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Handling missing values is crucial to environmental data analysis since missing datasets 
can lead to biassed results. Using Weibull distributions, this study compared six single-
imputation methods (mean, median, mean-before-after (MBA), cubic interpolation, 
linear interpolation, last observation carried forward (LOCF)) for estimating missing 
ozone concentration data in Petaling Jaya, Selangor. The present study simulated data 
for sample sizes of 50 and 150 with varying missing value percentages (5%, 10%, 15%, 
20% and 25%). The performance of each imputation method was evaluated using 
prediction accuracy, root mean square error (RMSE) and mean absolute error (MAE). 
The findings suggested that the MBA approach outperformed all examined cases, 
followed by linear interpolation and LOCF. Conversely, cubic interpolation, mean, and 
median substitution approaches performed poorly, especially as the proportion of 
missing data increased. This study emphasises the critical role of selecting appropriate 
imputation methods to enable accurate and trustworthy environmental data analysis. 
The findings can help researchers select efficient approaches for addressing missing 
values in air quality datasets, thus boosting the reliability of environmental studies. 
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1. Introduction 
 

The notion of missing values pertains to a scenario when the dataset comprises either empty or 
incomplete values [1]. There is a possibility that missing values are present in a diverse range of 
industry and research databases, including in the environmental and air pollution datasets [2-5]. The 
presence of these missing values in air pollution data arises from multiple sources, including 
equipment malfunctions, errors during manual data entry, and inaccurate measurements themselves 
[2,3,6,7]. These incomplete observations can introduce bias and hinder the interpretability of results 
during data analysis [5]. Moreover, mishandling these incomplete observations can significantly 
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impair the effectiveness of the data, introduce bias, and ultimately, erroneous inferences being made 
from the research [5,7,8].  

The imputation method serves as a crucial tool for managing missing values [5,6,9,10]. It 
addresses missing data by replacing them with plausible estimates, creating a complete dataset for 
subsequent analysis using standard methods and software [9,11,12]. This approach offers the 
advantage of retaining all available information. Additionally, in cases where the observed data offers 
clues into the underlying pattern of missingness, it can be leveraged to achieve more accurate 
predictions for the missing values [13,14]. Imputation's ability to maximize the utility of observed 
data positions it as a preferred strategy over other methods for handling missing data [6,15]. 

Missing data imputation techniques can be broadly categorized into deterministic and stochastic 
methods [10]. Deterministic methods consistently assign the same imputed value to units with 
missing data within a specific sample. Conversely, stochastic methods introduce an element of 
randomness into the imputation modeling process, may not always create the same values, and 
potentially yield different imputed values for the same missing value across replications [10]. This 
study focuses on two basic deterministic methods: mean imputation and median imputation. These 
methods were chosen due to their simplicity and ease of implementation [16,17] compared to other 
deterministic techniques, such as ratio imputation, logical imputation and regression imputation. 

The academic literature documents the frequent use of convenient missing data techniques like 
pairwise deletion (available case analysis) and listwise deletion (case deletion or complete case 
analysis) [18-20]. Nevertheless, these methods have been criticized for their reliance on observed 
data only, essentially editing the dataset to achieve completeness [5,6,12,21,22]. Besides, it produces 
a substantial loss of information, weakens statistical power and potentially introduces significant bias 
[5,7,9,12,17]. 

Therefore, to address the challenge of missing data in environmental datasets, various 
imputation techniques have been proposed [5,6,9,10]. Priti et al., [4] evaluated the performance of 
various imputation methods for particulate pollutant time series data with varying missing 
percentages. They compared six univariate single imputation methods [median, mean, last 
observation carried forward, Spline, Kalman and Seadec) and four multivariate multiple imputation 
approaches (predictive mean matching, multiple imputation by automatic, distance-aided donor 
selection, random forest (RF), multiple imputed using PCA (MIPCA)]. Their findings suggested that 
Kalman AutoRegressive Integrated Moving Average (ARIMA) imputation performed well for long-
missing gaps and most missing levels (excluding 60-80%), resulting in low errors and high R-squared 
values. However, for the highest missing percentage scenario, MIPCA outperformed Kalman-ARIMA 
across all target stations. In a related study, Middya and Roy [3] proposed a novel multi-view-based 
missing value imputation method (MVDI) specifically designed for air pollution time series data. Their 
work demonstrated that MVDI outperformed various baseline methods, including traditional 
statistical approaches AutoRegressive, ARIMA, RF Regressor, Artificial Neural Network (ANN), Linear 
Interpolation, Nearest Neighbors, Mean Imputation, Convolutional Neural Network (CNN) and 
Convolutional LSTM.  

