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Cervical cancer is caused by abnormal cell growth in the female cervix. It is among the 
most well-known causes of women's deaths globally. Early detection of cervical cancer 
can reduce the mortality rate and increase the chance of survival. One of the most critical 
components of the auto-detection system is image pre-processing. The main factors that 
could influence the accuracy of the diagnosis are the Pap smear image quality and 
contrast. Therefore, this paper aims to analyse various approaches to ensure smooth 
segmentation and determine which pre-processing techniques are best for a nucleus 
auto-detection system. Two hundred images were used as input from the Herlev 
dataset. There are two pre-processing stages: noise removal and contrast enhancement. 
To preserve the colour, only the colour images' brightness (V) channel will go through 
the pre-processing. Without noise, the anticipated resultant image depicts only the 
object (nuclei and cytoplasm) and background. Results show that the median filter 
produces the best result regarding smoothening and debris removal in visual analysis. At 
the same time, Pairing Adaptive Gamma and Clipping Histogram Equalisation (PAGCHE) 
method produces the best brightness and contrast improvement results based on visual 
and quantitative analysis. The results were compared with anisotropic diffusion, Non-
Local Haar (NLH), and bilateral filters in the denoise stage and histogram equalisation, 
contrast stretching, and Contrast Limited Adaptive Histogram Equalisation (CLAHE) for 
the contrast enhancement stage. The performance was evaluated based on mean, 
absolute mean brightness error (AMBE), standard deviation (STD), structural similarity 
index metric (SSIM), peak signal-to-noise ratio (PSNR), and entropy. The average 
PAGCHE shows the highest Mean and AMBE values at 148.07 and 21.96, respectively, 
while the STD value is the second highest compared to other methods at 60.4. The 
median filter produces the lowest SSIM score and low PSNR scores compared to the 
others but relatively high values at 0.71 and 15.38, respectively, with an entropy of 7.30, 
indicating a good noise removal ability that can be observed in visual analysis. 
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1. Introduction 
 

In the cells of the cervix, cervical cancer originates from the lower portion of the uterus that is 
anatomically connected to the vagina. It occurs when the cells of the cervix increase abnormally. 
Nadzirah et al., [1] stated that this will spread to organs and tissues surrounding the cervix, including 
the lungs and liver. As per the National Cancer Institute's data in [2,3], cervical cancer ranks as the 
fourth most prevalent malignancy among women globally. An estimated 604,000 new cases of 
cervical cancer and 342,000 deaths occurred globally in 2020 [2,4]. Mustafa et al., [5,6] highlighted 
in their papers that cervical cancer is a common form of the disease that likely every woman will 
eventually develop; furthermore, it is associated with a high mortality rate. This is due to the fact 
that early detection of cervical cancer is difficult to achieve globally, and by the time it is detected, 
the disease has progressed significantly. 

Established during the 1940s by Georgios Papanikolaou, the Papanicolaou test is also known as 
the Pap test or Pap smear. It has exfoliating cells from the improvement range of the cervix, which 
enables microscopic analysis of these cells to detect precancerous or cancerous cells [7]. Patel et al., 
[8] stated a brief procedure of the pap smear test where a speculum is used to examine the cervix 
while the patient is in the lithotomy position. Ayre's spatula's smaller end is inserted through the 
external os using a speculum, and it is rotated 360 degrees to scrape the squamocolumnar junction. 
The traditional method of cervical cancer screening is based on the Pap smear test. However, this 
method has several limitations, including low sensitivity and specificity, which can lead to false-
negative [9] or false-positive results [10]. 

By enhancing the quality of Pap smear images, image enhancement techniques can aid in the 
detection of cervical cancer [11]. The microscopic image sample is susceptible to artefacts, blurring, 
noise, shadow, and lighting issues [12]. A microbiologist can only make a diagnosis based on 
microscopic observations. As a result, even with experienced hands, it is time-consuming, and 
inaccurate results are still possible [13]. Low-quality visual images are difficult to perceive, as are 
image processing and computer vision applications [14-16]. Therefore, image quality should be 
enhanced before they are used to create images that are highly suitable for human visual perception 
and simple for machines to evaluate. This will also enhance computer vision applications [16-18]. 
Image enhancement techniques can improve images' contrast, brightness, and sharpness, making it 
easier to identify abnormal cells [19]. Accurate diagnosis data is essential for helping a physician 
assess a patient's condition. By applying image enhancement techniques, it is possible to decrease 
the number of false-positive or false-negative results and increase the accuracy of cervical cancer 
screening.  

There are several classical filter methods for image denoising, such as the median filter [20], mean 
filter [21], Gaussian filter [22], and Fourier transform [23]. Another widely used method is the Non-
Local Means (NLM) [24], which improves image quality by looking for relevant information within the 
same image. Furthermore, several cutting-edge approaches have been employed, each producing a 
distinct denoising effect. Jaspin and Suganthi, for instance, propose a new Adaptive Switching 
Modified Decision-Based Unsymmetric Trimmed Median Filter (ASMDBUTMF) for noise removal in 
grey-level MR images impacted by black and white pixel noise [25]. Bhawna et al., [26] introduced a 
new hybrid method that employs a cross bilateral filter (CBF) to prevent smoothing the edges prior 
to performing several mathematical operations. These detail images are then processed further with 
a rolling guidance filter (RGF), which removes small-scale structures while refining edges to preserve 
immense detail image structures. In the Volkan Göreke method, the Wiener filter is modified using 
the Finite impulse response (FIR) filter embedded in the standard Wiener algorithm. The Atom Search 
Optimization (ASO) optimisation algorithm was used to design the FIR filter. The optimisation matrix 
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corresponding to the FIR filter coefficients is used to calculate the optimal local mean and optimum 
local variance values, which are then transferred to the standard Wiener filter layer as parameter 
inputs [27]. Divya et al., [28] study a hybrid approach for designing a denoising filter for medical 
images that integrates a new guided decimation box filter (GDBF) with a hybrid cuckoo particle 
swarm optimization (HCPSO) algorithm. The suggested method by Rajanbir et al., [29] begins with a 
threshold and then denoises the image using a combination of linear, non-linear, and probabilistic 
techniques. Furthermore, a universal add-on is presented to improve the quality by brushing out fine 
details from the restored image using edge detection and smoothening techniques. To eliminate 
high-density impulsive noise, Nikhil et al., [30] proposed an adaptive weighted min-mid-max value-
based filter.  

