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The present research investigates the impact of arterial inclination and body 
acceleration force on the blood flow and solute dispersion through a stenosed artery 
using the Bingham model as a representation of the blood rheology. The problem is 
formulated using the momentum equation with the presence of inclination and body 
force acceleration parameter; and solved numerically for the blood velocity using the 
perturbation method with the stenosis size as the boundary condition. The solute 
dispersion aspect is formulated using the unsteady convective-diffusion equation and 
solved using the Generalized Dispersion Model (GDM) for the steady dispersion 
function. The solutions are graphically plotted and analysis of the blood flow and solute 
dispersion under the influence of arterial inclination, yield stress, time and stenosis size 
are conducted. Results show that the increase in arterial inclination increases the blood 
velocity and steady dispersion function. However, the increment in yield stress and 
stenosis size shows a contradictory effect by decreasing the blood velocity and steady 
dispersion function.  
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1. Introduction 
 

The study of hemodynamics regarding a diseased artery; specifically, an artery experiencing 
atherosclerosis have a positive contribution to the biomedical field in terms of improving treatment, 
refining medical devices and providing a good quality of life for patients. Atherosclerosis patients 
have a narrowed artery at any point within the cardiovascular system due to the deposits of lipids 
and cells on the arterial wall known as stenosis. Without further preventative care or treatment, the 
stenosis size can potentially grow and lead to a total blockage within the artery. This will cause further 
health complications such as heart attack, stroke, embolism and many more. Hence, the study of 
blood flow behavior and solute dispersion within a stenosed artery is important to reduce the risk of 
further medical problems. Administering drugs intravenously is one of the treatments for a stenosed 
artery. It is necessary to understand how drug solutes disperse within the bloodstream, as many 
medications are therapeutic at low concentrations but can be harmful at higher levels.  
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Consequently, gaining further insight into solute dispersion within narrow arteries can assist 
healthcare professionals in determining the appropriate dosage and infusion rate for patients while 
minimizing the risk of toxicity. This study primarily focuses on the dispersion of solutes in blood flow, 
particularly within an inclined artery due to many physiological systems involve blood vessels with 
some degree of inclination rather than being entirely horizontal. Consequently, introducing an 
inclination factor to the examined artery provides valuable insights into blood behavior when gravity 
is considered. 

Many researchers have conducted studies to understand the drug delivery and blood dynamic 
behavior through an artery using various types of fluid model. By mathematically analyzing the 
solutions of a mass transport and momentum within an artery, the behavior of solute dispersion and 
blood flow can be observed under influence of internal or external factors. Yadeta and Shaw [1] 
studied the blood flow of Jeffrey model transporting magnetic nanoparticles through an inclined 
stenosed artery and utilized the Caputo–Fabrizio time fractional derivative. They highlighted that 
increase in stenosis height decreases the volumetric flow rate while increasing the flow resistance. 
Jamil et al., [2] also utilized the Caputo–Fabrizio time fractional derivative to solve the magnetic blood 
flow through an inclined stenosed artery; but using the Casson model instead. However, they also 
discovered that increase in stenosis height decreases the blood flow velocity while increasing the 
flow resistance. Sharma et al., [3] investigated the effect of stenosis height on the hemodynamics of 
unsteady blood flow through an inclined stenosis with the presence of overlapping stenosis modelled 
by the Casson fluid and solved using the Crank-Nicolson scheme. They discovered that the increase 
in Reynolds number drops the blood flow velocity. Bunonyo et al., [4] discovered that both velocity 
and concentration decrease with increasing height of stenosis in their research of blood flow through 
a microchannel with magnetic field presenting. Awasthi and Siddiqui [5] studied the mechanics of 
unsteady blood flow through an inclined artery with the presence of growth at the arterial wall using 
the Casson model. They highlighted that the plug core velocity exhibits a decrease when both the 
yield stress and stenosis height are heightened. Conversely, the plug core velocity experiences an 
increase with elevated Reynolds numbers, inclined angles, slip velocity, and body acceleration. Das 
et al., [6] studied the nanoparticles hemodynamics within an inclined stenosed artery with the 
presence of magnetic field. They adopted the homotopy perturbation method (HPM) to solve the 
momentum equation. Umadevi et al., [7] investigated blood flow behavior flowing through an 
inclined artery with the presence of overlapping stenosis and magnetic field.  