Furthermore, Wardana et al., [5] proposed a spatiotemporal convolutional autoencoder for 
imputing missing air pollutant data. This method outperformed traditional univariate (median, mean) 
and multivariate (extra-trees, decision tree, Bayesian ridge regressors, k-nearest neighbors (KNN)) 
imputation techniques, particularly for discontinuous and long-missing data, as evidenced by 
significant improvements in root mean squared error (RMSE). In a separate study, Peña et al., [23] 
investigated regularized regression methods (LASSO and Ridge) to estimate missing values in air 
pollutant time series. Their findings suggest that LASSO models achieved slightly lower errors and 
higher performance than Ridge regression. Besides, Alsaber et al., [6] compared various imputation 
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methods for air quality data with different missing data percentages. They found that the proposed 
missForest imputation method based on a RF algorithm achieved superior accuracy in estimating 
missing values compared to other techniques such as RF, KNN, Bayesian principal component 
analysis, expectation-maximization with bootstrapping, and predictive mean matching. 

Hadeed et al., [7] investigated imputation approaches for short-term air pollutant monitoring 
data with varying missingness percentages. They compared univariate techniques (median, mean, 
last observation carried forward, random, Kalman filter, Markov) and multivariate approaches (row 
mean, predictive mean matching) to address missing values. Their findings suggested that univariate 
methods, particularly mean imputation, random and Markov, yielded the best results with the lowest 
errors and highest R-squared values across varying missingness levels; Markov obtained the best-
performing method. Conversely, multivariate methods consistently performed worse. In a similar 
study, Rumaling et al., [24] compared the Nearest Neighbor Method (NNM) and Expectation 
Maximization (EM) for imputing missing PM10 concentration data in five air quality monitoring 
stations in Sabah with varying missing data percentages. Their results indicated that NNM 
outperformed EM in imputing data for three stations. 

In addition, Shaadan and Rahim [11] investigated imputation methods for time series air quality 
data (PM10). They compared six techniques, including spline interpolation, linear interpolation, 
exponential moving average, random sample, mean before-after (MBA), and Kalman filter with 
ARIMA modeling. Their analysis revealed that the Kalman filter using ARIMA was the most effective 
method for their specific dataset. In a separate study by Xu et al., [12], the performance of four 
common imputation methods (deletion, mode imputation, hot-deck, and multiple imputation) was 
evaluated for mental health questionnaires within a population-based survey. Their findings 
indicated that multiple imputations yielded the best results, although it requires slightly more data 
processing expertise and programming skills. Besides, Libasin et al., [9] investigated the performance 
of single imputation techniques for addressing missing values in Malaysia's air particulate matter 
(PM10) data. They evaluated four methods: mean of nearby points, series mean, linear trend and 
linear interpolation. Their analysis revealed that linear interpolation yielded the lowest mean 
absolute error (MAE) and demonstrated the best overall accuracy in replacing missing PM10 data. 

This research examined six single imputation approaches to identify the most effective technique 
for managing missing data. While these techniques are among the simplest available, a 
comprehensive evaluation is undertaken to identify the most effective method within the method 
pool of simple imputation techniques, specifically comparing just the single method. This study 
investigates the application of the chosen imputation method to univariate data. A set of 
performance indicators is employed to assess the method's effectiveness. Subsequently, a 
comprehensive simulation study is conducted to assess the comparative performance of the different 
imputation methods under consideration. 
 
2. Methodology  
2.1 Data Acquisition 
 

The present study utilized data obtained from the Malaysian Meteorological Department. 
Specifically, this study focused on hourly ozone concentration data for Petaling Jaya, Selangor, 
spanning five months from January to May 2020. This dataset comprises ozone concentration 
measurements recorded on an hourly timescale. Missing data points are defined as instances where 
no ozone concentration value is available. 
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2.2 Single Imputation Methods 
 

This study addressed missing values through an imputation technique based on interpolation. 
Two specific interpolation methods are employed: linear and cubic. Linear interpolation, the simpler 
method, estimates missing values by connecting two data points with a straight line [11,14,25]. The 
specific formula for linear interpolation involves calculating the slope and intercept of the line 
connecting these two known points, which is shown below in Eqs. (1) to (4), 

 
𝑓1(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
=
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥 − 𝑥0
 (1) 

  

𝑓1(𝑥) = 𝑓(𝑥0) +
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥 − 𝑥0
(𝑥 − 𝑥0) (2) 

 
Where, 
 

 

𝑏0 = 𝑓(𝑥0) (3) 
  

𝑏1 =
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥 − 𝑥0
 

 
(4) 

Thus, the interpolation function is given in Eq. (5),  
 

 

𝑓1(𝑥) = 𝑏0 + 𝑏1(𝑥 − 𝑥0) 
 

(5) 

Where, 𝑥 is the explanatory variable, where 𝑥𝑖  (𝑖 = 0,1,2, . . . ) is a value of the explanatory variable 
and 𝑏𝑖 is coefficients in the case of 𝑓 = 𝑓1. 

