟗𝟎

𝐎𝐓𝐌𝟏𝟑𝟕𝟐

 

JOAM  (0°) 1,156.26 906.10 1,121.94 1,991.50 1.03 0.45 

JOBM (45°) 957.34 545.10 943.65 1,387.20 1.01 0.39 

JOCM(90°)  820.94 494.90 777.80 1,089.20 1.06 0.45 

  
Table 5 
Axial Pilehead Forces, Pilehead Displacement and Unity Check for JOAM 

 
Pile 
Joint 

 

390 mm 

1372mm 

1372 mm 

Responses ratio 

Axial 
Pilehead 
Forces 
(kN) 

Pilehead Lateral 
Displacements 
(cm) 

Maximum 
Unity 
Check 

 

Axial 
Pilehead 
Forces 
(kN) 

Pilehead Lateral 
Displacements 
(cm) 

Maximum 
Unity 
Check 

 PA1 -812.22 2.56 0.19 -718.68 3.62 0.22 

PA2 325.80 2.27 0.16 334.03 3.25 0.19 

PB1 -10,895.39 2.76 0.47 -10,912.81 3.82 0.51 

PB2 -10,451.85 2.44 0.45 -10,485.87 3.41 0.48 
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Based on Table 4, the ratio of the responses indicated the utilisation of current base shear and 
overturning moment from the original estimation. 

Focusing JOAM of load combination, the four pile joints were identified. Each joint had different 
impacts on the factor of safety, displacement of pile head under lateral load and the maximum unity 
check, as shown in Table 5. A sample calculation was derived as follows: 

 
Pile compression capacity, Qult = 38000 kN 
Pile density, γ = 7850 kg/m3 

Pile weight, w =1056.60 kN 

Factor of safety of PA1case A = 
38000

(718.68+1056.60)
= 21.41 

Factor of safety of PA1case B = 
38000

(812.22+1056.60)
= 20.33 

 
 
Table 6 
Pile Factor of Safety, Pile Head Displacement and Unity Check Ratio for JOAM 

Scour 

Pile Joint 

390 mm 

 

1372 mm 

 

Ratio 

Factor of safety 
Pilehead Lateral 

Displacements 
(δ390 / δ1372) 

Unity Check 
(UC390/ UC1372) 

 
PA1 20.33 21.41 0.70 0.86 

PA2 27.49 27.33 0.69 0.85 

PB1 3.18 3.17 0.72 0.91 

PB2 3.30 3.29 0.71 0.93 

 
 
From Table 6, this study reported a parametric study to investigate the effect of scouring on the 

pile factor of safety, pile head displacement, and pile unity check. As shown in Figure 5, the pile factor 
of safety slightly reduced proportional to the scour depth and inversely proportionate with axial pile 
load. The increase in scour depth did not drastically change the axial pile head forces. 

 

 
Figure 5: Pile Factor of Safety Versus Scour Depth 
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To investigate the effect of scour depth on structure stiffness, pile head displacements were 
extracted from the in-place analysis shown in Figure 6. Pile head displacement had risen 
proportionally with the increment of scour depth. The increase was due to the loss of lateral support 
provided by the soil around the pile. 

 

 
Figure 6: Pile Head Displacement Versus Scour Depth 

 
The analysis results showed that the pile unity checks at the mudline region increased by 

increasing the scour depth (Figure 7). This was consistent with the overturning moment findings in 
the previous explanation, whereby the lever arm was increased due to scour. 

 

 
Figure 7: Pile Unity Check Versus Scour Depth 

 
 
 

4.  Conclusions 
 
This paper has concluded the impact of pile performance based on design and actual scour of the 

fixed offshore platform has been measured, and the results are summarised as follows: 

 An actual measured scour after five years was less than the recommended scour by 
71.6% (utilisation of 0.284) 
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 The pile unity check at mudline and pile head displacement was directly proportional 
to the scour depth 

 The pile factor of safety (FOS) was inversely proportional to the scour depth 

 Higher scour value directly impacts the pile UC, pile head displacement, and pile FOS, 
which led to unnecessary upsizing and deeper penetration. 

 
Therefore, it can be concluded that the depth of scouring design is crucial, and a miss judgment 

may lead to a conservative and uneconomic design of the offshore structure. 
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