Numerous studies on colour and contrast adjustment methods have been executed. Image 
enhancement is essential in image processing because it enhances valuable information [31] while 
reducing unnecessary information in an image [32]. Since most picture improvement methods are 
based on basic concepts, image enhancement is highly appealing [17]. In recent decades, image 
enhancement based on contrast and luminosity correction has been focused on [11-13,19,33-35]. 
Several cutting-edge methods have been reported in recent years. Bilal Bataineh, [16] for instance, 
suggested a unique method for correcting colour images using the benefits of non-linear function in 
grey transformation and histogram equalisation techniques. Karishma Rao [36] introduced using the 
Just Noticeable Distortion (JND) model and multiple layers of Contrast Limited Adaptive Histogram 
Equalisation (CLAHE), a compelling image enhancement method for improving the luminosity and 
contrast of colour retinal fundus images. Saroj [37] proposed a new technique for this purpose that 
combines principal component analysis (PCA), multi-scale switching morphological operator 
(MSMO), and CLAHE methods in a novel sequence. Based on a fuzzy approach, Mousania et al., [38] 
proposed a new composition of CLAHE and brightness-preserving dynamic fuzzy histogram 
equalisation techniques with appropriate weights according to the histogram situation.  
 
2. Methodology  
2.1 Image Acquisition 
 

The 917 sample images were collected from the Herlev database (Herlev University Hospital, 
Denmark). The database was obtained from/developed by NiSIS (EU coordination action, contract 
13569), a Nature-inspired Smart Information System, with particular significance for the Nature-
Inspired Data Technology focus group. It is thus accessible (http://fuzzy.iau.dtu.dk/download 
/smear2005) on the World Wide Web. 
 
2.2 Noise Filtering 
 

Noise filtering stages evaluate three types of classical denoise filters, which are the median filter, 
anisotropic diffusion filter [39], bilateral filter [40], and one state-of-art filter, the Non-Local Haar 
(NLH) filter proposed by [41].  
 
2.2.1 Median filtering 
 

Median filters are useful in reducing random noise, especially when the noise amplitude 
probability density has large tails and periodic patterns [42]. The median filtering process involves 
sliding a window over the image and replacing each pixel with the median value of the pixels within 
the window. This method is particularly effective for removing salt-and-pepper noise while 
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preserving edges, as it uses the median as the maximum likelihood estimator of location in the 
presence of Laplacian noise distribution. In relatively uniform areas, the median filter successfully 
estimates the grey-level value, with a notable advantage in handling long-tailed noise. When crossing 
edges, the filter allows one side of the edge to dominate, ensuring that the edge remains sharp and 
unblurred. While the median filter is excellent for eliminating impulse noise, it may be less effective 
against Gaussian noise. Additionally, using a large window size can blur fine details in the image. In 
this study, a window size of 20x20 pixels was selected to balance noise reduction and the 
preservation of important image features. The "Replicate" method was employed for border 
handling, which replicates the nearest border pixel value when the filtering window overlaps the 
edge of the image. This approach minimises artefacts and preserves the integrity of the edge regions. 
The implementation steps are shown in Algorithm 1 with the parameter set in Table 1. 
 

Algorithm 1: Median filtering algorithm 

Input :image, windowSize 
Output :filteredImage 
1: Initialize filteredImage with the same dimensions as image 
2: Define halfWindowSize as floor(windowSize/2) 
3: for each pixel (i, j) in image: 
4:  window  [] 
5:  for k from -halfWindowSize to halfWindowSize do 
6:   for l from -halfWindowSize to halfWindowSize do 
7:    if (i + k) is within the height bounds of image AND (j + l) is within  

   the width bounds of image then 
8:     append image[i + k][j + l] to window 
9:   sort window 
10:   filteredImage[i][j]  median(window) 
11: return filteredImage 

 
Table 1 
Median filter parameters 
Parameter Value 

Window Size 20x20 
Border Handling Replicate 

 
2.2.2 Anisotropic diffusion filtering 
 

Anisotropic diffusion, or Perona–Malik diffusion, is a fundamental technique in image processing 
that adapts its behaviour based on local content, unlike isotropic diffusion, which uniformly smooths 
an image. By employing a threshold function, it selectively diffuses across homogeneous regions 
while preserving critical features such as edges and lines. This makes it particularly useful for 
denoising images without sacrificing essential details. The ability to adapt to the image’s structure 
enhances visual quality and preserves crucial information. However, anisotropic diffusion is 
computationally more complex than simpler filters like the median filter and requires careful tuning 
of parameters such as the gradient threshold and number of iterations for optimal performance. The 
implementation steps are shown in Algorithm 2 with the parameter set in Table 2. 