 
Cubic interpolation is also used as a second approach to interpolation in the present study. This 

method is particularly suited to scenarios where data for four known points is available [26]. The 
mathematical expression for cubic interpolation can be written as in Eq. (6), 

 
𝑓1(𝑥) = 𝑏0 + 𝑏1(𝑥 − 𝑥0) + 𝑏2(𝑥 − 𝑥0)(𝑥 − 𝑥1) + 𝑏3(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2) (6) 
  

Where, the coefficients 𝑏0 and  𝑏1 are attained from (3) and (4) and 𝑏2 and 𝑏3 are given in Eq. 
(7) and (8), 

 

  

𝑏2 =

𝑓(𝑥2) − 𝑓(𝑥1)
𝑥2 − 𝑥1

−
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
𝑥2 − 𝑥0

 
(7) 

 
and 
 

 

𝑏3 =

𝑓(𝑥3) − 𝑓(𝑥2)
𝑥3 − 𝑥2

−
𝑓(𝑥2) − 𝑓(𝑥1)

𝑥2 − 𝑥1
−
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
𝑥3 − 𝑥0

 
(8) 

 
with 𝑓 = 𝑓3. 
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A third imputation technique, known as the mean-before-after (MBA) technique, imputes missing 
values by employing the average of the preceding and subsequent data points [11,27]. Let considers 
a time series denoted by 𝑦1, 𝑦2, . . . , 𝑦𝑛 with 𝑛 observation of which 𝑘 values denoted by 𝑦1

∗, 𝑦2
∗, 𝑦𝑘

∗  are 
missing [11]. Consequently, the observed data with missing values can be represented as in Eq. (9), 
 
𝑦1, 𝑦2, . . . , 𝑦𝑛1 , 𝑦1

∗, 𝑦𝑛1+1, 𝑦𝑛1+2, . . . , 𝑦𝑛2 , 𝑦2
∗, 𝑦𝑛2+1, 𝑦𝑛2+2, . . . , 𝑦𝑘

∗ , 𝑦𝑛 (9) 

 
Hence, the initial missing values appears after 𝑛 observation, with subsequent missing values 

occurring at intervals of 𝑛 observations thereafter. It is important to note that there may be instances 
of consecutive missing observations. Therefore, in this context, 𝑦1

∗ is replaced using Eq. (10), 
 

𝑦1 =
𝑦𝑛1 + 𝑦𝑛1+1

2
 (10) 

 
and 𝑦2

∗ will be substituted by Eq. (11), 
 

 

𝑦2 =
𝑦𝑛2 + 𝑦𝑛2+1

2
 (11) 

 
and so forth.  
 

 

The fourth method used in the current study was the last observation carried forward (LOCF). It 
addresses missing data points in longitudinal studies with repeated measures [4,7]. LOCF imputes 
missing values by substituting them with each subject's most recent non-missing observation [4,7]. 
This approach assumes that the most recently observed value provides the most accurate prediction 
for subsequent missing values within the same subject. 

The fifth method, mean substitution, imputes missing values by replacing them with the average 
of all observed data points [16]. Mathematically, this can be expressed as in Eq. (12), 

 

𝑦 =
1

𝑛
∑𝑦𝑖

𝑛

𝑖=1

 (12) 

 
Where 𝑛 is the amount of available data, and 𝑦𝑖 is the data points. 

 

 
Lastly, this study employed the median substitution method. The mean's susceptibility to outliers 

makes the median a more robust choice [16]. Consequently, missing values within each feature were 
replaced with the median value of the corresponding data set [16]. In the case of ozone 
concentration, the median of the ozone data set was used to fill in missing values. 

 
2.3 Performance Evaluation Criteria 
 

This study engaged three metrics to assess the imputation method's performance: prediction 
accuracy (PA), root mean square error (RMSE) and mean absolute error (MAE) (Table 1) and are 
presented as in Eqs. (13) to (15).  
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Table 1 
Performance evaluation metrics 
No. Evaluation 

metrics 
Function Range Formula 

1. Prediction 
accuracy (PA) 

Accuracy of the imputation 
method 

0 to 1, higher value 
indicates a better 
fit 

𝑃𝐴 =∑
|(𝑃𝑖 − 𝑃)(𝑂𝑖 − 𝑂)|

(𝑁 − 1)𝜎𝑃𝜎𝑂

𝑁

𝑖=1

 (13) 

2. Root means 
square error 
(RMSE) 

Quantifies the discrepancy 
between observed and 
imputed concentrations and 
provides the model’s 
average error 

Lower RMSE values 
indicate superior 
model 
performance 

𝑅𝑀𝑆𝐸 = (
1

𝑁
∑[𝑃𝑖 − 𝑂𝑖]

𝑁

𝑖=1

2

)

1
2

 (14) 

3. Mean 
absolute 
error (MAE) 

Average discrepancy 
between predicted and 
observed values. 