In observing the solute dispersion behavior, many methods have been adopted by researchers to 
obtain the solution that explains the behavior of dispersion. Ratchagar and VijayaKumar [8] 
conducted a study on the solute dispersion in a steady Newtonian model flow through a mild 
stenosed inclined artery under the influence of externally applied magnetic field and chemical 
reaction by adopting the Taylor’s dispersion model to solve for the solute dispersion behavior. Bég 
and Roy [9] conducted a study regarding a dual species drug delivery by solving the bi-component 
species transport using the perturbation method for obtaining axial velocity and Aris-Barton 
approach for solving solute dispersion. They find that increase in yield stress increases the peak mean 
concentration for both two types of solute species.  

Abidin et al., [10] adopted the Generalized Dispersion Model (GDM) to solve for the diffusion 
coefficient in a Herschel-Bulkley flow through a catheterized stenosed artery and found that the 
diffusion coefficient increases to a constant value as the time increases. Elias et al., [11] also utilized 
the GDM method to obtain the dispersion function and mean concentration of solutes in a Casson 
model flow through a stenosed artery with the presence of body acceleration and slip velocity. 
Similarly, Tiwari et al., [12] implemented the GDM method in their research of solute dispersion 
within a two-fluid model flowing through tubes with absorptive wall to solve for the convection, 
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dispersion and mean concentration. Thus, while all methods are useful to solve for the solute 
dispersion behavior, the GDM method is chosen for this present research as it yields the desired 
dispersion function solutions. 

In this present analysis, a mathematical model designed to mathematically examine the unsteady 
dispersion of solutes within an unsteady flow of blood has been developed. This flow is characterized 
by the Bingham model flowing through a stenosed artery with the artery inclined to a certain angle. 
The perturbation method is adopted in solving for the blood velocity and the GDM method is utilized 
in solving the steady dispersion function. This study holds relevance for understanding numerous 
physiological processes such as the dispersion behavior when solutes are first introduced into the 
bloodstream and the subsequent dispersion of drugs or nutrients in the circulatory system. The 
primary objective is to investigate how various physical parameters, such as stenosis height and 
arterial inclination, exert an effect on the blood velocity and steady dispersion function within the 
artery. This present research offers theoretical insights into the dynamics of solute dispersion within 
the circulatory system and can potentially benefit the medical practices and treatments. 
 
2. Methodology  
2.1 Mathematical Formulation 
 

The problem considered the blood flow modelled by the Bingham model through an inclined 
stenosed artery experiencing a body force acceleration to be an unsteady, axisymmetric, laminar and 
fully-developed unidirectional flow. The graphical depiction of the problem geometry is shown in 
Figure 1 where r̅ is radial coordinate, w̅(z̅) is the axial velocity, g is the gravitational acceleration force 
and θ is the angle of arterial inclination. Hence, the gravitational force in the axial direction is 
expressed as g ̅sin θ. 

 

 
Fig. 1. Geometry of hemodynamics within an inclined 
stenosed artery 

  
The problem is formulated and solved in the cylindrical coordinates of (r̅,z̅,φ̅) where the 

simplified continuity is given as,  
 

0,
w

z





                                                                                                                                                               (1) 
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where w̅ is the axial velocity. The momentum equation considered in the axial z̅ direction, with the 
artery inclined to an angle of θ degree is simplified to, 
 

 
1

sin ,
w dp

r g
t dz r r

   
 

   
 

                                                                                                            (2) 

 
where p̅ is the pressure, τ ̅ is the shear stress, g ̅sin θ is the gravitational force parameter axially and ρ̅ 
is the density of the fluid. The pressure gradient dp̅ dz̅⁄  is considered as a constant. The boundary 
condition for Eq. (2) is given as, 
 

 is finite at 0.r                                                                                                                                              (3) 
 

