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ARTICLE INFO ABSTRACT 

Article history: 
 

Ethanol is widely used in medical, industrial and environmental sectors, prompting a 
growing demand for accurate and real-time detection technologies. However, 
conventional tin (Sn)-based ethanol sensors face major limitations, including low 
selectivity, poor stability and delayed response times, especially at higher ethanol 
concentrations. To address these challenges, this study aims to enhance the sensing 
performance of Sn electrodes by modifying them with indium (In) through an 
electrodeposition method at three concentrations: 0.01 M, 0.03 M and 0.05 M. The 
fabricated Sn/In electrodes were characterized and evaluated using 
chronoamperometry under different ethanol concentrations (25%, 50% and 95% v/v). 
Results revealed that the 0.05 M In-modified electrode achieved the highest current 
response (~0.75 mA) and response ratio (~600 Rt/Ro) at 95% ethanol. In comparison, 
the 0.03 M In electrode exhibited superior sensitivity at lower concentrations. All 
electrodes demonstrated rapid response times within two minutes of exposure. These 
findings suggest that indium-modified Sn electrodes are highly promising for liquid-
phase ethanol sensing applications, offering enhanced sensitivity and tunability based 
on dopant concentration. 
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1. Introduction 
 

Ethanol is a widely utilized volatile organic compound (VOC), with diverse applications in medical 
diagnostics, industrial manufacturing and environmental monitoring. However, prolonged or 
excessive exposure to ethanol, particularly in confined or poorly ventilated environments, can result 
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in significant health risks and environmental hazards, as discussed by John et al., [1]. Therefore, 
precise and real-time ethanol detection is essential in technologies such as breath analysers, fuel 
composition monitors, food quality sensors and industrial safety systems, as emphasized by Li et al., 
[2]. This growing demand has driven substantial research into improving sensor selectivity, sensitivity 
and long-term stability. 

Among the various sensing technologies, metal oxide semiconductor (MOS)-based ethanol 
sensors, especially those incorporating tin oxide (SnO₂), have gained attention due to their low cost, 
chemical durability and high sensitivity, as noted by Pandit et al., [3]. These sensors operate by 
monitoring changes in electrical resistance when ethanol interacts with the metal oxide surface. 
Despite these benefits, traditional SnO₂-based sensors frequently exhibit limitations such as low 
selectivity, slow response and recovery times and signal saturation at elevated ethanol 
concentrations, as identified by Shi et al., [4]. To address these challenges, researchers have focused 
on material modification strategies aimed at enhancing sensor performance. 

One such strategy involves doping tin-based materials with elements like indium (In). As shown 
by Afrouzmehr et al., [5], indium doping can improve surface catalytic activity, increase the density 
of oxygen vacancies and accelerate charge transfer processes, thereby enhancing ethanol adsorption 
and oxidation. Previous studies, including the work of Boroujerdi et al., [6], have demonstrated that 
indium-modified Sn-based electrodes can provide superior selectivity and faster response times 
compared to undoped counterparts. 

However, the efficacy of indium doping is strongly dependent on both the concentration and 
distribution of the dopant. Guo et al., [7] have reported that low indium content (0.25–0.5%) 
improves carrier mobility and reduces response time, while moderate levels enhance catalytic 
performance. In contrast, Cai et al., [8] found that excessive indium loading (>2%) may induce 
structural defects and nanoparticle agglomeration, which degrade overall sensor performance. These 
findings highlight the importance of precise control over indium content during electrode fabrication. 

Electrodeposition (ED) has emerged as a practical and scalable technique for fabricating indium-
doped tin electrodes. As described by Arulkumar et al., [9], ED provides superior control over film 
thickness, dopant concentration and surface morphology compared to alternative methods such as 
chemical vapor deposition (CVD) or sol-gel techniques. Additionally, ED enables the production of 
rougher surfaces with higher active site densities, which are advantageous for gas sensing 
applications. The cost-effectiveness of indium-doped Sn electrodes also makes them a promising 
alternative to sensors based on noble metals like platinum or gold, as highlighted by Fu et al., [10]. 