 
 
 
 



Journal of Advanced Research Design 

Volume 126 Issue 1 (2025) 99-120  

103 

Algorithm 2: Anisotropic diffusion filtering 

Input : image, numIterations, kappa, gamma 
Output : filteredImage 
1: Initialize filteredImage with the input image 
2: for t from 1 to numIterations do 
3:  Compute gradients in four cardinal directions 
4:  Compute diffusion coefficients 
5:  Update the image using the diffusion equation 
7: return filteredImage 

 
The mathematical representation of anisotropic diffusion filtering is based on the partial 

differential equation (PDE) for image intensity evolution over time. The anisotropic diffusion process 
is described by the PDE expression in Eq. (1): 

 
𝜕𝐼

𝜕𝑡
=  𝛻 ∙ (𝑐(𝑥, 𝑦, 𝑡)𝛻𝐼)                        (1) 

 
Where:  

 𝐼(𝑥, 𝑦, 𝑡) : The image intensity at position (𝑥, 𝑦) and time 𝑡. 
 𝛻𝐼 : The gradient of the image (rate of intensity change). 
 𝛻 ∙ : The divergence operator, which measures the net flux of the vector field 𝑐(𝑥, 𝑦, 𝑡)𝛻𝐼. 
 𝑐(𝑥, 𝑦, 𝑡) : The diffusion coefficient, which controls the rate of diffusion and is a function of 

the gradient magnitude. 
 

The diffusion coefficient 𝑐(𝑥, 𝑦, 𝑡) is designed to vary based on the gradient magnitude to 
preserve edges. The most common form is represented as shown in Eq. (2), where ‖𝛻𝐼‖ is the 
gradient magnitude and 𝑘 is the edge threshold parameter. 
 

𝑐(‖𝛻𝐼‖) = 𝑒𝑥𝑝 (− (
‖𝛻𝐼‖

𝑘
)

2

)            (2) 

 
Table 2 
Anisotropic diffusion filter parameters 

Parameter Value 

numIterations 20 
kappa 20 
gamma 0.2 
Diffusion Coefficient Function Exponential 

 
2.2.3 Bilateral filtering 
 

Bilateral filtering, a non-linear edge-preserving technique, is fundamental in image denoising. 
Unlike linear filters that uniformly smooth pixel values, bilateral filtering considers both spatial 
distance and pixel intensity similarity. By incorporating a weighted average of these factors, it 
selectively smooths homogeneous regions while preserving critical edges. Key parameters, including 
diameter, colour space, and coordinate space, are crucial for balancing noise reduction and edge 
preservation. One challenge is selecting appropriate parameters, such as spatial and intensity sigma 
values, as incorrect choices can lead to suboptimal denoising or loss of details. Additionally, the 
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bilateral filter's computational cost is higher than simple linear filters, which is a consideration for 
large images. The filtered pixel value at location (𝑥, 𝑦) is calculated as follows in Eq. (3): 

 

𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑥, 𝑦), =  
1

𝑊𝑝
∑ 𝐼(𝑢, 𝑣)𝑢,𝑣 ∙ 𝐺𝜎𝑠

(‖(𝑥, 𝑦) − (𝑢, 𝑣)‖) ∙ 𝐺𝜎𝑟
(|𝐼(𝑥, 𝑦) − 𝐼(𝑢, 𝑣)|)     (3) 

 
Where: 

 𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑥, 𝑦) is the filtered pixel value at location (𝑥, 𝑦). 

 𝐼(𝑢, 𝑣) is the intensity value of the pixel at location (𝑢, 𝑣). 
 𝐺𝜎𝑠

(‖(𝑥, 𝑦) − (𝑢, 𝑣)‖) is the spatial Gaussian function that measures the spatial distance 

between the pixels (𝑥, 𝑦) and (𝑢, 𝑣). 
 𝐺𝜎𝑟

(|𝐼(𝑥, 𝑦) − 𝐼(𝑢, 𝑣)|)  is the range Gaussian function that measures the intensity 

difference between the pixels (𝑥, 𝑦) and (𝑢, 𝑣). 
 𝑊𝑝 is a normalization factor to ensure the weights sum to 1. 

 
The spatial Gaussian function is given by Eq. (4) below where 𝑟 is the spatial distance 

‖(𝑥, 𝑦) − (𝑢, 𝑣)‖, and 𝜎𝑠 controls the extent of the spatial influence (larger values lead to a wider 
range of spatial smoothing). 
 

𝐺𝜎𝑠
(𝑟) = 𝑒𝑥𝑝 (−

𝑟2

2𝜎𝑠
2

) (4) 

 
whereas the range Gaussian function can be expressed as Eq. (5) shown below where d is the 
intensity difference |𝐼(𝑥, 𝑦) − 𝐼(𝑢, 𝑣)|, and 𝜎𝑟 controls the extent of the intensity-based smoothing 
(larger values allow more intensity difference to contribute to smoothing). The parameters are set 
and is shown in Table 3. 
 

𝐺𝜎𝑟
(𝑑) = 𝑒𝑥𝑝 (−

𝑑2

2𝜎𝑟
2)            (5) 

 
Table 3 
Bilateral filter parameters 

 

 
2.2.4 Non-local Haar filtering 
 

The NLM method of denoising aims to restore image quality by selectively averaging pixel values. 
Unlike traditional "local mean" filters that consider a group of neighbouring pixels, non-local mean 
filters take into account all pixels in the image. The main framework of this method consists of three 
steps: searching for non-local similar pixels, as shown in Figure 1, noise level estimation, and a two-
stage denoising framework, as shown in Figure 2 and described in Algorithm 3. 