0 to ∞, 0 indicates 
perfect fit 𝑀𝐴𝐸 =

1

𝑁
∑|𝑃𝑖 − 𝑂𝑖|

𝑁

𝑖=1

 (15) 

Source: Chen et al., [28], Libasin et al., [9], Middya and Roy [13], Priti et al., [4], Shaadan and Rahim [11] 

 

Where, 𝑁 is the total of imputations, 𝑂𝑖 is the observed data and 𝑃𝑖  is the imputed data point, 𝑃 is 

the imputed data’s average, 𝑂 is the observed data’s average, 𝜎𝑃 is the imputed data’s standard 
deviation and 𝜎𝑂is the observed data’s standard deviation. 

 
2.4 Simulation Study 
 

To evaluate and compare the imputation methods introduced previously, a simulation study is 
conducted. This study assessed each method’s performance using several performance metrics. 
Hourly ozone concentration data from Petaling Jaya, Selangor, Malaysia, served as the basis for 
simulating missing values. The present study adopted the Weibull distribution, known for its flexibility 
in extreme value analysis, to produce the simulated data. This distribution is characterized by α, the 
shape parameter, and β, the scale parameter [29-31]. Eq. (1) details the Weibull probability density 
function as in Eq. (16), 

 

𝑓(𝑥, 𝛼, 𝛽) =
𝛼

𝛽
(
𝑥

𝛽
)
𝛼−1

𝑒𝑥𝑝 [−
𝑥𝛼

𝛽
],   𝑥 > 0, 𝛼 > 0, 𝛽 > 0 (16) 

 
and the cumulative distribution function (cdf) takes the form as in Eq. (17),  
 

 

𝐹(𝑥, 𝛼, 𝛽) = 1 − 𝑒𝑥𝑝 [−(
𝑥

𝛽
)
𝛼
],   𝑥 > 0, 𝛼 > 0, 𝛽 > 0 (17) 

 
2.5 Weibull Distribution Parameters 
 

This study obtained the simulated data by first fitting a Weibull distribution to the ozone dataset. 
The estimation process yields the shape (β) and scale (α) parameters, which characterize the 
distribution [29-31]. These parameters, estimated to be 3.9 for β and 0.02 for α, are then employed 
to randomly generate data that closely resembles the distribution of the actual air quality 
measurements used in the study. It is important to note that when data are missing at varying 
percentages, the estimated parameters deviate from the true values of the underlying distribution. 
The extent of these deviations is presented in Tables 2 and 3. 

Across both sample sizes, the shape parameter (β) exhibits greater sensitivity to the proportion of 
missing values. When the percentage of incomplete observation increases from 5% to 25%, the 
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estimated β deviates more substantially from the true value of 3.9, ranging between 4.42 and 4.46. 
The scale parameter (α) demonstrates a similar trend but with generally smaller deviations from the 
true value of 0.02. In most cases, the estimated α remains close to 0.02. 

Informed by the estimated shape (β) and scale (α) parameters, two sample sizes (n = 50 and n = 
150) were chosen for the simulation. The generated data were introduced with missing values at 
varying percentages (5%, 10%, 15% and 25%). These missing values were assumed to follow a normal 
distribution. Each combination of sample size and missing value percentage underwent 5,000 
replications of the simulation process implemented using R software.  Figure 1 presents a flowchart 
that visually clarifies the systematic execution of the simulation study. This flowchart effectively 
summarizes the key steps involved in conducting the simulation. 

 

 
Fig. 1. The flow chart of the simulation study 

 
Table 2 
Shape and scale parameters for n = 50 
n = 50 
METHOD 

SHAPE (β) 

5% 10% 15% 20% 25% 

MBA 4.11 3.67 3.88 4.03 4.42 
LINEAR 4.19 4.13 4.10 3.84 4.09 
CUBIC 4.14 3.92 2.78 3.47 3.66 
LOCF 4.19 4.02 4.01 3.81 4.12 
MEAN 4.25 4.15 4.25 4.27 4.46 
MEDIAN 4.25 4.15 4.22 4.25 4.46 
n = 50 
METHOD 

SCALE (α) 
5% 10% 15% 20% 25% 

MBA 0.02114 0.01870 0.01961 0.02063 0.01982 
LINEAR 0.02117 0.01878 0.01959 0.02007 0.01972 
CUBIC 0.02111 0.01912 0.02056 0.02005 0.01969 
LOCF 0.02120 0.01888 0.01982 0.02026 0.02033 
MEAN 0.02126 0.01851 0.01952 0.01981 0.01955 
MEDIAN 0.02127 0.01851 0.01946 0.01977 0.01955 

 
 
 
 
