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The study of friction losses in pipes used in engineering and industry is important 
to improve flow efficiency and reduce the energy required to transport fluids. 
The surface roughness of a pipe affects its friction coefficient and its efficiency 
and performance. This numerical study explores numerically the impact of 
surface roughness on friction factors in circular tubes made of three distinct 
materials. The research employs computational fluid dynamics (CFD) ANSYS 
Fluent software to simulate turbulent flows, incorporating various surface 
roughness models in Galvanized steel (GS) and Acrylonitrile Butadiene Styrene 
(ABS) circular tubes. The simulation setup encompasses tube geometry, fluid 
properties, and boundary conditions. The simulation setup involves the pipe 
shape, fluid characteristics, and boundary conditions. The results indicate a 
precise link between surface roughness and friction factors, providing insights 
into pressure drop and flow characteristics. Validation against experimental data 
and known correlations enhances the dependability of the results. The findings 
help to optimise fluid transport systems and open the way for future study in this 
important technical subject. The friction factor decreases consistently with the 
increasing Reynolds number, and it is lower than the theoretical value. 
Galvanized steel (GS), with an absolute roughness of 0.15 mm, exhibits an 8% 
higher friction factor compared to Acrylonitrile Butadiene Styrene (ABS). This 
validation of the experimental data and known correlations enhances the 
reliability of the results.  
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1. Introduction 
 

Pipeline systems are encountered in a lot of applications including oil and gas, thermal plants, air 
conditioning systems, and others [1,2]. Several researches on how surface roughness affects fluid 
flow inside pipes have been ongoing for a long time, aiming to understand the exact effect of 
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roughness on flow at different Reynolds number ranges. However, discussions are still ongoing 
regarding possible deviations from conventional theories of laminar flow and the possibility of an 
early transition from laminar to turbulent flow. Galvanized steel (GS) and Acrylonitrile Butadiene 
Styrene (ABS) are commonly used materials in various industrial applications, each with unique 
physical and mechanical properties. 

Darcy [3] and Fanning [4] laid the groundwork for understanding the effects of surface roughness 
in the nineteenth century [5,6]. However, Nikuradse [7] conducted systematic research to investigate 
the correlation between surface roughness and pressure drop. The Moody chart [8] is a widely 
utilized tool for determining friction factors over a wide range of Reynolds numbers in rough tubes. 
This chart, primarily derived from the extensive experimental investigations of Nikuradse [7], 
essentially plots the Colebrook equation [9] across a wide range of Reynolds numbers and relative 
surface roughness [10]. According to the Moody chart, laminar friction factors remain unaffected by 
surface roughness, while turbulent flow experiences an increase in friction factors with rising surface 
roughness. Kandlikar et al., [10] created an adapted Moody chart, incorporating the constricted 
diameter for relative surface roughness, Reynolds number, and the Colebrook equation [11-13]. 
Everts et al., [14] conducted experiments using circular tubes with varying surface roughness. Water 
was used as a working fluid for different ranges of Reynolds numbers. The measurements included 
the friction factors, Nusselt number, and the heat transfer coefficient. It was found that the increase 
in surface roughness generally increased the friction factors. Experimental study was conducted by 
Scaggs et al., [15] to investigate the effects of surface roughness on turbulent pipe flow friction 
factors over wide range of Reynolds numbers and for different pipe rough surfaces.  The research 
found that the experimental results were in very good agreement with predictions from a previously 
published discrete element roughness model [16]. 

Despite extensive research on friction factors in various pipe materials, limited studies have 
specifically addressed the comparative effects of surface roughness on friction factors in galvanized 
steel (GS) and acrylonitrile butadiene styrene (ABS) tubes. The main objective of this study is to 
investigate the effects of surface roughness on turbulent flow friction factors in circular tubes and to 
investigate how the Reynolds number influences the interaction between surface roughness and 
turbulent flow using ANSYS FLUENT software.  
 