Parameter Value 

Spatial Sigma, 𝜎𝑠 10 

Color Sigma, 𝜎𝑟 30 

Kernel Size 9x9 
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                        (a)        (b) 

Fig.  1. Non-local similar patches [41] 

 
Based on Figure 1, from each image patch (e.g., the patch in the red box), its non-local similar 

patches (e.g., the patches in blue boxes) are searched. Then, similar patches are transformed into 
columns of vectors, as shown in (b). For each row of pixels, their non-local similar pixels (e.g., the 
rows of pixels in black boxes) are searched within the previously searched similar patches in (a). Next, 
the second step is to estimate the noise level introduced to the pixel-level NSS prior to achieving an 
accurate and fast estimation of noise levels. Standard deviation, σ, is computed using the formula 
shown in Eq. (6):   

 

𝜎𝑙  =  
1

𝑛(𝑞−1)
∑ ∑ √

1

𝑚
(𝑑𝑙

𝑖𝑖𝑡)2𝑛
𝑖=1

𝑞
𝑡=2 .            (6) 

 
To make the noise estimation method more robust towards texture and structures, the author 

extended the noise level estimation from a local region to a global one. To do so, local noise levels 
estimated for all the noisy pixel matrices in the image, and simply set the global noise level as shown 
in Eq. (7): 
 

𝜎𝑔 =
1

𝑁
∑ 𝜎𝑙

𝑁
𝑙=1               (7) 
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Fig. 2. Two-stage denoising framework 

 
Algorithm 3: Two stages framework of non-local Haar filtering 

Stage 1: Initial Denoising 
1: Extract non-local similar 
2: For each patch: 
3:  Identify similar pixels within the patch 
4:  Average similar pixels to reduce noise while preserving structure 
5: Estimate noise level for each group of similar pixels 
7: Apply Haar Transform to the matrix of similar pixels 
8: Perform bi-hard thresholding to filter out noise 
9: Apply inverse Haar Transform to obtain preliminary denoised image 
Stage 2: Refined Denoising 
10: Apply Haar Transform to the similar pixel matrices of both the original noisy image and the 

preliminary denoised image 
11: Process the transformed coefficient matrices using Wiener filtering 
12: Apply inverse Haar Transform to reconstruct the estimated similar pixel matrices 
13: Combine the matrices to form the final denoised image 

 
The NLH filter enhances the detection of weak particles by using a particle probability image, 

which is particularly useful in cell imaging where small particles are of interest. It achieves a higher 
PSNR in denoised images, indicating better noise reduction and feature preservation compared to 
other methods. Pap smear images contain fine cellular structures that require careful denoising. The 
two-stage framework of the NLM filter allows for accurate noise estimation and targeted denoising, 
which is especially beneficial in medical imaging where preserving fine details is crucial for accurate 
analysis and diagnosis. However, the computational demands of the NLH filter are significant, making 
it less suitable for real-time applications. Additionally, the performance of the filter can be sensitive 
to parameter choice, requiring careful tuning for optimal results. 
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2.3 Contrast Enhancement 
2.3.1 Contrast limited adaptive histogram equalisation (CLAHE) 
 

CLAHE is a sophisticated image processing technique that enhances contrast within an image. 
Unlike general histogram equalisation, which operates on the entire image, CLAHE works on small 
regions known as tiles. The adaptive nature of this method allows for contrast enhancement to be 
calculated individually for each tile, redistributing pixel values according to the local histogram. To 
avoid boundary artifacts, neighbouring tiles are seamlessly merged. Additionally, the technique limits 
contrast enhancement in homogeneous areas to prevent the amplification of noise present in the 
image. For the problem at hand, adaptive histogram equalisation is employed, demonstrating its 
utility in improving image quality while mitigating noise. This method remains relevant and is 
frequently employed by contemporary researchers [43-45], reflecting its enduring value in the field 
of image processing. 

In this process, the image is divided into small blocks called tiles (e.g., tile size 8x8). The histogram 
of each tile is equalised independently. If noise is present, it may be amplified. To avoid this, contrast 
limiting is applied. If any histogram bins exceed the specified contrast limit, those pixels are clipped 
and distributed uniformly to other bins before applying histogram equalisation. After equalisation, 
bilinear interpolation is applied to remove artifacts at the tile borders. 
 

2.3.2 Pairing adaptive gamma with clipping histogram equalisation (PAGCHE) 
 

A novel method proposed by Bataineh [16] for colour image correction, based on the advantages 
of non-linear functions in grey transformation and histogram equalisation techniques, is adapted in 
this work. The process of the method is shown in Figure 3. Firstly, the original red, green, and blue 
(RGB) image is converted into the HSV colour space, and the V channel is used for enhancement. An 
adaptive gamma generator is proposed to adaptively calculate gamma parameters according to dark, 
medium, or bright image conditions. The computed gamma parameters are used to propose a 
cumulative distribution function that produces an optimised curve for illumination values. Next, a 
second modified equalisation is performed to evenly correct the offset of the illumination curve 
values based on the equal probability of the available values only. Finally, the processed V channel 
replaces the original V channel, and the new HSV model is converted back to the RGB colour space. 
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Fig.  3. Pairing adaptive gamma with 
clipping histogram equalisation  

 
2.3.3 Histogram equalisation 
 

Histogram equalisation is a fundamental technique in the realm of image processing. When an 
image predominantly occupies a narrow range of intensity values, it tends to appear flat and lacks 
visual dynamism. Histogram equalisation steps in to rectify this limitation. Hence, the primary 
objective is to enhance the contrast within an image by redistributing the intensity values across the 
entire spectrum. Figure 4 shows the flow process of the histogram equalisation used in this study. 