Nonetheless, challenges such as long-term signal drift, limited repeatability and reduced 
performance at high ethanol concentrations persist, as reported by Janith et al., [11]. These 
unresolved issues underscore the need for further investigation into compositional tuning and 
advanced synthesis methods to develop reliable and efficient ethanol sensors. 

Recent advancements in nanoscale material engineering—including doping and nanocomposite 
integration—have shown promise for enhancing sensor functionality. For example, Sanusi et al., [12] 
demonstrated that incorporating graphene oxide (GO) into ZnO thin films significantly improves their 
optoelectronic and surface characteristics, making them more suitable for sensing and photovoltaic 
applications. Further improvements in structural, optical and electrical properties were achieved by 
optimizing the GO solution temperature during deposition in a study by Sanusi et al., [13]. 

While notable advancements have been achieved in gas-phase ethanol sensors through material 
doping and nano structuring, the influence of indium doping on tin-based electrodes for liquid-phase 
ethanol sensing remains insufficiently explored. Most reported studies either examine alternative 
dopants or focus on gaseous ethanol detection, overlooking the specific role of indium concentration 
and electrodeposition parameters in liquid environments. This gap limits the optimization and 
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practical deployment of low-cost, high-performance sensors for biomedical and industrial 
applications. Therefore, this study is significant as it provides a systematic investigation into indium-
modified tin electrodes fabricated via electrodeposition, aiming to evaluate their structural, 
morphological and electrochemical characteristics. The main objective is to develop sensitive, stable 
and cost-effective ethanol sensors capable of accurate detection across various liquid-phase ethanol 
concentrations. 

 
2. Methodology  
2.1 Materials and Electrode Fabrication 

 
The fabrication of ethanol sensors in this study utilised high-purity reagents to ensure accuracy 

and reproducibility. Indium (III) chloride (InCl₃, Sigma-Aldrich, 99.999% trace metals basis) was 
chosen as the indium precursor due to its high purity and stability, essential for consistent and 
uniform electrodeposition, as reported by Deenadayalan et al., [14]. Ethanol (95% purity, SYSTEM® 
ChemAR®) was used as the target analyte, simulating real-world detection scenarios relevant to 
industrial and medical applications, as used by Ran et al., [15]. Acetone (ACS reagent grade, SYSTEM® 
ChemAR®) served as a cleaning agent to remove surface contaminants that may affect morphology 
and performance, similar to the approach by Hao et al., [16].  

Tin foil (99.99% pure, Sigma-Aldrich) was chosen as the substrate because of its established 
function in metal oxide-based ethanol sensing. To prevent any interference from ionic contaminants, 
deionized (DI) water was used to prepare all solutions. To ensure consistency among samples, the tin 
foil was sliced into 4 cm × 1 cm strips for electrode preparation. After extensively cleaning these strips 
with acetone and ethanol, they were rinsed with DI water to get rid of any remaining organics and 
surface oxides that might have affected their sensitivity and stability. To guarantee experimental 
uniformity, all compounds were of analytical quality and utilized without additional purification. 

 
2.2 Electrodeposition of Indium onto Tin Electrodes 

 
Electrodeposition (ED) was employed to modify the Sn electrodes, offering precise control over 

dopant concentration and morphology, factors that are critical for enhancing ethanol sensing 
properties, as noted by Ran et al., [15]. A 0.1 M indium chloride stock solution was prepared by 
dissolving 2.2 g of InCl₃ in 100 mL of deionized water with constant stirring. This solution was then 
diluted to prepare 0.01 M, 0.03 M and 0.05 M concentrations to investigate the effect of indium 
loading on sensor performance. 

The ED process was conducted in a two-electrode configuration, using the Sn electrode as the 
cathode and a platinum wire as the anode. Deposition was carried out at 1.5 V for 10 minutes at 
room temperature, based on prior optimization studies showing that longer durations may lead to 
agglomerated or uneven films that reduce performance, as explained by Hao et al., [16]. After 
deposition, the Sn/In electrodes were rinsed with deionized water to remove unreacted precursors 
and residual ions. Figure 1 illustrates the electrodeposition process involving two Sn electrodes. 