2. Methodology  
2.1 Governing Equations 
 

In the numerical setup, the simulation framework for investigating fluid flow within a straight 
pipe is established. This involves several key steps: firstly, parameters such as pipe diameter, length, 
and other relevant dimensions are defined within ANSYS DesignModeler based on Table 1 
specifications. Surface roughness is represented within the model to mimic real-world conditions.  
 

Table 1  
Pipe specifications 
Parameter Galvanized steel ABS pipe 

Absolute roughness (m) 6-1.5×10 6-7.0×10 

Relative roughness  3-1.5×10 5 -4.667×10  

L (m) 15 15 
D (m) 0.15 0.15 

 
Mesh generation follows employing appropriate refinement near the walls to capture boundary 

layer effects and roughness features accurately (Figure 1). Fluid properties such as density and 
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viscosity are defined, and boundary conditions are set to simulate realistic flow conditions within the 
pipe, including inlet velocity and pressure outlet conditions. Turbulence models are selected to 
capture turbulent flow phenomena, and solver settings are configured to ensure robust convergence 
and accurate solution of the Navier-Stokes equations. 
 

 
Fig. 1. Pipe meshing from Ansys 

 
The general governing equations are as follows [17-20]: 

 
Continuity equation:  

▽ . (𝜌𝑛𝑓𝑉) = 0             (1) 

 
Momentum equation: 

▽ . (𝜌𝑛𝑓𝑉𝑉) = − ▽ 𝑃 +▽. 𝜏            (2) 

 
Energy equation: 

▽ . (𝜌𝑛𝑓𝑉𝐶𝑝,𝑛𝑓) = − ▽. (𝑘𝑛𝑓 ∇ 𝑇 − 𝐶𝑝.𝑛𝑓𝜌𝑛𝑓v𝑡̅)           (3) 

 
3. Results  
 

Tables 2 and 3 below show the pressure inlet and outlet of the pipes and the friction factor 
calculated for Galvanized steel (GS) and Acrylonitrile Butadiene Styrene (ABS) pipes. Figure 2 shows 
friction factors for different Reynolds numbers (representing varying flow velocities) for both GS and 
ABS tubes. The figure demonstrates how friction factors change with increasing Reynolds number for 
both materials. It's evident that ABD tubes generally exhibit higher friction factors compared to GS 
tubes across all Reynolds numbers, highlighting the influence of surface roughness on flow 
resistance. Additionally, the figure illustrates the decreasing trend of friction factors with higher 
Reynolds numbers.  
 

Table 2  
Friction factor for galvanised steel pipe 
Reynolds number P inlet P outlet Pressure difference Friction factor (f) 

7000 4.8558863 1.210051 3.6458353 0.033348633 
10000 9.1653086 2.4601361 6.7051725 0.030052944 
12000 12.712115 3.5359071 9.1762079 0.02856129 
15000 19.011227 5.512134 13.499093 0.026890516 
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Table 3  
Friction factor for Acrylonitrile Butadiene Styrene (ABS) pipe 
Reynolds number P inlet P outlet Pressure difference Friction factor (f) 

7000 4.8655869 1.2112236 3.6543633 0.033426639 
10000 9.1819404 2.4621201 6.7198203 0.030118596 
12000 12.734773 3.5386894 9.1960836 0.028623154 
15000 19.044709 5.5164234 13.5282856 0.026948669 

 

 
Fig. 2. Friction factor against Reynolds number 

 

5. Conclusions 
 

This study demonstrates the considerable influence of surface roughness on friction factors in 
galvanised steel (GS) and acrylonitrile butadiene styrene (ABS) tubes. The results show the 
relationship between surface roughness and friction factors for different Reynolds number, 
indicating decrease of friction factors with the increase of Reynolds number in both GS and ABS tubes. 
GS tube has lower friction coefficients than ABS. The findings indicate that as surface roughness 
increases, friction factors generally rise, indicating greater flow resistance and higher energy losses 
within the tubes. Additionally, the results emphasize the need for accurate modeling and 
characterization of surface roughness in engineering analyses to ensure reliable predictions of flow 
behavior and frictional losses. 
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