This method is applied by distributing the greyscale value (GV) levels. In general, this is done by 
increasing the lower limit of the range of colours to the darkest point and decreasing the upper limit 
of the range of colours to the brightest point. The following formula was used to calculate the GV 
using the histogram equalisation equation shown in Eq. (8) below, 
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𝑆 =  ∑
𝑛𝑗

𝑛

𝑘
𝑗=0 ,              (8) 

 
where n is the number of data, k is the range of GV, and S is the number of data on the GV. 
 

By judiciously adjusting the intensity distribution, this method achieves a twofold purpose: first, 
it boosts the global contrast of numerous images, and second, it ensures that the full range of 
intensities is effectively utilised. Consequently, regions with initially lower local contrast experience 
an elevation in their contrast levels. Notably, this technique proves particularly valuable in scenarios 
where both the background and foreground exhibit either bright or dark characteristics. 

 

Start

Get RGB Value

Get the 
occurrence 

frequency of 
grey value(j)

Calculate the 
cumulative 

frequency values

Calculate 
equalized 

cumulative values

Mapping the 
equalized values 
back to the RGB 

values

Equalized Image 
object

End

 

Fig.  4. Histogram equalisation 

 
2.3.4 Contrast stretching 
 

Contrast stretching, also known as normalisation, is a simple image enhancement technique. The 
quality of an image is enhanced by stretching the range of intensity values. To perform the stretching, 
upper and lower-pixel value limits must be specified over which the image is to be normalised. Then, 
each pixel PP is scaled using the following Eq. (9): 

 

𝑃𝑜𝑢𝑡 =  (𝑃𝑖𝑛 − 𝑐)(
𝑏−𝑎

𝑑−𝑐
) + 𝑎,             (9) 

  
where a is the lower limit and b is the upper limit. Meanwhile, c and d are the existing lowest and 
highest pixel values, respectively. P is the pixel value. 
     
3. Results  
3.1 Qualitative Analysis 
 

This research consists of two main image processing stages: a denoising stage that evaluates 
three types of classical denoising filters—the median filter, anisotropic diffusion filter [39], and 
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bilateral filter [40] —along with one state-of-the-art filter, the NLH filter proposed by [41]. The second 
stage is the contrast enhancement stage. A state-of-the-art low light contrast enhancement method 
offered by Bataineh [16] was used to compare with three other classical contrast enhancement 
methods: CLAHE [46], contrast stretching, and histogram equalisation [47]. To preserve the colour, 
all the filters and techniques are applied to the image's brightness (V channel of the HSV channels), 
while maintaining the hue (H) and saturation (S) channels. 

This section employs two types of analysis, visual and quantitative, to assess the approaches. In 
visual testing, the subjective perception of human eyesight is used to quantify image quality. Humans 
have a decent understanding of image quality because these investigations are limited to visually 
evaluating image quality. The methods are applied to images from the previously described datasets. 
Figures 6–21 feature the selections and presentations of the four most intriguing situations. Figure 
6(a) depicts the result of applying an anisotropic diffusion filter to the filtered image of Image 1 from 
Figure 5. Figures 6(b-e) show the results of the denoised image from Figure 6(a) after using four 
different contrast enhancement methods. The filtering process is repeated in Figures 7-9(a) for Image 
1 with other denoising filters within the same contrast enhancement methods in Figures 7-9(b-e). 
Lastly, the process is repeated for different image datasets according to Figure 5 in Figures 10-21. 
 

    

(a) Severe Dysplasia (b) Normal Intermediate (c) Moderate Dysplasia (d) Carcinoma in Situ 

Fig. 5. Selected original images from four cervical cell classes 

 
The results reveal that, depending on the approach employed, all of the selected images are 

visually enhanced differently. The effect of the denoise filter can be seen clearly in column (a) of 
Figures 6-21. In terms of smoothing the noise in the intracellular fluid and the nucleus, applying 
bilateral and median filters to Image 1 yielded good results in Figures 7(a) and 8(a). However, 
compared to the median filter, the bilateral filter fails to preserve the nucleus's edge, as evidenced 
by the blurring effect around the nucleus's edges in Figure 7(a). Additionally, compared to the other 
filters, the median filter produces the best results for removing the thin dark line. The median filter 
is also more effective than the bilateral filter in reducing the shadow effect on the cytoplasm and 
noise presence in Image 2, as seen in Figures 11(a) and 12(a). The NLH filter offered the best results 
in terms of detail preservation for Images 1 and 2. The anisotropic diffusion filter appears to have an 
insignificant effect compared to the others. In general, using a denoise filter improves all images over 
the originals, which is to be expected. 

Visually comparing the results of the contrast enhancement methods applied to the images 
provides insight into the ability of the methods to differentiate the object of interest from the 
background. Based on Figures 6-9(b-e), applying CLAHE in column (b) to the denoised images does 
not significantly increase contrast. Conversely, PAGCHE, histogram equalisation, and contrast 
stretching methods produce enhanced images with relatively high contrast. However, in Images 1 
and 2 in Figures 6-13(d), it can be observed that histogram equalisation fails to differentiate between 
the nucleus and cytoplasm. PAGCHE and contrast stretching, applied to all images in columns (c) and 
(e), can visually distinguish between the nucleus and background. However, the combination of the 
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NLH filter and contrast stretching produces low-light images in column (e) of Figures 9, 13, and 17. 
Applying all of the contrast enhancement methods to Image 4 in Figures 18-21 produced good overall 
results. It is important to note that the right combination of denoise filter and contrast enhancement 
can produce good results, even if one method alone does not. For example, when applying histogram 
equalisation to Image 2 in Figures 10-13 column (d), it can be observed that Figure 12 produces a 
good contrast distribution compared to the others. This indicates that applying histogram 
equalisation to the median-filtered image produces better results compared to other denoise filters. 
 