According to Abidin et al., [13], the constitutive equation of the Bingham model is described by, 
  

 
, if   ,

0   , if   ,

y

y

B

y

dw

dr

 
 



 

 
 

 




                                                                                                          (4) 

 
where τ ̅y is the yield stress and μ̅

B
 viscosity coefficient of Bingham model. The boundary condition 

for Eq. (4) is,   
 

 0  at  ,w r R z                                                                                                                                           (5) 

 
where R̅(z̅) is the stenosis size expressed by Jaafar et al., [14] as,  
 

 
0

0

0

                                                        otherwise

      2
1 cos             when   ,

2 2

R

R z l
R z d d z l d

l

 



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         

    

 (6) 

 

where δ̅ is stenosis height, l0̅ is stenosis length and d̅ is stenosis location. The simplified mass 
transport equation of unsteady convective-diffusion equation with the respective initial and 
boundary condition for the dispersion of solute is given as, 
 

2

2

1
,m

C C
w D r C

t z r r r z

      
    

      
                                                                                                    (7) 
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                                                                                                                (8) 
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where C̅ is the solute concentration, t ̅is the time, D̅m is the molecular diffusivity, C̅0 is the reference 
solute concentration and z̅s is the solute length.  
 
2.2 Method of Solution 
 

A set of non-dimensional variables are proposed as below, 
 

0 0

0 0 0

0

0

,    ,     ,   ,    ,    

       ,    ,    ,

s

s s s

s m
m

o s

tw R pRr w z
r w t z p

R w R w R w

R w DC
C D

C w R




 






     

  

 (9) 

 

where α is the Reynolds number. Substituting the non-dimensional variables into the momentum and 
constitutive equations of Bingham model in Eq. (2) and (4), their dimensionless forms are obtained 
as, 
 

 
1 sin

,
w dp

r
t dz r r Fr


 
 

   
 

                                                                                                                  (10) 

 

where Fr is the Froude number and, 
 

  , if   ,

0     , if   .

y y

y

dw

dr

   

 
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 
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                                                                                                                    (11) 

 

The series expansion of the perturbation method is derived using the small parameter of 
Reynolds number α (where α≪1). Expanding the velocity w and shear stress τ in perturbation series, 
the following sets of expression are obtained, 

 

     0 1, , , , , , ..... w r z t w r z t w r z t                                                                                                      (12) 

 

and, 
 

     0 1, , , , , , .....  .r z t r z t r z t                                                                                                         (13) 

 

The perturbation series expansion of w in Eq. (12) and τ in Eq. (13) are substituted into Eq. (10) 
and Eq. (11) respectively; and the coefficient of constant and α term are equated to obtain the 
following sets of equations of, 
 

0
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w
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
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                                                                                                                                                (16) 

 

1
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w
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
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                                                                                                                                                         (17) 

 
The dimensionless boundary conditions are, 

 

0 1and  are finite at 0r                                                                                                                               (18) 

 

For Eq. (14) and (15), 
 

 0 1 0 at w w r R z                                                                                                                                     (19) 

 

For Eq. (16) and (17). Eq. (14) is integrated with respect to r and subjected to the boundary 
condition in Eq. (18). The first term of the perturbation series of shear stress τ0 is obtained as 
 

0

sin
,

2

r dp

dz Fr




 
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 
                                                                                                                                    (20) 

 

where Eq. (20) is then substituted into Eq. (16) and integrated with respect to r subject to the 
boundary conditions in Eq. (19) to gain the first term of the perturbation series of velocity w0 as, 
 

     
22
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1 sin
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4
y
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Eq. (21) is substituted into Eq. (15) and integrated with respect to r according to its boundary 
condition in Eq. (18) to solve for the second term of the perturbation series of shear stress τ1 as, 
 

   
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1

1 1 sin
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4 4 2 3 2
y
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t dz Fr


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                                                                (22) 

 

Substituting τ0 from Eq. (20) and τ1 from Eq. (22) into Eq. (17) and integrating with respect to r, 
the second term of the perturbation series of velocity w1 is obtained as, 
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                           (23)  

 

Substituting w0 and w1 in Eq. (21) and Eq. (23) respectively into the perturbation series of velocity 
in Eq. (12), the unsteady velocity in the outer flow region is obtained as, 
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The expression of velocity in the core flow region can be obtained by evaluating r = rc in the wo 

to obtain wc as follows, 
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 (25) 

 

To find the steady dispersion function, Gill and Sankarasubramanian [15] proposed a 
dimensionless solution to Eq. (7), which takes the form of a series expansion of, 
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where f
j
 is the dispersion function and Cm is the mean solute concentration defined by, 

 

 
  

 
 

2

0

2
, , ,  .