To promote strong film adhesion and form a protective ultrathin SnO₂ layer, the electrodes were 
dried in an oven at 90 °C for one hour. This low-temperature annealing process stabilizes surface 
morphology and reduces defect formation, contributing to improved selectivity and device longevity. 
A study by Muthukrishnan et al., [17] found that low-temperature deposition of SnO₂ ETLs, combined 
with oxygen plasma treatment, significantly enhanced film quality and device efficiency from 2.3% to 
15.3% by improving wettability and increasing perovskite grain size, demonstrating the potential of 
low-temperature processing for flexible perovskite solar cells. 
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Fig. 1. Schematic diagram for the ED process 

 
2.3 Electrochemical Testing using Chronoamperometry (CA) 

 
Chronoamperometry (CA) was employed to evaluate the real-time electrochemical response of 

the Sn/In electrodes, as this technique allows precise monitoring of current fluctuations under a 
constant applied potential. This approach aligns with methods used in recent studies on ethanol 
oxidation electrocatalysts. A three-electrode system was used, consisting of a Sn/In working 
electrode, an Ag/AgCl reference electrode and a platinum counter electrode, a configuration found 
by Abdo et al., [18] to provide stable and accurate electrochemical measurements for similar sensing 
applications. 

Ethanol solutions at concentrations of 25%, 50% and 95% v/v were prepared to investigate the 
sensor’s performance across varying exposure levels. CA measurements were conducted at a fixed 
potential of 10 V for 10 minutes at room temperature. The resulting current–time curves were 
analysed to determine sensitivity, stability and response time, as demonstrated in a study by Lović et 
al., [19], which highlighted the effectiveness of this approach for evaluating electrochemical sensor 
performance. 

In addition to current measurements, resistance-based tests were also conducted to calculate 
the response ratio, as shown in Eq. (1): 
 
!"
!#

                (1) 
  

where 𝑅𝑡 represents the resistance at a specific ethanol concentration and 𝑅𝑜 is the baseline 
resistance in air or at 0% ethanol. This ratio reflects the electrode’s oxidation efficiency and electron 
transport properties. Based on these results, the optimal indium concentration for achieving 
maximum sensitivity and reproducibility was identified. A schematic diagram of the three-electrode 
electrochemical setup is shown in Figure 2. 
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Fig. 2. Schematic diagram for a three-electrode electrochemical cell for ethanol 
liquid sensing 

 
3. Results  
3.1 Surface Morphology 

 
Figure 3 shows the surface morphology of Sn/In electrodes with different indium concentrations, 

observed using an optical microscope (60×180× zoom). The unmodified Sn electrode (Figure 3(a)) 
exhibited a smooth and flat surface with minimal porosity, which indicates a limited number of active 
sites for ethanol oxidation. As the In concentration increased, the surface roughness and porosity 
also increased (Figures 3(b) to 3(d)). The 0.05 M Sn/In electrode displayed the highest surface 
roughness and porosity, which are advantageous for ethanol adsorption and electron transfer 
efficiency. 

This trend is consistent with previous research showing that increased surface roughness 
enhances the interaction between the sensing surface and ethanol molecules, improving sensor 
responsiveness, as observed by Razalli et al., [20]. Additionally, higher porosity is associated with a 
greater density of catalytically active sites, which improves charge transfer in metal-oxide-based 
sensors, as supported by Costa et al., [21] and Dutta et al., [22]. 

 

 

 

  

(a) (b) (c) (d) 
Fig. 3. Optical microscope images of (a) unmodified Sn electrodes and modified with (b) 0.01 M In, (c) 0.03 
M In (d) 0.05 M In 
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3.2 Ethanol Liquid Sensor Measurement  
 
The response curves of Sn/In sensors with varying indium compositions (0.05 M, 0.03 M and 0.01 

M) were analysed after exposure to ethanol at concentrations of 25%, 50% and 95% v/v. As shown 
in Figure 4, the current response increased with higher ethanol concentration across all electrode 
types. The 0.05 M Sn/In electrode (Figure 4(a)) showed the highest peak current, followed by the 
0.03 M (Figure 4(b)) and 0.01 M (Figure 4(c)) electrodes. 
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(c) 

Fig. 4. The response curve of the (a) 0.05M Sn/In (b) 0.03M Sn/In (c) 
0.01 M Sn/In electrode sensor upon exposure to ethanol liquid at 
different concentrations. The concentration varied from 95 v/v% to 
25 v/v% 

 
This behaviour indicates that indium doping significantly improves the electrocatalytic activity for 

ethanol oxidation, which correlates with increased current generation. Berwal et al., [23] reported 
similar findings, where increased metal content in Sn-based electrodes led to improved conductivity 
and enhanced sensor response. Dadkhah et al., [24] also demonstrated that Sn-based electrodes with 
higher metal loadings exhibit better charge transfer performance and sensitivity. 