 
 
 

Generate dataset by using the parameters obtained with two sample sizes, n = 50 and n = 150 
(Weibull distribution data)

Missing values generated randomly with the percentage of (5%,10%,15%, 20% and 25%)

Apply the six imputation methods selected to randomly generated missing data

Performance indicators from 6 different methods calculated and compared (PA, RMSE, and MAE)
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Table 3 
Shape and scale parameters for n = 150 
n = 50 
METHOD 

SHAPE (β) 

5% 10% 15% 20% 25% 

MBA 3.92 3.87 3.74 3.83 4.13 
LINEAR 3.92 3.96 3.77 4.00 4.47 
CUBIC 3.71 3.49 3.52 3.71 3.71 
LOCF 3.86 3.95 3.78 3.80 4.25 
MEAN 4.07 4.04 4.01 4.23 4.71 
MEDIAN 4.06 4.04 4.01 4.26 4.75 

n = 50 
METHOD 

SCALE (α) 

5% 10% 15% 20% 25% 

MBA 0.02006 0.01941 0.02049 0.02030 0.02013 
LINEAR 0.02022 0.01974 0.02046 0.02069 0.02043 
CUBIC 0.02031 0.02000 0.02033 0.02084 0.02060 
LOCF 0.02028 0.01968 0.02065 0.02068 0.02056 
MEAN 0.02026 0.01951 0.02072 0.02031 0.02021 
MEDIAN 0.02025 0.01951 0.02072 0.02029 0.02028 

 
3. Results and Discussion 

 
Table 4 presents the results of 5,000 simulations conducted with a sample size (n) of 50. The data 

demonstrated a consistent trend: as the percentage of missing values increases, prediction accuracy 
(PA) decreases [27]. This observation aligns with the principle of goodness-of-fit, suggesting that a 
higher proportion of missing data leads to a model with reduced predictive power. In contrast, the 
mean absolute error (MAE) and root mean squared error (RMSE) values exhibit a positive relationship 
with the percentage of missing values [27,32]. This implies that the amount of error tends to rise as 
the quantity of missing information in the dataset increases. 

Furthermore, the PA values for both mean and median substitution methods is consistently zero. 

This arises from the inherent structure of the PA equation. As shown in Eq. (13), 𝑃  (imputed data’s 
average) is identical to 𝑃𝑖  (the value of individual imputed data points). This occurs because both 
mean and median substitution techniques replace missing values with the same value, either the 

mean or median of the entire dataset. Consequently, the difference between these values (𝑃𝑖 − 𝑃)) 
becomes zero, resulting in a PA value of zero for both methods when calculated using the given 
equation. 

Moreover, among the imputation methods considered, the mean-before-after approach (MBA) 
yielded the most favorable results for a sample size of 50, as similarly found by Zakaria and Noor [27]. 
This is because, as indicated by the PA values, MBA has PA values ranging from 0.99 to 0.85 across all 
missing value percentages, and the closer the PA values are to one, the better the fit is than the other 
approaches. Furthermore, the MBA technique demonstrably produced the lowest error than the 
others for all missing value percentages. Linear interpolation achieved the second-highest PA, with 
values ranging from 0.98 to 0.81 across different missing value percentages. While it surpassed the 
last observation carried forward (LOCF) method in terms of PA, linear interpolation also yielded the 
highest MAE compared to LOCF for all missing value percentages. However, the error increase for 
linear interpolation was minimal when measured by RMSE. 

Interestingly, the LOCF method demonstrated a competitive performance in terms of PA at lower 
missing value rates (5%) compared to both interpolation techniques at 5% missing values. However, 
this advantage diminished at higher missing value percentages (10% and 20%), where LOCF's PA 
surpassed only cubic interpolation. While LOCF exhibited higher MAE values compared to cubic 
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interpolation at 15%, 20% and 25% missing data, it produced lower RMSE for these percentages. In 
contrast, cubic interpolation exhibited the least favorable performance across all missing value 
percentages. While this method achieved relatively high PA at lower missing value rates (5% and 
10%), it consistently yielded the highest values for MAE and RMSE compared to other imputation 
techniques. Like Morelli et al., [33], they found that linear interpolation has lower RMSE than cubic 
interpolation. 
 