R z

mC z t C r z t r dr
R z

                                                                                                            (27) 

 

By adhering to the process of resolving the dispersion function using the GDM method, we can 
derive the initial and boundary conditions for the coefficient fj as outlined below: 

 

 ,0 0   for   1,2,3,...,jf r j                                                                                                                        (28) 

 

    1 10 0,    for   1, 2,3,...,s sf f
r r R z j

r r

 
    

 
 (29) 

 

    1 10, , 0,    for   1, 2,3,...t tf f
t R z t j

r r

 
  

 
                                                                                         (30) 

 

The function f1, which is the dispersion function of solute can be solved from the obtained 

equation of, 
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The dispersion function f1 in Eq. (31) can be expressed as f1(r,t) = f1s(r) + f1t(r,t) where f1s as 

the steady dispersion function solution and f1t as the unsteady dispersion function component of the 

solution. By substituting the f1 expression into Eq. (31), the differential equation needed to obtain 

the steady dispersion function is derived, which can be represented as, 
 

 11
.m

f
r w w

r r r

  
  
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                                                                                                                                (32) 

 

A numerical approach is utilized to solve Eq. (32) by integrating it with respect to to r. The 
integration adheres to the boundary conditions defined in Eq. (29) and relies on the Simpson's 3/8 
rule to obtain the solution for the steady dispersion function f

1s
. 

 
3. Results  
 

The primary aim of this research is to examine the blood flow and solute dispersion within an 
inclined stenosed artery, with a focus on the effect of different angles of inclination on those 
phenomena. The results and discussions are presented graphically. The Herschel-Bulkley value for 
the power-law index used in this study is n = 0.95. The gravitational acceleration value of g = 9.81 is 
used, as suggested by Mandin et al., [16] which is rounded up to for this study to g = 10. The 
parameters that are varied are the angle of inclination, time, stenosis height and yield stress for the 
investigation on their influence on the blood velocity and steady dispersion function. 
 
3.1 Velocity Profile 
 

Figure 2 (a) to (c) illustrating the relation of blood flow velocity concerning time and inclination 
angles are investigated in a stenosed artery at δ = 0.1. The graphical plotting reveals the blood flow 
velocity steadily rises as the time progresses. Initially, there is a rapid and substantial increases in 
velocity when the time increases from 0.05 to 0.1. However, as time continues to progress, the rate 
of increase diminishes, resulting in a more gradual rise approaching a large-time blood velocity. These 
observations provide valuable insights into the interplay of time and inclination on blood flow 
dynamics in a stenosed artery. Notably, this temporal behavior is observed uniformly across all angle 
of inclination. Furthermore, the graphical analysis shows a positive correlation between inclination 
angle and blood flow velocity. As the inclination angle increases, so does the blood flow velocity; 
suggesting that adopting inclined positions may provide a practical and effective means to enhance 
blood circulation. The increase in blood velocity as the arterial inclination increases can be attributed 
to the aid from the gravitational acceleration acting on the blood flow axially. 
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               (a)                (b) 

 
          (c) 

Fig. 2. Effect of time increment on the blood velocity flowing within a stenosed artery 
of δ = 0.1 with different arterial inclination at a) θ = 0°, b) θ = 45° and c) θ = 90° 

 
The stenosis height is increased to δ = 0.2 and the graphical plotting is shown in Figure 3 (a) to 