The synergistic effects between Sn and In further enhance ethanol oxidation by improving 
electron mobility and lowering activation energy. Goel et al., [25] confirmed that the Sn/In alloy 
system supports fast charge transfer, while Kong et al., [26] found that Sn/In combinations also 
enhance overall sensor selectivity. Conversely, reduced indium content leads to fewer active sites 
and weaker response, as reported by Saruhan et al., [27]. 

Figure 5 illustrates the current response over a 5-minute duration, where the 0.05 M Sn/In 
electrode reached a peak of approximately 0.75 mA, followed by ~0.45 mA for the 0.03 M electrode 
and ~0.10 mA for the 0.01 M electrode. All electrodes exhibited a rapid rise in current within the first 
two minutes, reflecting fast ethanol adsorption and oxidation. After electrode removal, a gradual 
current decline was observed due to reduced ethanol interaction. This behaviour is consistent with 
reports by Goel et al., [25], who noted a current drop-off when ethanol supply ceased. 
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(a) 

 
(b) 

 
(c) 

Fig. 5. The current (mA) of Sn electrode modified with (a) 0.05M (b) 
0.03M (c) 0.01M of indium for an ethanol sensor at different 
concentrations and reaction times (min) 
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Figure 6 shows the resistance-based sensor response (Rt/Ro) of Sn/In electrodes at various 
ethanol concentrations (95%, 50% and 25% v/v) over a 5-minute testing period. At 95% ethanol, the 
0.05 M In electrode exhibited the highest response ratio (~600), followed by the 0.03 M (~300) and 
0.01 M (~100) electrodes. Similar patterns were observed at 50% and 25% ethanol concentrations, 
although at the lowest concentration, the 0.03 M electrode showed better performance than the 
0.05 M electrode. 

This result suggests that moderate doping (0.03 M) optimizes ethanol interaction and sensor 
response under low ethanol concentrations, likely due to balanced catalytic activity and minimized 
side reactions. Similar conclusions were drawn by Dutta et al., [22], who emphasized the importance 
of dopant level optimization. Kong et al., [26] also noted that excessive indium may hinder sensing 
efficiency by inducing side reactions or surface saturation. 

Overall, the findings indicate that indium content and ethanol concentration jointly influence the 
sensor’s responsiveness, selectivity and stability. 
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(c) 

 
Fig. 6. Response of different indium modifications on Sn electrodes as 
ethanol sensors at (a) 95.0 v/v% (b) 50.0 v/v% (c) 25 v/v% of ethanol 
concentration and various reaction times (min) 

 
4. Conclusions 

 
This study successfully demonstrated that modifying tin electrodes with indium via 

electrodeposition significantly improves their performance in liquid-phase ethanol sensing. Among 
the samples tested, the electrode doped with 0.05 M In achieved the highest current response (~0.75 
mA) and resistance response ratio (~600 Rt/Ro) at 95% ethanol. This enhanced performance is 
attributed to increased surface roughness, porosity and catalytic activity. 

Interestingly, the 0.03 M In electrode showed better sensitivity at lower ethanol concentrations 
(25% v/v), indicating that moderate indium content provides a more balanced surface for ethanol 
oxidation. All electrodes displayed fast response times within the first two minutes of exposure, 
though a gradual current decline occurred after removal from ethanol, likely due to surface 
passivation. 

These results suggest that careful control of indium concentration during fabrication can fine-
tune the performance of Sn-based ethanol sensors. Future work should explore long-term durability, 
nano structuring techniques and integration into flexible or real-time sensing platforms for use in 
biomedical and industrial applications. 
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