Table 4 
Performance of methods for n = 50 
P Technique PA MAE RMSE 

5% MBA 0.99 0.00490 0.00690 
LINEAR 0.98 0.02300 0.00630 
CUBIC 0.98 0.04780 0.01592 
LOCF 0.99 0.02334 0.00710 
MEAN 0.00 0.00426 0.00470 
MEDIAN 0.00 0.00428 0.00470 

10% MBA 0.98 0.00500 0.00530 
LINEAR 0.98 0.02130 0.00730 
CUBIC 0.89 0.02474 0.01472 
LOCF 0.96 0.02080 0.00820 
MEAN 0.00 0.00421 0.00500 
MEDIAN 0.00 0.00424 0.00500 

15% MBA 0.96 0.00500 0.00600 
LINEAR 0.91 0.02080 0.00820 
CUBIC 0.85 0.01901 0.01424 
LOCF 0.82 0.01956 0.00900 
MEAN 0.00 0.00425 0.00510 
MEDIAN 0.00 0.00428 0.00520 

20% MBA 0.88 0.00490 0.00600 
LINEAR 0.88 0.01957 0.00880 
CUBIC 0.80 0.01595 0.01426 
LOCF 0.81 0.01754 0.00950 
MEAN 0.00 0.00424 0.00510 
MEDIAN 0.00 0.00428 0.00520 

25% MBA 0.85 0.00510 0.00620 
LINEAR 0.81 0.02078 0.00910 
CUBIC 0.78 0.01713 0.01433 
LOCF 0.77 0.01896 0.00980 
MEAN 0.00 0.00425 0.00520 
MEDIAN 0.00 0.00430 0.00520 

Note: P-Percentage of missing values, PA-Prediction accuracy, MAE- Mean absolute error, RMSE- 
root mean square error, MBA-Mean-before-after method, LOCF-Last observation carried forward 

 
Table 5 summarizes the findings of 5,000 simulations conducted for 150 sample sizes. The MBA 

technique emerged as the most effective imputation strategy, consistently delivering superior results 
compared to other approaches, as similar found by Zakaria and Noor [27]. This method achieves a 
high PA range from 0.85 to 0.80 across varying percentages of missing values. Linear interpolation 
appeared as the second-best method. At the 10%-mark, linear interpolation surpasses the MBA 
method in terms of PA. Additionally, these two methods exhibited comparable PA values at 5% and 
15% missing values. However, a closer examination revealed a key distinction between their 
performances: the amount of error produced, whereas the MBA method demonstrated a clear 
advantage in error minimization [27]. Linear interpolation consistently generated higher MAE and 
RMSE values than the MBA method. This observation underscores the superiority of the MBA 
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approach for this particular scenario (sample size of 150). In contrast to Shaadan and Rahim [11], the 
MBA method generated higher MAE and RMSE values than the linear interpolation method. 

 

Table 5 
Performance of methods for n = 150 
P Technique PA MAE RMSE 

5% MBA 0.85 0.005100 0.006080 
LINEAR 0.85 0.023800 0.007000 
CUBIC 0.84 0.038200 0.015709 
LOCF 0.84 0.023600 0.007800 
MEAN 0.00 0.005100 0.005071 
MEDIAN 0.00 0.005100 0.005083 

10% MBA 0.84 0.004964 0.006095 
LINEAR 0.85 0.021200 0.007500 
CUBIC 0.78 0.024500 0.014600 
LOCF 0.84 0.020400 0.008400 
MEAN 0.00 0.005100 0.005156 
MEDIAN 0.00 0.005200 0.005200 

15% MBA 0.84 0.004928 0.006100 
LINEAR 0.84 0.021200 0.008200 
CUBIC 0.82 0.019435 0.014645 
LOCF 0.77 0.019800 0.009000 
MEAN 0.00 0.005200 0.005138 
MEDIAN 0.00 0.005200 0.005200 

20% MBA 0.82 0.004838 0.006111 
LINEAR 0.80 0.019800 0.008700 
CUBIC 0.77 0.014785 0.013500 
LOCF 0.75 0.016727 0.009400 
MEAN 0.00 0.005200 0.005177 
MEDIAN 0.00 0.005200 0.005200 

25% MBA 0.80 0.005107 0.005967 
LINEAR 0.79 0.020800 0.009200 
CUBIC 0.77 0.016434 0.013686 
LOCF 0.75 0.018100 0.009800 
MEAN 0.00 0.005200 0.005191 
MEDIAN 0.00 0.005200 0.005205 

Note: P-Percentage of missing values, PA-Prediction accuracy, MAE- Mean absolute error, RMSE- 
root mean square error, MBA-Mean-before-after method, LOCF-Last observation carried forward 

 
The LOCF method outperformed cubic interpolation at lower missing value rates (5% and 10%), 

mirroring the trend observed for a sample size of 50. This is reflected in their prediction accuracy (PA) 
values. However, the advantage shifts at higher missing value percentages (15%, 20% and 25%), 
where cubic interpolation yielded superior PA compared to LOCF. Interestingly, the error profiles for 
these methods remained consistent with the findings for sample size 50. LOCF continued to exhibit 
higher MAE but lower RMSE compared to cubic interpolation at 15%, 20% and 25% missing values. 
Cubic interpolation maintained its position as the method with the least favorable results across all 
missing value percentages, in which it obtained the highest overall error across all missing value 
percentages for both MAE and RMSE.  