 

 

 

 

 

 

 

 

 
(a) Anisotropic 
Diffusion Filter 

 (b) CLAHE  (c) PAGCHE  (d) Histogram 
Equalisation 

 (e) Contrast 
Stretching 

Fig. 6. Experimental results of Image 1 after applying Anisotropic Diffusion Filter followed by contrast 
enhancement methods (b-e)  

 

 

 

 

 

 

 

 

 

 
(a) Bilateral Filter  (b) CLAHE  (c) PAGCHE  (d) Histogram 

Equalisation 
 (e) Contrast 

Stretching 

Fig. 7. Experimental results of Image 1 after applying Bilateral Filter followed by contrast enhancement 
methods (b-e) 

 

 

 

 

 

 

 

 

 

 
(a) Median Filter  (b) CLAHE  (c) PAGCHE  (d) Histogram 

Equalisation 

 (e) Contrast 
Stretching 

Fig. 8. Experimental results of Image 1 after applying Median Filter followed by contrast enhancement 
methods (b-e) 

 

 

 

 

 

 

 

 

 

 
(a) NLH Filter  (b) CLAHE  (c) PAGCHE  (d) Histogram 

Equalisation 
 (e) Contrast 

Stretching 

Fig. 9. Experimental results of Image 1 after applying NLH Filter followed by contrast enhancement methods 
(b-e) 
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(a) Anisotropic 
Diffusion Filter 

 (b) CLAHE  (c) PAGCHE  (d) Histogram 
Equalisation 

 (e) Contrast 
Stretching 

Fig. 10. Experimental results of Image 2 after applying Anisotropic Diffusion Filter followed by contrast 
enhancement methods (b-e) 

 

 

 

 

 

 

 

 

 

 
(a) Bilateral Filter  (b) CLAHE  (c) PAGCHE  (d) Histogram 

Equalisation 
 (e) Contrast 

Stretching 

Fig. 11. Experimental results of Image 2 after applying Bilateral Filter followed by contrast enhancement 
methods (b-e) 

 

 

 

 

 

 

 

 

 

 
(a) Median Filter  (b) CLAHE  (c) PAGCHE  (d) Histogram 

Equalisation 
 (e) Contrast 

Stretching 

Fig. 12. Experimental results of Image 2 after applying Median Filter followed by contrast enhancement 
methods (b-e) 

 

 

 

 

 

 

 

 

 

 
(a) NLH Filter  (b) CLAHE  (c) PAGCHE  (d) Histogram 

Equalisation 
 (e) Contrast 

Stretching 

Fig. 13. Experimental results of Image 2 after applying NLH Filter followed by contrast enhancement 
methods (b-e) 
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(a) Anisotropic 
Diffusion Filter 

 (b) CLAHE  (c) PAGCHE  (d) Histogram 
Equalisation 

 (e) Contrast 
Stretching 

Fig. 14. Experimental results of Image 3 after applying Anisotropic Diffusion Filter followed by contrast 
enhancement methods (b-e) 

 

 

 

 

 

 

 

 

 

 
(a) Bilateral Filter  (b) CLAHE  (c) PAGCHE  (d) Histogram 

Equalisation 
 (e) Contrast 

Stretching 

Fig. 15. Experimental results of Image 3 after applying Bilateral Filter followed by contrast enhancement 
methods (b-e) 

 

 

 

 

 

 

 

 

 

 
(a) Median Filter  (b) CLAHE  (c) PAGCHE  (d) Histogram 

Equalisation 
 (e) Contrast 

Stretching 

Fig. 16. Experimental results of Image 3 after applying Median Filter followed by contrast enhancement 
methods (b-e) 

 

 

 

 

 

 

 

 

 

 
(a) NLH Filter  (b) CLAHE  (c) PAGCHE  (d) Histogram 

Equalisation 
 (e) Contrast 

Stretching 

Fig. 17. Experimental results of Image 3 after applying NLH Filter followed by contrast enhancement 
methods (b-e) 
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(a) Anisotropic 
Diffusion Filter 

 (b) CLAHE  (c) PAGCHE  (d) Histogram 
Equalisation 

 (e) Contrast 
Stretching 

Fig. 18. Experimental results of Image 4 after applying Anisotropic Diffusion Filter followed by contrast 
enhancement methods (b-e) 

 

 

 

 

 

 

 

 

 

 
(a) Bilateral Filter  (b) CLAHE  (c) PAGCHE  (d) Histogram 

Equalisation 
 (e) Contrast 

Stretching 

Fig. 19. Experimental results of Image 4 after applying Bilateral Filter followed by contrast enhancement 
methods (b-e) 

 

 

 

 

 

 

 

 

 

 
(a) Median Filter  (b) CLAHE  (c) PAGCHE  (d) Histogram 

Equalisation 
 (e) Contrast 

Stretching 

Fig. 20. Experimental results of Image 4 after applying Median Filter followed by contrast enhancement 
methods (b-e) 

 

 

 

 

 

 

 

 

 

 
(a) NLH Filter  (b) CLAHE  (c) PAGCHE  (d) Histogram 

Equalisation 

 (e) Contrast 
Stretching 

Fig. 21. Experimental results of Image 4 after applying NLH Filter followed by contrast enhancement 
methods (b-e) 

 
3.2 Quantitative Analysis 
 

Quantitative analysis is a mathematical process of gaining insight into the performance of an 
algorithm that does not require any human interaction. The nucleus and cytoplasm are in the 
foreground of smear photos, which have a lot of debris in the background. To overcome the limitation 
of visual experiments, statistical analysis tools, which rely on objective criteria and benchmark 
measurements, are used. Mean value (MV), standard deviation (STD) for contrast, structural 
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similarity index metric (SSIM), peak signal-to-noise ratio (PSNR), absolute mean brightness error 
(AMBE), and entropy are the measurement methods used in this work. The mathematical 
representation is shown in Eq. (10) to (15) below. 