(c). The relationship between blood flow velocity, time, and inclination angles are investigated when 
the arterial flow region is further narrowed. The graphical representations indicate a consistent 
upward trend in blood flow velocity as time advances. A trend of rapid increase in velocity initially 
and eventually reaches a constant blood velocity as the time progresses can be observed. Although 
the pattern of the blood velocity increment is similar to when the stenosis height is δ = 0.1, the 
overall blood velocity is lower when the stenosis height is increased to δ = 0.2 for all angle of 
inclination. It can be clarified that the increase in stenosis height reduces the blood velocity. This is 
due to the reduction in the arterial flow region as the stenosis height increases. The reduced space 
within the artery exert an impedance to the blood flow. Thus, making the blood flow slower. 
Moreover, the graphical analysis highlights a positive correlation between inclination angle and blood 
flow velocity. As the inclination angle increases, so does the blood flow velocity. The increase in blood 
velocity with elevated arterial inclination can be attributed to the assistance provided by gravitational 
acceleration, which acts on the axial blood flow. 
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                  (a)                    (b) 

 
                  (c) 

Fig. 3. Effect of time increment on the blood velocity flowing within a stenosed artery of 
δ = 0.2 with different arterial inclination at a) θ = 0°, b) θ = 45° and c) θ = 90° 

 
In Figure 4 (a) to (c), The yield stress is varied in an increasing manner of τy = 0.1,0.2,0.3 at the 

stenosis height of δ = 0,0.1,0.2 to observe the effect of yield stress on the blood flow velocity. 
Referring to Figure 4 (a) when the stenosis is δ = 0, the blood velocity is observed to be decreasing 
as the yield stress increases. Nevertheless, a difference in the blood velocity for each arterial 
inclination can be noted. As the artery is inclined more, the blood velocity increases. However, it is 
interesting to note that the blood velocity decreases at a fixed rate as the yield stress increases for 
all angle of inclination. This is also true for when the stenosis is further increased to δ = 0.1 and δ =
0.2 as shown in Figure 4 (a) and (b) respectively. The increment in yield stress reduces the blood 
velocity for all angle of inclination. However, in addition to the reduction of blood velocity due to 
increased yield stress, the blood velocity reduction is amplified by the increased stenosis height. The 
smaller flow region hinders the blood flow within the artery due blood cells having lack of space to 
flow efficiently. 
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                (a)                 (b) 

 
               (c) 

Fig. 4. Effect of yield stress increment on the blood velocity flowing within a stenosed artery 
with different arterial inclination and stenosis height at a) δ = 0, b) δ = 0.1 and c) δ = 0.2 

 
3.2 Steady Dispersion Function 
 

Figure 5 (a) to (c) investigate the relationship between steady dispersion function, time and 
arterial inclination within an inclined stenosed artery at δ = 0.1. It can be seen that as the time 
increases, the steady dispersion function increases. However, a rapid increase in steady dispersion 
function is noted at the beginning of the dispersion. This can be attributed to the fact that there are 
more solutes at the beginning of the dispersion. As time progresses from 0.05 to 0.1, the rate of 
increment in steady dispersion function diminishes, leading to a large-time dispersion. This is due to 
the less solutes presented at the stenosed location since most of the solutes have already been 
dispersed. Not to mention, this temporal pattern remains consistent for all angles of inclination. The 
graphical analysis also shows an increase in steady dispersion function as the inclination is increased 
as observed in Figure 5 (b) and (c). As the inclination angle increases, gravitational acceleration add 
force onto the solute dispersion happening within the artery axially. This increases the efficiency of 
the dispersion as seen in the graphical plotting. 
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              (a)                (b) 

 
              (c) 

Fig. 5. Effect of time increment on the steady dispersion function within a stenosed artery 
of δ = 0.1 with different arterial inclination at a) θ = 0°, b) θ = 45° and c) θ = 90° 

 
Figure 6 (a) to (c) depicts the steady dispersion function when the stenosis height is increased to 