These findings align with previous research. Morelli et al., [33] reported that linear interpolation 
resulted in lower RMSE compared to cubic interpolation. Similarly, Priti et al., [4] observed that LOCF 
outperformed the mean and median for missing value levels below 20%. However, the discrepancy 
between the imputed and observed means increased for higher missing value percentages, leading 
to a significant performance decline reflected in high MAE and RMSE values. Hadeed et al., [7] also 
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found that LOCF performed well at missing value rates between 20% and 40%, but its performance 
declined as the duration of missingness increased. 

For overall comparison, the findings presented in Tables 4 and 5 revealed that the MBA imputation 
method consistently outperformed other techniques for both sample sizes (50 and 150) across 
varying missing value percentages, as similarly found by Zakaria and Noor [27]. This method 
demonstrably achieved the lowest error rates while maintaining high PA values. Conversely, the 
mean substitution method yielded the poorest PA results, consistently producing a value of zero 
across all missing value percentages. Among the interpolation techniques, linear interpolation 
emerged as the most effective technique among the interpolation methods, particularly for lower 
missing value rates (5%, 10% and 15%). Cubic interpolation only demonstrates favorable 
performance at the 5% missing value mark. This aligned with the findings of Morelli et al., [33], who 
reported lower RMSE for linear interpolation compared to cubic interpolation. 

The LOCF method outperformed cubic interpolation at lower missing value percentages (5% and 
10%), but cubic interpolation surpassed LOCF at higher rates (15%, 20% and 25%). Besides, while 
median and mean substitution methods produce a PA value of zero, they exhibited the lowest error 
measures compared to other techniques. Nevertheless, studies by Priti et al., [4], Wardana et al., [5] 
and Hadeed et al., [7] discovered mean and median imputation among the methods that obtained 
high values in MAE and RMSE.  

In essence, the MBA method stands out as the most effective strategy for predicting missing 
values. It consistently delivered superior performance in terms of both error minimization and 
maintaining high PA. Linear interpolation follows as a strong contender, mainly for handling smaller 
amounts of missing data. LOCF demonstrated some utility at lower missing value rates. Conversely, 
cubic interpolation and mean/median substitution consistently produced the least favorable results. 
These findings corroborate the conclusions of Wardana et al., [5] that the mean and median 
imputation often leads to the most inaccurate imputations. 

 
3.1 Application of Mean-Before-After (MBA) Imputation 
 

The MBA imputation method, identified as the most effective through a simulation study, was 
employed to address missing values within an ozone dataset. This study centered on a year's worth 
of hourly data pertaining to ozone concentration measurements gathered in Petaling Jaya, Selangor, 
Malaysia. The data comprises ozone concentrations recorded on an hourly basis for a single month. 
There were 720 hourly ozone concentration values available for January, with 5% (34 observations) 
containing missing data. 

Table 6 presents a comparison of descriptive statistics between the original data with missing 
observations and the corresponding data following imputation (obtained using the MBA method 
within the R package, pastecs, to address missing entries). Descriptive statistics encompass basic 
metrics summarizing the data: minimum value (min), maximum value (max), the sum of all non-
missing values (sum), and range (max-min). Additionally, the table incorporates statistics describing 
the central tendency and spread of the data. It is noteworthy that the confidence interval on the 
mean (CI.mean) is calculated using a default probability level of p = 0.9. 

Table 7 presents the estimated values and standard deviations of the shape (β) and scale (α) 
parameters for both the original ozone data with missing observations and the corresponding data 
following imputation (obtained using Mean-Before-After imputation). Statistical software is unable 
to directly estimate these parameters when missing values are present. Therefore, to obtain 
parameter estimates for the missing data, these values were excluded from the initial analysis. 
Notably, the parameters estimate for the shape (β) and scale (α), along with their standard 
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deviations, are lower in the imputed ozone data than the original data containing missing values, 
indicating good estimation. 

 

Table 6 
Comparison of descriptive statistics between incomplete ozone data and imputed ozone data 
Statistic  Ozone data with missing values Imputed ozone data 

Minimum value (Min)  0.001 0.001 
Maximum value (Max)  0.095 0.095 
Range (Max-Min)  0.094 0.094 
Sum of all non-missing values (Sum)  11.74 12.30 
Median  0.0065 0.0070 
Mean  0.017115 0.017084 
Standard error of mean (SE.mean)  0.000780 0.000757 
Confidence interval of the mean a specified 
significance level (p) (CI. mean.0.95)  

0.001531 0.001487 

Variance (Var) 0.000417 0.000413 
Standard Deviation (Std. Dev) 0.020421 0.020318 
Coefficient of variation (coef.var) 1.193142 1.189307 

 

Table 7 
Estimated parameters of original and imputed data 
Estimated parameters Original data with missing observations Imputed data 