The mean value represents the average intensity of the image. It provides information about the 
overall brightness of the image. Larger mean values indicate brighter images, while smaller mean 
values indicate darker images. 

 

𝑀𝑒𝑎𝑛 =  
1

𝑋×𝑌
∑ 𝐼(𝑥, 𝑦),

𝑥,𝑦=𝑋−1,𝑌−1
𝑥,𝑦=0                        (10) 

 
where I(x, y) denotes the value at x and y points, and X and Y denote the size of image I.  
 

STD measures the variation in intensity values, which correlates with visual contrast. Higher STD 
values indicate higher visual contrast and potentially more information. 

 

𝑆𝑇𝐷 =  √
∑ 𝐼(𝑥,𝑦)−(𝐼(𝑥,𝑦)−𝑀𝑒𝑎𝑛)

𝑥,𝑦=𝑋−1,𝑌−1
𝑥,𝑦=0

𝑋×𝑌
                     (11) 

 
where I(x, y) denotes the value at x and y points, and X and Y denote the size of image I and is 𝑀𝑒𝑎𝑛 
the average intensity value of the image.  

 
AMBE measures the difference in brightness between the original and processed images. Lower 

AMBE values indicate that the processed image's brightness is closer to the original. 
 

𝐴𝑀𝐵𝐸 =  |𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑀𝑒𝑎𝑛 −  𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝑀𝑒𝑎𝑛|                    (12) 
 
where 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑀𝑒𝑎𝑛 is the mean intensity value of the original image and 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝑀𝑒𝑎𝑛 is the 
mean intensity value of the processed image.  

 
SSIM is widely used to evaluate image quality since it imitates the human vision perspective of 

image structure. SSIM compares the luminance, contrast, and structure of original and processed 
images to determine the correlations between pixels. A value closer to one indicates that the two 
images are more similar and can be seen in Eq. (13): 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
,                     (13) 

 
where 𝜇𝑥,   𝜇𝑦 are the means of x and y, respectively. 𝜎𝑥

2, 𝜎𝑦
2  are the variances of x and y, respectively, 

and 𝜎𝑥𝑦 is the covariance of x and y. 

 
The PSNR evaluates the ratio between the maximum possible power of a signal and the power of 

corrupting noise. Higher PSNR values indicate better image quality. The Eq. (14) is referred to. 
 

𝑃𝑆𝑁𝑅 = 10 log10 (
2552

𝑀𝑆𝐸
)                      (14) 

 
Where log10 is the base-10 logarithm, 255 is the maximum possible pixel value of the image (for 8-
bit images) and MSE is the Mean Squared Error between the original image and the processed image. 
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Entropy is a measure of the amount of information in images used to evaluate image quality. A 
higher value indicates that there are more details in an image. Entropy formula is as in Eq. (15): 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  ∑ 𝑝(𝑉) log2 𝑝(𝑉),𝑉=255
𝑉=0                      (15) 

 
where 𝑝(𝑉) is the probability of the grey value 𝑉 in the image. 

 
Each measurement technique's individual results are not significant on their own. High brightness 

levels, for example, are indicated by high mean and AMBE values. On the other hand, if the STD, 
SSIM, or PSNR values are low, this could result in missing data in the processed image. A significant 
difference in entropy between the processed and original images suggests a significant impact, 
potentially resulting in unwanted details and excessive noise in the processed images. As a result, it 
is not advisable to analyse the output image quality using only the results of earlier measurements. 
To assess performance, all measurement values must be examined together and their interactions 
considered.  

Quantitative analysis was conducted after applying denoise and contrast enhancement methods 
to the original images. Table 4 shows the results of the evaluation based on the denoise filter. The 
study found that the median and bilateral filters, on average, decreased the mean value of the 
original image from 129.13 to 126.11 and 124.25, respectively. Meanwhile, on average, the 
anisotropic diffusion filter and NLH increased the mean value of the output images. STDs of the 
output images, in general, improved, with the median filter having the highest value at 63.85, 
followed by the bilateral filter at 62.37. Anisotropic diffusion and NLH filters produced STD scores of 
58.17 and 48.54, respectively. In terms of AMBE, all the filters increased the score, with the 
anisotropic diffusion filter having the highest score at 22.48, followed by the median filter at 19.44. 
NLH and bilateral filters produced AMBE scores of 18.36 and 16.44, respectively. The SSIM score 
shows that NLH has the highest value of 0.82, followed by both anisotropic diffusion and bilateral 
filters with 0.75, and the median filter with 0.71. However, the anisotropic diffusion filter gives the 
best PSNR score with 18.46, followed by the NLH filter with 17.83. Meanwhile, the median and 
bilateral filters provide the lowest PSNR scores, with 15.38 and 16.32, respectively. Lastly, the 
entropy score increased for all filters, with the anisotropic diffusion filter producing a score of 7.52, 
and the bilateral filter producing a score of 7.44. In comparison, the median and NLH filters produced 
scores of 7.30 and 7.05, respectively. 