δ = 0.2. These figures explore the interaction of steady dispersion function, time and inclination 
angles interact with the reduced arterial flow region due to the increased stenosis height. The 
graphical representations reveal a consistent trend of increasing steady dispersion function as time 
progresses. However, the overall steady dispersion function decreased for all angle of inclination 
when compared to graphical result in Figures 5 (a) to (c). This reduction in steady dispersion function 
with higher stenosis height can be attributed to the narrowing of the arterial flow region, resulting in 
increased resistance to the dispersion process due to the reduced available space within the artery. 
This constrained space causes the solutes within the artery to accumulate and unable to disperse 
smoothly. Nevertheless, the graphical analysis shows an increase in steady dispersion function as the 
inclination angle increases from Figures 6 (a) to (c). Although the increased in stenosis height hinders 
the efficiency of the steady dispersion function, gravitational acceleration can counteract this effect 
by inclining the artery. 
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              (a)               (b) 

 
                (c) 

Fig. 6. Effect of time increment on the steady dispersion function within a stenosed artery 
of δ = 0.2 with different arterial inclination at a) θ = 0°, b) θ = 45° and c) θ = 90° 

 
In Figure 7 (a) to (c), the yield stress is varied within a value range of τy = 0.1,0.2,0.3 for different 

stenosis heights of δ = 0,0.1,0.2 to investigate the impact of yield stress on steady dispersion 
function. Figure 7 (a) illustrates the steady dispersion function when there is no presence of stenosis. 
It is observed that as the yield stress increases, the steady dispersion function decreases for all angle 
of inclination. Additionally, the rate of decrease in steady dispersion function due to increasing yield 
stress is constant and this is true for all angle of inclination. As the artery inclination increases, the 
steady dispersion function increases. This pattern remains consistent when the stenosis is increased 
to δ = 0.1 and δ = 0.2, as depicted in Figure 7 (b) and (c) respectively. Nevertheless, the increase in 
stenosis height decreases the overall steady dispersion function. Even with the presence of stenosis, 
the increase in yield stress reduces the steady dispersion function for all angles of inclination. It can 
be concluded that the increased stenosis height exacerbates the decline in steady dispersion function 
resulting from higher yield stress.  
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           (a)            (b) 

 
            (c) 

Fig. 7. Effect of yield stress increment on the steady dispersion function within a stenosed artery with 
different arterial inclination and stenosis height at a) δ = 0, b) δ = 0.1 and c) δ = 0.2 

 
4. Conclusions 
 

The present study has examined the key aspects of the rheological behavior of blood flow and 
solute dispersion within an inclined stenosed artery modelled by the Bingham model and adopting 
the perturbation method in solving the blood velocity and GDM method in solving the steady 
dispersion function. The theoretical results obtained and the graphical plotting analysed yields 
several noteworthy conclusions: 

i. Elevating the arterial inclination leads to an increase in axial blood velocity and steady 
dispersion function due to the aid from the gravitational acceleration acting on the blood flow 
and solute dispersion. However, as the arterial inclination approaches the θ = 90°, the rate 
in increment of blood velocity and steady dispersion function slows down. 

ii. Both axial blood velocity and steady dispersion function decreases at a constant rate as the 
yield stress is increased. 

iii. Both axial blood velocity and steady dispersion function increases as the time parameter 
increases. Nevertheless, the increment is more significant initially compared to later on; and 
reaches a steady state after a certain time. 
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The theoretical results from this present research can advanced the understanding of blood flow 
and solute dispersion in an inclined stenosed artery from the perspective of using a Bingham model 
and GDM method incorporated into the solution; further adding knowledge to the area of 
mathematical fluid dynamics. Additionally, the results explaining the blood flow and solute dispersion 
behavior in an inclined stenosed artery can potentially offer insights in a general and clinical sense to 
improve the diagnosis, treatment, or management of atherosclerosis in patients i.e. optimise stent 
designs and treatment strategies. Thus, atherosclerosis patients can benefit from this study through 
more accurate atherosclerosis diagnosis, improved treatment outcomes and reduced complications. 
In addition to this present research contribution in understanding the blood flow and solute 
dispersion behavior in an inclined stenosed artery, this present research can also serve as an initial 
starting point for future investigations by extending this present research using different non-
Newtonian models, adding more arterial condition and using hybrid blood blow such as hybrid nano-
blood flow. 
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