Shape, β 
(Standard deviation) 

0.76 
(0.0228965515) 

0.77 
(0.02245908) 

Scale, α 
(Standard deviation) 

0.014571 
(0.0007579287) 

0.014636 
(0.0007408004) 

 
4. Conclusion 

 
This investigation explored the efficacy of various simple imputation techniques for addressing 

missing data. This study evaluated the performance of six simple imputation methods for missing 
values. Simulated datasets with varying percentages of missing data were used to assess the 
effectiveness of each method. Performance was measured using a combination of metrics: prediction 
accuracy (PA), mean absolute error (MAE), and root mean squared error (RMSE). PA served as an 
indicator of the quality of the imputed values, while MAE and RMSE quantified the error introduced 
by each imputation method. Across all missing data scenarios, the study observed a progressive 
deterioration in prediction accuracy as the percentage of missing data escalated. Conversely, both 
MAE and RMSE values exhibited a positive correlation with the increasing percentage of missing data. 

Among the evaluated imputation methods, the Mean-Before-After (MBA) technique emerged as 
the most effective for ozone data, achieving prediction accuracy close to one. Linear interpolation 
and the Last Observation Carried Forward (LOCF) method also demonstrated comparable 
performance. Conversely, the cubic interpolation method yielded the least favorable results. As 
anticipated, the performance of interpolation methods is inherently limited. As evidenced by the 
findings, interpolation techniques are generally only suitable for imputing short gaps. The cubic 
interpolation method's performance demonstrably declined with increasing missing value 
percentages. This is attributable to the concurrently increasing length of gaps between the data 
points used for interpolation, ultimately leading to a higher degree of error observed with this 
method. 

Furthermore, the findings revealed discrepancies between the methods, particularly highlighting 
the unreliability of mean and median substitution techniques. This is concerning as these methods 
are frequently reported in the literature and serve as default options within numerous statistical 



Journal of Advanced Research Design 

Volume 134 Issue 1 (2025) 63-76  

75 

software packages. Consequently, the simulation study results within this research indicate that the 
most effective approach for handling missing data points in the ozone dataset is the MBA imputation 
method. This method replaces each missing data point with the average of the two preceding and 
subsequent data points. 
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Milica Arsić, Nabila Ihaddadene, and Ihaddadene Razika. "Modeling of the function of the ozone concentration 
distribution of surface to urban areas." European Chemical Bulletin 7, no. 3 (2018): 98-105.  

[30] Efe-eyefıa, Eferhonore, Joseph Thomas, and Samuel Chiabom Zelıbe. "Theoretical analysis of the Weibull alpha 
power inverted exponential distribution: properties and applications." Gazi University Journal of Science 33, no. 1 
(2020): 265-277. https://doi.org/10.35378/gujs.537832    

[31]  Salim, Omar M., Hassen Taher Dorrah, and Mahmoud Adel Hassan. "A generalized cascaded approach to estimate 
missing wind data using multivariate weibull distribution network." In 2020 12th International Conference on 
Electrical Engineering (ICEENG), pp. 68-72. IEEE, 2020. https://doi.org/10.1109/iceeng45378.2020.9171741   

[32] Austin, Peter C., and Stef van Buuren. "The effect of high prevalence of missing data on estimation of the 
coefficients of a logistic regression model when using multiple imputation." BMC Medical Research 
Methodology 22, no. 1 (2022): 196. https://doi.org/10.1186/s12874-022-01671-0   

[33] Morelli, Davide, Alessio Rossi, Massimo Cairo, and David A. Clifton. "Analysis of the impact of interpolation 
methods of missing RR-intervals caused by motion artifacts on HRV features estimations." Sensors 19, no. 14 
(2019): 3163. https://doi.org/10.3390/s19143163  

https://doi.org/10.48550/arxiv.2007.02837
https://doi.org/10.14445/22315381/ijett-v70i5p202
https://doi.org/10.14445/22315381/ijett-v70i5p202
https://doi.org/10.3978/j.issn.2305-5839.2015.12.38
https://doi.org/10.1093/ije/dyz032
https://doi.org/10.1186/s12874-017-0442-1
https://doi.org/10.3389/fevo.2021.669477
https://doi.org/10.1109/sege.2019.8859963
https://doi.org/10.1109/la-cci47412.2019.9037053
https://doi.org/10.5572/ajae.2020.14.1.062
https://doi.org/10.4028/www.scientific.net/msf.803.278
https://doi.org/10.1109/tbme.2018.2874712
https://doi.org/10.3390/atmos13071044
https://doi.org/10.35378/gujs.537832
https://doi.org/10.1109/iceeng45378.2020.9171741
https://doi.org/10.1186/s12874-022-01671-0
https://doi.org/10.3390/s19143163