 
Table 4 
Average result based on denoising filters 
Method Mean STD AMBE SSIM PSNR Entropy 

Median 126.11 63.85 19.44 0.71 15.38 7.30 

Anisotropic diffusion 133.57 58.17 22.48 0.75 18.46 7.52 

Bilateral 124.25 62.37 16.44 0.75 16.32 7.44 

NLH 136.19 48.54 18.36 0.82 17.83 7.05 

Original 129.13 31.23 0 1 100 6.47 

 
Table 5 shows the results of the evaluation based on the contrast enhancement. The research 

found that histogram equalisation and contrast stretching reduce the mean value of the original 
image from 129.13 to 115.52 and 112.42, respectively. PAGCHE and CLAHE, on the other hand, 
increase the mean value of the output images to 148.07 and 144.12, respectively. Histogram 
equalisation produced the highest STD score of 72.17, followed by PAGCHE with 60.4, and contrast 
stretching and CLAHE produced STD scores of 59.71 and 40.65, respectively. In terms of AMBE, all of 
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the filters improved the scores, with PAGCHE scoring the highest at 21.96 and contrast stretching 
scoring the lowest at 19.75. Histogram equalisation and CLAHE produced AMBE scores of 17.6 and 
17.41, respectively. CLAHE has the highest SSIM score of 0.86, followed by PAGCHE and contrast 
stretching with scores of 0.78 and 0.76, respectively. Histogram equalisation, on the other hand, has 
the lowest SSIM score of 0.63. CLAHE gives the best PSNR score of 20.15, followed by contrast 
stretching with 18.93. PAGCHE and histogram equalisation, on the other hand, produce the lowest 
PSNR scores of 14.78 and 14.13, respectively. Finally, the entropy score for all filters increased, with 
histogram equalisation producing a score of 7.50 and PAGCHE producing a score of 7.42. In 
comparison, contrast stretching and CLAHE produced scores of 7.18 and 7.21, respectively. 

 
Table 5 
Average result of based on contrast enhancement methods 
Method Mean STD AMBE SSIM PSNR Entropy 

PAGCHE 148.07 60.4 21.96 0.78 14.78 7.42 

Histogram 
Equalisation 

115.52 72.17 17.6 0.63 14.13 7.50 

Contrast Stretching 112.44 59.712 19.75 0.76 18.93 7.18 

CLAHE 144.12 40.65 17.41 0.86 20.15 7.21 

Original 129.13 31.23 0 1 100 6.47 

 
Based on the quantitative and visual analysis results, several key points can be highlighted. The 

best method of choice depends on the purpose of pre-processing. This study aims to select the best 
pre-processing method to apply in nucleus segmentation. Hence, the priority of pre-processing is to 
differentiate the nucleus from the background, which includes the cytoplasm, interstitial fluid, and 
debris. Next, the image should be smoothed and noise removed while preserving the edges of the 
nucleus.  

Visually and statistically, the median and bilateral filters give good results compared to the NLH 
and anisotropic diffusion filters. Meanwhile, the NLH and anisotropic diffusion filters have 
successfully preserved the debris and detail. To prove this, the two stated filters produced the highest 
PSNR scores, 18.46 and 17.83, respectively, as shown in Table 2. In addition, the SSIM scores for the 
same filters were also the highest, with 0.82 and 0.75, respectively. However, in terms of nucleus 
detection, the details, such as debris and texture, will result in poor segmentation performance due 
to the presence of noise. Comparing the bilateral and median filters, the bilateral filter produces a 
better result in terms of edge preservation, with a PSNR score of 16.32 and an SSIM score of 0.75. 
The median filter can be seen to remove noise better than the anisotropic diffusion filter. Hence, the 
median filter is the best filter to apply for nucleus detection. 

In terms of contrast enhancement, it can be visually observed that PAGCHE provides the best 
visual and statistical results. The best result means that the method is able to provide high contrast 
standard deviation and accurately differentiate between the nucleus, intracellular fluids, and 
interstitial fluid. It is crucial to note that Image 2 has three visible main regions, which are the nucleus, 
cytoplasm, and interstitial fluid, compared to other images, which have only two visible main regions, 
the nucleus and the background. Based on the results of Image 1 and Image 2 from Figures 2-9(d-e), 
histogram equalisation and contrast stretching do not accurately differentiate the nucleus and 
cytoplasm. This is possibly the main reason the mean score of histogram equalisation and contrast 
stretching has been dragged lower than the original, as shown in Table 2. However, Images 3 and 4 
from Figures 10-17 (d-e) produce good contrast output except for Figure 13(e) using the contrast 
stretching method. This is why the two stated methods have good STD and AMBE scores. Meanwhile, 
the anisotropic diffusion filter produces poor performance compared to the others as it is unable to 
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improve the contrast of the low-contrast images, such as Images 3 and 4. In brief, PAGCHE produces 
the highest mean and AMBE scores, indicating good contrast enhancement while maintaining a 
relatively high value of STD. Visually, it is able to successfully differentiate between the interstitial 
fluid, the cytoplasm, and the nucleus for the four filters applied. 

 
4. Conclusions 
 

In this research, several methods for noise removal and contrast enhancement methods were 
analysed. There are two main stages: noise removal and contrast enhancement. Each stage will 
compare one state-of-arts method with the other three classical methods. This study used NLH for 
noise removal and PAGCHE for contrast enhancement. The original RGB images are transformed into 
the HSV colour space to maintain the colour, and the V channel is used for enhancement. The best 
combination methods must increase the contrast while significantly differentiating between the 
nucleus, cytoplasm, and interstitial fluid. The filter must be able to smoothen the noise texture and 
remove the debris while preserving the interested object's edges and colour details. Results show 
that the median filter produces the best result regarding smoothening and debris removal in visual 
analysis. The PAGCHE method produces the best brightness and contrast improvement results based 
on visual and quantitative analysis. Combining the Median Filter and PAGCHE methods may meet the 
stated characteristics by significantly removing noise and improving the colour image's low contrast 
and poor illumination while retaining the colour and required edges. Compared to other methods, it 
is the most flexible, regardless of the type of image used. 
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